
Journal of Emerging Information System and Business Intelligence 6(1) p.1-13 (2025)

Journal of Emerging Information System and Business Intelligence
ISSN: 2774-3993

Journal homepage: https://ejournal.unesa.ac.id/index.php/JEISBI/

Rendering Performance Analysis of Astro JS, Next JS, Nuxt JS, and SvelteKit
Frameworks Using Google Lighthouse, PageSpeed Insight, and JMeter

Ahmad Jourji Zaidan1, Dwi Fatrianto Suyatno2
1,2 Surabaya State University, Surabaya, Indonesia

ahmad.20023@mhs.unesa.ac.id, dwifatrianto@unesa.ac.id

ABSTRACT
The development and popularity of modern technology encourage innovation in developing web applications to
increase loading speed and retain users. This research analyzes the performance of websites that use Astro JS, Next
JS, Nuxt JS, and SvelteKit frameworks using the Server-Side Rendering technique. The advantage of the SSR
technique is that it can improve website performance, SEO (Search Engine Optimization) optimization, and user
experience. The tools used in this research are Google Lighthouse, PageSpeed Insight, and JMeter. The metrics
measured in Google Lighthouse and PageSpeed Insight testing are FCP (First Contentful Paint), TBT (Total Blocking
Time), SI (Speed Index), LCP (Large Contentful Paint), and CLS (Cumulative Layout Shift). While JMeter testing,
the metrics measured are Response Time (Min, Max, Average), Error Rate, and Throughput. The development method
used is the XP (Extreme Programming) method. The results of this study show Astro JS has superior performance in
most Web Vitals metrics, followed by Next JS which shows superiority in several metrics. Nuxt JS and SvelteKit
each only excelled in one Web Vitals metric. In stability and reliability of the system testing using JMeter, Nuxt JS
showed the best performance by excelling in the response time, error rate, and throughput metrics. SvelteKit also
performed well with dominance in several stability metrics, while Astro JS and Next JS only excelled in a small
number of them. This research was conducted to provide insight for developers in choosing the right framework based
on their needs.

Keyword: Astro JS, Next JS, Nuxt JS, SvelteKit, Google Lighthouse, PageSpeed Insight, JMeter.

Article Info: Corresponding Author
Article history:
Received October 27, 2025
Revised March 24, 2025
Accepted April 02, 2025

Ahmad Jourji Zaidan
Universitas Negeri Surabaya, Surabaya, Indonesia
ahmad.20023@mhs.unesa.ac.id

1. INTRODUCTION
Along with the development and popularity of modern technology, web applications

have grown increasingly rapidly. It is evident that there are currently 1.9 billion websites in the
world and the number will continue to grow [1]. Web page loading speed is one of the factors to
help retain users [2]. Currently, server-side rendering techniques (SSR) are an important
consideration in modern web development because with its advantages it can improve website
performance, Search Engine Optimization (SEO) optimization, and user experience [3].

The research “A Comparative Analysis of Next JS, SvelteKit, and Astro JS for E-
commerce Web Development” by [4] and “Rendering Performance Comparison of React, Vue,
Next, and Nuxt” by [5] both focused on comparing framework performance in web development.
The first research highlights the impact of frameworks on performance metrics such as load time,
interactivity, SEO, and resource efficiency, with results showing that Astro JS and SvelteKit are

https://ejournal.unesa.ac.id/index.php/JEISBI/
mailto:dwifatrianto@unesa.ac.id
mailto:ahmad.20023@mhs.unesa.ac.id


ISSN: 2774-3993

2

superior to Next JS in load time and resource efficiency. Meanwhile, the second research study
compared client- and server-side rendering performance of React, Vue, Next, and Nuxt using
various test tools. WebPageTest recorded Vue as the fastest (0.9 seconds), PageSpeed Insight
showed React ahead (2.8 seconds), while GTMetrix placed Next as the fastest (0.8 seconds).

In the context of the comparison between React Js and Next Js, the studies “React Js vs
Next Js” by [6] and “Performance Rendering Analysis Between Server-Side and Client-Side Web
Application” by [7] provide additional insights. The first research compares the popularity and
performance of both technologies with Google Lighthouse as a test tool, where React JS is more
popular and has an advantage in several performance aspects. The second research was more
specific in comparing client- and server-side rendering, with the results showing that React Js
scored 68, while Next Js only scored 35. Meanwhile, research by [8] in “Comparative Analysis
Study of Front-End JavaScript Frameworks Performance Using Lighthouse Tool” examines the
performance of web applications built with React, Angular, Vue, Svelte, and Solid Js. The results
show that Vue has the best performance in implementing weather applications compared to other
frameworks.

