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ABSTRACT

Advances in information and communication technology, particularly the internet and social media, have made it
easier for people to express their opinions openly, but have also increased the potential for the spread of profanity
and hate speech. This study proposes a web-based profanity detection solution by combining lexicon-based
methods and Support Vector Machine (SVM). The Knowledge Discovery in Database (KDD) process was
implemented for data extraction and analysis, starting from Twitter data collection, preprocessing (cleaning, case
folding, tokenizing, stemming), transformation using TF-IDF, to manual labeling. The SVM model was trained
using a 3-fold cross-validation scheme, and evaluation was conducted using a classification report and confusion
matrix. The results of the study showed a model accuracy of 93% on the test data with an average F1-score of
0.93, as well as optimal performance in detecting sentences categorized as profanity. The developed web
application prototype successfully ran all profanity word detection and sensing features automatically, as proven
by the black box testing results. The analysis test also ran smoothly, with a test using 10 sentences containing
profanity words achieving 100% accuracy, and a test using 10 sentences without profanity words achieving 95%
accuracy. This system is expected to contribute to creating a more positive digital space through adaptive and
accurate profanity word detection.
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1. INTRODUCTION

Advances in information and communication technology, particularly the internet and
social media, have brought about major changes in the way people interact. This has enabled
everyone to freely express their opinions on various digital platforms. However, this freedom
has also given rise to new challenges, as the use of profanity and hate speech is often found
[1]. Therefore, a profanity detection system is greatly needed.

Automatic detection of profanity is very important for maintaining a healthy digital
ecosystem. Various approaches have been developed to address this issue, ranging from
lexicon-based approaches to the use of machine learning techniques. Lexicon-based
approaches can simplify the labeling process by using existing lists of profanity. However, if
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the lexicon does not include new words, detection accuracy may decrease, and it may also be
less effective in handling complex contexts or ambiguous phrases [2].

Previous research implemented SVM for detecting negative comments on the Twitter
platform with 254 comment data, achieving an accuracy of 88%, precision of 100%, recall of
50%, and an F1 score of 67% [4]. Meanwhile, another study compared the SVM method with
a lexicon-based method in sentiment analysis using a dataset of 4,000 data points. The accuracy
of the SVM model was found to be 98.5%, while the lexicon-based method performed poorly
in analysis, achieving an accuracy of 78.43% [5]. This indicates that SVM is more effective in
handling the complexity of language and context in sentiment analysis compared to lexicon-
based methods.

Based on this background, a relevant and innovative solution was developed by
combining the Support Vector Machine (SVM) method and a lexicon-based approach. This
application is expected to provide accurate and adaptive detection results for language
dynamics on social media, as well as contribute to efforts to create a more positive digital space.

2.  METHODS

The following is the research flow used for this study. This study uses the Knowledge
Discovery in Database (KDD) method to build an SVM model used for sentence sentiment and
the Prototype method for the application development process. The following research flow
framework is illustrated in Figure 1.
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Figure 1. Research Framework

In the initial step, an SVM model was constructed by employing the Knowledge
Discovery in Database (KDD) methodology. The KDD process aims to extract and analyze
large datasets to uncover valuable information and knowledge through data mining techniques
[6]. KDD is not just a data mining process, but also a systematic series of steps to convert raw
data into valuable knowledge [7]. There are five processes involved in KDD, which are
described as follows:
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A. Selection

At this stage, data collection was carried out to obtain data that was relevant and
appropriate to the model requirements. The data used in this study was obtained from Twitter
using crawling techniques. The data was collected using several specific keywords that had the
potential to contain profanity or negative opinions in Indonesian. The crawling results yielded
1,502 sentences.

B. Preprocessing

Preprocessing is done to prepare the data for the next stage. There are four common
steps in the preprocessing process: case folding, tokenizing, filtering, and stemming [8]. At this
stage, the dataset, which previously contained many unnecessary characters and punctuation
marks, is processed. This cleans up the data and makes it ready for analysis or modeling in the
next stage.

The first step is the cleaning process. This process is carried out to clean the dataset of
characters that are not needed in the classification process. Cleaning is done by removing
punctuation marks, emoticons, foreign characters, URLS, and so on. This is done to convert the
text format to a standard form so that it is easier to process. The cleaning process can be seen
in Table 1.

Table 1. Cleaning

Process Input Process Ouput
@riz_esp Anak Anak anjing dan
anjing dan anak anak babi tu anak

babi tu anak2 dia dia juga ke Tanya
juga ke? Tanya je je jangan marah

jangan marah

Next, case folding is performed, which involves changing sentences or words from the
dataset. Words or sentences that were previously in uppercase will be changed to lowercase.
This is done to reduce unnecessary word variation. The case folding process can be seen in
Table 2.

Table 2. Case Folding

Process Input Process Ouput

Anak anjing dan anak anjing dan
anak babi tu anak anak babi tu anak
dia juga ke Tanya dia juga ke tanya
je jangan marah je jangan marah

The next stage is the tokenizing process. This process is carried out by separating
sentences into words or tokens. The purpose of this process is to facilitate statistical analysis
of the text, such as calculating the frequency of word occurrence, as well as preparing data for
further processing stages. The tokenizing process can be seen in Table 3.

Table 3. Tokenizing

Process Input Process Ouput
anak anjing dan ‘anak’, ‘anjing’,
anak babi tu anak ‘dan’, ‘anak’,
dia juga ke tanya ‘babi’ ‘tu’,
je jangan marah ‘anak’, ‘dia’,
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‘juga’, ‘ke’,
‘tanya’, ‘je’,
‘jangan’, ‘marah’

The final stage is the stemming process. This process is used to convert words into their
basic form. The purpose of this process is to standardize various forms of words so that they
are recognized as the same entity by the model and are not treated as different words. The
stemming process can be seen in Table 4.