Based on previous research, after further analysis, it was found that there were limitations
to the research, such as the absence of server specifications in the application used for testing, and
one of the applications developed for testing did not meet the test metrics. This has an impact on
the accuracy of the test results because these factors can affect the test results, especially in the
metrics of load time, interactivity, and resource usage when applied in different environments.
Therefore, this research aims to complement these limitations by providing a more in-depth
analysis that is expected to provide more comprehensive information. In this research, we will
compare the performance of rendering frameworks with Server-Side Rendering (SSR) technique.
The frameworks compared are Astro JS, Next JS, Nuxt JS, and SvelteKit, the tools used are Google
Lighthouse, PageSpeed Insight, and JMeter.
2. METHODS

There is a research flow that explains the stages that discuss the general description of
the research from the first step to the last step that must be passed by the researcher to achieve the
research objectives.

Figure 1. Research Flow

2.1 Problem Identification
There is a research flow that explains the stages that discuss the general description of

the research from the initial stage to the final stage that the researcher must go through to
achieve the research objectives.

2.2 Literature Study
Literature studies are used to gain in-depth knowledge and insights that can be used as

a theoretical basis, reference, and consideration. At this stage, information collection is
carried out by collecting various trusted sources such as journals, scientific articles, theses,
and other related sources.



ISSN: 2774-3993

3

2.3 Data Collection
The data collection technique in this research is to utilize the Hotel Reviews dataset

taken from an open-source site called Kaggle. The data has gone through an adjustment
process for testing needs.

2.4 System Development
1. Development Method

The application development method in this study is to use the Extreme
Programming method. Extreme Programming method is a method that emphasizes
flexibility in the face of change by focusing on software quality [9]. In addition, this
method consists of several stages: planning, design, coding, and testing.
a. Planning

In this step, it aims to identify the application development needs that will be
applied by the application, including analyzing system requirements, namely
functional and non-functional needs.
1) Functional Requirements

Is a need in the form of data such as what processes or services the system
must perform [10]. The following are the functional requirements of the
application design that will be made as follows:
a) The system can display text scenario reviews
b) The system can display image scenario reviews based on the type of

image resolution (480p, 720p, 1080p, 2K, and 4K)
c) The system can display video scenario reviews based on the type of

video resolution (480p, 720p, 1080p, 2K, and 4K)
d) The system can display a review of text and image combination

scenarios based on the type of image resolution (480p, 720p, 1080p,
2K, and 4K)

e) The system can display a review of text and video combination
scenarios based on the type of video resolution (480p, 720p, 1080p,
2K, and 4K)

2) Non-functional Requirements
Is a need owned by a system related to performance, platform operations, and
so on [10]. The following are the non-functional needs of the application
design that will be made as follows:
a) Hardware

The hardware used to build and test the application is as follows:
- Laptop
- Processor
- GPU
- Storage
- RAM

: HP 14S CF1051TU
: Intel Celeron 4205U @1.8GHz
: Intel UHD Graphics 610
: 512 GB (SSD)
: 8 GB

b) Software
The software used to build the application is as follows:
- OS
- Text Editor
- Web Browser
- API Testing

: Windows 10
: Visual Studio Code
: Chrome
: Postman

c) Development Technology



ISSN: 2774-3993

4

The development technologies used to build each application are as
follows:
- Astro JS v.4.10.2
- Next JS v.14.2.3
- Nuxt JS v.3.11.2
- SvelteKit v.2.0.0
- Tailwind CSS v.3
- Express JS v.4.18.2
- MySQL v.8.0.30

d) Server
Server specifications used for testing applications are as follows:
- Front-End

● CPU
● RAM
● Storage
● Location

: 2 Core
: 4 GB
: 60 GB
: West Java, Indonesia

- Back-End
● CPU
● RAM
● Storage
● Location

: 4 Core
: 4 GB
: 60 GB
: West Java, Indonesia

e) Cloud Storage
Used to store assets such as images and videos. The platform used is
Google Cloud Platform with the Asia-Southeast2 region (Jakarta).

b. Design
In this step, system design is carried out with the aim of analyzing and knowing
the main functions of the software. At this stage the researcher translates into
UML form in the form of Use Case and Activity Diagrams.

c. Coding
In this step, the implementation of making applications is carried out by creating
program code based on the design that has been made before. Application
development uses each framework namely Astro JS, Next JS, Nuxt JS, and
SvelteKit for the client side, Express JS for the server side and MySQL for the
database.

d. Testing
In this step, testing of applications that have been developed using Chrome as a
web browser for testing and testing tools using Google Lighthouse, PageSpeed
Insight, and JMeter.

2. Applications to be tested
In this research, each application used for testing has the same interface, logic, and
data used. In addition, each test scenario will render 1000 elements using the Server-
Side Rendering technique.

2.5 System Testing



ISSN: 2774-3993

5

In this step, testing is carried out on each application with a predetermined scenario.
Testing uses 3 tools namely Google Lighthouse, PageSpeed Insight, and JMeter. Google
Lighthouse and PageSpeed Insight testing are used to measure performance and JMeter to
measure system stability. The research by [7] on comparing performance between React
Js and Next Js. In the test, it is explained that the test was carried out 5 times with the aim
of getting maximum results. In testing, to get consistent and maximum results, testing
using Google Lighthouse and PageSpeed Insight is carried out five times in each scenario.
In addition, in the Google Lighthouse and PageSpeed Insight tests, the assessment
reference uses the metrics in the Web Vitals model with 1 additional parameter, namely
the Speed Index. Speed Index is a parameter used to visually measure the speed at which
content is loaded during page loading [11].

The following are the Web Vitals metrics and their rendering time categorization:
Table 1. Rendering Time Metrics and Categorization Web Vitals

Parameter Category Rendering Time

First Contentful Paint
Fast (Green) 0 – 1.8 seconds

Medium (Orange) 1.9 – 3 seconds
Slow (Red) > 3 seconds

Total Blocking Time

Fast (Green) 0 – 200 milliseconds

Medium (Orange) 201 – 600 milliseconds

Slow (Red) > 600 milliseconds

Speed Index

Fast (Green) 0 – 3.4 seconds

Medium (Orange) 3.5 – 5.8 seconds

Slow (Red) > 5.8 seconds

Large Contentful Paint

Fast (Green) 0 – 2.5 seconds

Medium (Orange) 2.6 – 4 seconds

Slow (Red) > 4 seconds

Cumulative Layout Shift

Fast (Green) 0 – 0.1 %

Medium (Orange) 0.2 – 0. 25 %

Slow (Red) > 0.25 %

In addition, system stability will be tested using the load test method to measure system
stability and the ability of the system to handle users with predetermined specifications.
The performance of a web-based application can be measured through the response time
and throughput of a request, where the smaller the response time value and the greater the
throughput value, the better the application performance [12]. Therefore, in this study, the
metrics that will be measured for JMeter testing are response time and throughput metrics
by adding 1 metric, namely error rate. In the testing process, this study will use 3 scenarios,
namely the first scenario represents the condition of the website with low load, the second
scenario represents medium load, and the third scenario represents high load.

The following is a test scenario using the load test method using JMeter:



ISSN: 2774-3993

6

Table 2. JMeter Load Testing Scenario

JMeter Testing Scenario

Scenario 1
Number of Threads (users) 100

Ramp-up Time (seconds) 100
Loop Count 1

Scenario 2
Number of Threads (users) 300

Ramp-up Time (seconds) 300
Loop Count 1

Scenario 3
Number of Threads (users) 500

Ramp-up Time (seconds) 500
Loop Count 1

2.6 Test Result Analysis
In this step, an analysis of the test results that have been obtained is carried out. Rendering

performance analysis using Google Lighthouse and PageSpeed Insight, focusing on Web
Vitals metrics such as FCP (First Contentful Paint), TBT (Total Blocking Time), SI (Speed
Index), LCP (Large Contentful Paint), and CLS (Cumulative Layout Shift). While the
performance test analysis with the load test method, focuses on the metrics of response time,
error rate, and throughput.
2.7 Conclusion

After all analysis data is obtained, the next step is to draw conclusions from the results of
the analysis carried out based on Web Vitals and Load Test measurements.

3. RESULTS AND DISCUSSION
In the development process, the dataset used comes from the Hotel Reviews dataset taken

from the Kaggle platform. The data has a csv (Comma Separated Values) format. Furthermore,
data adjustment is carried out with the aim of facilitating the data import process. After that, import
data into the MySQL database.

The test scenarios used are text scenarios, image scenarios (480p, 720p, 1080p, 2K, and 4K),
video scenarios (480p, 720p, 1080p, 2K, and 4K), text and image combination scenarios (480p,
720p, 1080p, 2K, and 4K), and text and video combination scenarios (480p, 720p, 1080p, 2K, and
4K). From a total of 21 scenarios, each scenario was tested 5 times, then the results were averaged
to obtain a more accurate value. The average value obtained is used as a representation of each
metric and is used as a basis for further analysis. In addition, in some conditions, there are some
frameworks that show identical results after the average calculation. Therefore, to maintain
consistency in the analysis, the same metric values are still included in the calculation results. The
following are the test results using Google Lighthouse, PageSpeed Insight and JMeter.



ISSN: 2774-3993

7

3.1 Google Lighthouse
1. First Contentful Paint (SI)

9
1

11

1
ASTRO NEXT JS NUXT JS SVELTEKIT

0
3
6
9
12
15
18
21

First Contentful Paint (FCP)

Figure 2. Google Lighthouse FCP Metrics Testing Results

The test results show that on the FCP metric Nuxt JS has the best FCP value by
winning in 11 out of 21 scenarios. Followed by Astro JS, Next JS and SvelteKit.

2. Total Blocking Time (TBT)

11
7

2 1
ASTRO NEXT JS NUXT JS SVELTEKIT

0
3
6
9
12
15
18
21

Total Blocking Time (TBT)

Figure 3. Google Lighthouse TBT Metrics Testing Results

The test results show that on the TBT metric Astro JS has the best TBT value by
winning in 11 out of 21 scenarios. Followed by Next JS, Nuxt JS and SvelteKit.

3. Speed Index (SI)

11

2
7

2
ASTRO NEXT JS NUXT JS SVELTEKIT

0
3
6
9
12
15
18
21

Speed Index (SI)

Figure 4. Google Lighthouse SI Metrics Testing Results

The test results show that on the SI metric Astro JS has the best SI value by winning
in 11 scenarios out of 21 scenarios. Followed by Nuxt JS, Next JS and SvelteKit.

4. Large Contentful Paint (LCP)



ISSN: 2774-3993

8

9 7 6
1

ASTRO NEXT JS NUXT JS SVELTEKIT
0
3
6
9
12
15
18
21

Large Contentful Paint (LCP)

Figure 5. Google Lighthouse LCP Metrics Testing Results

The test results show that on the LCP metric Astro JS has the best LCP value by
winning in 9 scenarios out of 21 scenarios. Followed by Next JS, Nuxt JS and SvelteKit.

5. Cumulative Layout Shift (CLS)

1

15
8 9

ASTRO NEXT JS NUXT JS SVELTEKIT
0
3
6
9
12
15
18
21

Cumulative Layout Shift (CLS)

Figure 6. Google Lighthouse CLS Metrics Testing Results

The test results show that on the CLS metric Next JS has the best CLS value by
winning in 15 out of 21 scenarios. Followed by SvelteKit, Nuxt JS, and Astro JS.

3.2 PageSpeed Insight
1. First Contentful Paint (FCP)

19

4
10

0
ASTRO JS NEXT JS NUXT JS SVELTEKIT

0
3
6
9
12
15
18
21

First Contentful Paint (FCP)

Figure 7. PageSpeed Insight FCP Metrics Testing Results

The test results show that Astro JS FCP padametric has the best FCP value by
winning in 19 scenarios out of 21 scenarios. Followed by Nuxt JS, Next JS. While
SvelteKit, did not excel in any scenario.

2. Total Blocking Time (TBT)



ISSN: 2774-3993

9

9 9

1
6

ASTRO JS NEXT JS NUXT JS SVELTEKIT
0
3
6
9
12
15
18
21

Total Blocking Time (TBT)

Figure 8. PageSpeed Insight TBT Metrics Testing Results

The test results show that on the TBT metric Astro JS and Next JS have the same
TBT value by winning in 9 out of 21 scenarios. Followed by SvelteKit and Nuxt JS.

3. Speed Index (SI)

13

0

9

1
ASTRO JS NEXT JS NUXT JS SVELTEKIT

0
3
6
9
12
15
18
21

Speed Index (SI)

Figure 9. PageSpeed Insight SI Metrics Testing Results

The test results show that on the SI metric Astro JS has the best SI value by winning
in 13 out of 21 scenarios. Followed by Nuxt JS and SvelteKit. Next JS, on the other
hand, did not excel in any scenario.

4. Large Contentful Paint (LCP)

8
12

6
0

ASTRO JS NEXT JS NUXT JS SVELTEKIT
0
3
6
9
12
15
18
21

Large Contentful Paint (LCP)

Figure 10. PageSpeed Insight LCP Metrics Testing Results

The test results show that on the LCP metric Next JS has the best LCP value by
winning in 12 out of 21 scenarios. Followed by Astro JS, and Nuxt JS. SvelteKit, on
the other hand, did not excel in any scenario.

5. Cumulative Layout Shift (CLS)



ISSN: 2774-3993

10

6
14

7

18

ASTRO JS NEXT JS NUXT JS SVELTEKIT
0
3
6
9
12
15
18
21

Cumulative Layout Shift (CLS)

Figure 11. PageSpeed Insight CLS Metrics Testing Results

The test results show that on the CLS metric SvelteKit has the best CLS value by
winning in 18 out of 21 scenarios. Followed by Next JS, Nuxt JS, and Astro JS.

3.3 JMeter
1. Simulated Load 100 Users

1 0
3

0
4

0 0
2

0 0

12
16

8

0

11
9

5
8

0

14

Av
era
ge Mi

n
Ma
x

Err
or

Thr
oug

hpu
t

0
3
6
9
12
15
18
21

Simulasi 100 User
Astro JS Next JS Nuxt JS SvelteKit

Figure 12. Load Testing Results 100 Users

The test results show that at a low load simulation of 100 users, Next JS has the
best consistency in system stability and reliability testing by excelling in most metrics.
Followed by SvelteKit, Astro Js, and Next JS.

2. Simulated Load 300 Users

2 1
3

0

9

0 0 1 0
2

14 14 13

0

20

5 6
4

0

11

Average Min Max Error Throughput
0
3
6
9
12
15
18
21

Skenario 300 User
Astro JS Next JS Nuxt JS SvelteKit

Figure 13. Load Testing Results 300 Users

The test results show that at a medium load simulation of 300 users, Next JS has
the best consistency in testing system stability and reliability by excelling in all metrics.
Followed by SvelteKit, Astro Js, and Next JS.



ISSN: 2774-3993

11

3. Simulated Load 500 Users

1 1 2
0

12

0 0
2

0
2

17 18

14

0

17

3 2 3
0

18

Average Min Max Error Throughput
0
3
6
9
12
15
18
21

Skenario 500 User
Astro JS Next JS Nuxt JS SvelteKit

Figure 14. Load Testing Results 500 Users

The test results show that in the 500 users high load simulation, Next JS has the
best consistency in system stability and reliability testing by excelling in most metrics.
Followed by SvelteKit, Astro Js, and Next JS.

Based on the previous test results, the following is an overall analysis presented in the form
of graph visualization. This approach aims to identify performance patterns, performance
consistency between testing tools, and the characteristics of each framework in various metrics.
1. Analysis of Google Lighthouse and PageSpeed Insight Results

3

1 1

0

3

2

0

1

ASTRO J S NEXT J S NUXT J S SVELTEK I T

Google Lighthouse and PageSpeed Insight Testing
Google Lighthouse PageSpeed Insight

Figure 15. Google Lighthouse and PageSpeed Insight Testing Comparison Results

Based on the visualization data above, performance testing using Web Vitals metrics
shows that Astro JS excels in most metrics, namely in the FCP, TBT, LCP, and SI metrics.
This means that Astro JS has a good ability to handle the speed of rendering content in the
form of text, visuals and content with large layout sizes. In addition, Astro JS also has a good
ability to handle blocking time or handle the waiting time for users to interact with the page.
Next JS shows good ability in TBT, LCP, and CLS metrics. This means Next JS has a good
ability to handle blocking time, rendering content with large layout sizes and maintaining
the visual stability of the page. Next, Nuxt JS and SvelteKit, Nuxt JS has an advantage in
the FCP metric, which means the ability to render content the first time quickly, while
SvelteKit has an advantage in the CLS metric, which means a good ability to maintain the
visual stability of the page.



ISSN: 2774-3993

12

2. Analysis of JMeter Load Testing Results

Av
era
ge Mi

n
Ma
x
Err
or

Thr
oug

hpu
t

Av
era
ge Mi

n
Ma
x
Err
or

Thr
oug

hpu
t

Av
era
ge Mi

n
Ma
x
Err
or

Thr
oug

hpu
t

Av
era
ge Mi

n
Ma
x
Err
or

Thr
oug

hpu
t

0
3
6
9
12
15
18
21

JMeter Testing

100 User 300 User 500 User
Figure 16. JMeter Testing Comparison Results

Based on the visualization data above, testing system stability and reliability using
varying loads with Response time (Min, Max, Average), Error rate, and Throughput metrics,
shows that Nuxt JS has good performance and consistency by excelling in various test
metrics. Followed by SvelteKit, astro JS, and Next JS. In response time metrics (Min, Max
and Average), Nuxt JS has good consistency, which means it has a good ability to handle
requests quickly compared to other frameworks. In the error rate metric, all frameworks
show good consistency with 0% error rate, which means they have good stability and
reliability. And on the throughput metric, Nuxt JS and SvelteKit have good consistency, this
means they have a good ability to handle high loads. While Astro JS and Next JS show poor
consistency in various metrics.

CONCLUSION
This research was conducted with the aim of knowing the comparison of rendering

performance. Based on the results of analyzing the rendering performance of the Astro JS, Next
JS, Nuxt JS, and SvelteKit frameworks using Google Lighthouse, PageSpeed Insight, and JMeter,
the following conclusions can be drawn:
1. The analysis process begins by creating 4 applications with the same interface design and

data used, using the Hotel Reviews dataset. The application will render 1000 elements at
once using the SSR (Server-Side Rendering) technique. Furthermore, each application is
tested five times for each scenario using Google Lighthouse and PageSpeed Insight with an
incognito mode browser configuration and a disabled cache. While JMeter testing, one test
is carried out in each scenario and is carried out in stages based on the user simulation load
scenario.

2. The results showed that overall, in performance testing using Web Vitals metrics, Astro JS
performed very well by excelling in most metrics. Next JS followed with a lead in several
metrics. While Nuxt JS and SvelteKit each excelled in one metric. In the stability and
reliability testing using JMeter, Nuxt JS performed very well with excellence in all response
time, error rate, and throughput metrics. This was followed by SvelteKit which excelled in
several metrics. Astro JS and Next JS showed superiority in a small number of metrics.



ISSN: 2774-3993

13

REFERENCES
[1] Tjhoernandes, A., Susetyo, Y. A., Kristen, U., & Wacana, S. (2022). Penerapan MAC

Address sebagai Autentikasi Aplikasi menggunakan Javascript Bindings Chromium
Embedded Framework Python di PT. Jurnal Inovtek Polbeng, 7(1), 26–36.

[2] Nordström, C., & Dixelius, A. (2023). Comparisons of Server-side Rendering and Client-
side Rendering for Web Pages.

[3] Meredova, A. (2023). Comparison of Server-Side Rendering Capabilities of React and Vue.
[4] Kroon Celander, E., &Möllestål, A. (2024). A Comparative Analysis of Next. js, SvelteKit,

and Astro for E-commerce Web Development.
[5] Siahaan, M., & Kenidy, R. (2023). Rendering performance comparison of react, vue, next,

and Nuxt. Jurnal Mantik, 7(3), 1851-1860.
[6] Dinku, Z. (2022). React. js vs. Next. js.
[7] Geovanny, A. (2022). Analisis Rendering Performa Antara Server-Side dan Client-Side

Pada Web Application. Jurnal Ilmiah Betrik, 13 (03 Desember), 311-319.
[8] Siahaan, M., & Vianto, V. O. (2022). Comparative Analysis Study of Front-End JavaScript

Frameworks Performance Using Lighthouse Tool. Jurnal Mantik, 6(3), 2462-2468.
[9] Sari, N., & Cahyani, D. (2022). Perancangan Sistem Informasi Monitoring Sertifikat

Menggunakan Extreme Programming. Jurnal Ilmiah Computer Science, 1(1), 1-6.
[10] Indradewi, I. G. A. A. D., &Wibawa, I. G. P. (2021). Analisis dan Desain Sistem Informasi

Pengajuan dan Monitoring Keuangan Kelurahan Berorientasi Obyek pada Kecamatan
Denpasar Selatan. Jurnal Krisnadana, 1(1), 1-12.

[11] Chrome. (n.d.). Performance Audits - Chrome for Developers. Chrome Developers.
Retrieved November 18, 2023, from https://developer.chrome.com/docs/lighthouse

[12] Ismail, A., Ananta, A. Y., Arief, S. N., & Hamdana, E. N. (2023). Performance testing
sistem ujian online menggunakan jmeter pada lingkungan virtual. Jurnal Informatika
Polinema, 9(2), 159-164.