Table 4. Stemming

Process Input Process Ouput
anak anjing dan anak anjing dan
anak babi tu anak anak babi anak
dia juga ke tanya dia juga tanya
je jangan marah jangan marah

C. Transformation

During the data transformation stage, text data is converted into numerical
representations that can be processed by machine learning algorithms. Previously, the collected
text data underwent a manual labeling stage, which involved manually labeling each sentence
to classify it as profanity or non-profanity.

After labeling, the TF-IDF technique was used, which is a combination of two words,
namely Term Frequency and Inverse Document Frequency [9]. This technique calculates the
weight of words based on their relative frequency in the corpus, so that distinctive words are
given a higher weight. The result is a numerical vector feature matrix that is used as input for
SVM classification.

D. Data Mining

- Cross Model
Splitting Data Validation Training

Model
Evaluation

Save the Best

Figure 2. Data Mining Flow

The data mining process flow can be seen in Figure 2. This stage will build a model
using the Super Vector Machine (SVM) algorithm. First, the data is split into two sets: the first
set for training and validation data, and the second set for test data. The data is split in an 80:20
ratio, where 80% of the training and validation data is used for training and cross-validation,
and 20% of the test data is used for final evaluation after the best model is identified.

Next, cross-validation is performed using StratifiedKFold with a number of 3-fold. The
SVM model will train the data three times with different data combinations. Each fold will
produce accuracy from the training results. The values obtained are used to evaluate which fold
has the best model performance. After that, the model is saved for use in the next process.
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E. Evaluation

In the final evaluation stage, the best SVM model selected during the cross-validation
process was tested on test data that had been previously separated from the entire dataset. The
test data used was data that had never been seen by the model before. The evaluation was
carried out using classification report metrics that included precision, recall, and F1-Score for
each class, as well as overall accuracy. Additionally, an evaluation was conducted using a
confusion matrix to facilitate the interpretation of the distribution of correct and incorrect
predictions for each class.

The next step is to develop the interface using the prototype method. Prototyping is
used to build initial models that can be evaluated and tested with users to clarify user needs and
expectations for the system to be developed [10]. This method has the advantage of allowing
dynamic adaptation to user needs. The following are the stages of the prototype method [11].
There are six processes involved in this stage, which are described as follows:

A. Requirements Analysis
This stage includes analyzing the requirements to determine the components and
resources needed to build a profanity detection system. Some of the analyses are as follows.
1) User Requirements Analysis
The users of this application are individuals or institutions who want to filter text content
containing profanity. Therefore, this system is designed to have a simple and easy-to-use
interface for entering text and displaying detection results.
2) Hardware Requirements Analysis
The hardware requirements for building the application are an 11th Gen Intel(R) Core(TM)
processor, 8GB RAM, a keyboard, and a mouse.
3) Software Requirements Analysis
The software needed to build the application includes Windows 11 operating system,
Google Chrome browser, Google Colaboratory, Sublime Text, and Draw.io.

B. Design

The design serves as a reference in building an initial prototype that meets user needs
and application objectives. The interface design is carried out to provide an initial illustration
of the model that will be developed further.

1) Use Case Diagram

Enter Sentence

Detecting
Profanity

Figure 3. Use Case Diagram

The use case design that illustrates the functional relationship between user input and
the system's analytical capabilities is shown in Figure 3. In this design, the usage presented in
this study illustrates the interaction flow in which users can enter sentences to be analyzed by
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the system. Next, the system processes these sentences using detection features to identify

inappropriate or irrelevant content.

2) Activity Diagram

User Sistem
Opening a «| Displaying he
Website "1 Home Page
R
Entering a >
Sentences
Y
. Displaying
Click Detect Detection Results
~————

Figure 4. Activity Diagram

The activity diagram design can be seen in Figure 4. The activity diagram illustrates the
flow of activities that users can perform in the application. This process begins when users
access the website and enter a sentence in the field provided.

3) Sequence Diagram

Detecti or)

User

Display

1. Entering a Sentences__-:-

2. Click Detect

-

5. Detection Result

System

3. Processing the
input sentence

4. Displaying Detection Result

Figure 5. Sequence Diagram

The sequence diagram design can be seen in Figure 5. The sequence diagram explains
that the process begins when the user enters a sentence. This input is then sent to the system
for processing. The system will process the input using a pre-designed detection algorithm.

439



ISSN: 2774-3993

After that, the detection results are returned to the application interface and displayed to the
user.

4) Interface Design

Detection and Monitoring of Profanity (Only in
Indonesian)

Input a Sentence :

Original Sentence :
Sentiment Analysis :
Detected Profanity :
Censored Output :

Figure 6. Interface Design

The initial interface design can be seen in Figure 6. This is a preliminary design for the
interface that will be built. Users can input the sentence they want to detect in the “Input a
Sentence” column. Then, the inputted sentence can be detected by clicking the “Detect” button.
As a result, the sentiment analysis, detected profanity, and censored output of the detected
sentence will appear.

C. Build Prototype

At this stage, system coding is carried out to build the application interface. This stage
involves code development, feature integration, and further testing [11]. This stage is the output
of the requirements determination process in the initial stage [12].

This design was developed using the Python programming language with the built-in
Jinja Template from Flask as the backend framework and HTML as the website display. In this
implementation, sentence classification is performed using the SVM model built in the
previous stage, while word classification uses a lexicon-based approach.

D. Evaluation

This evaluation stage serves to identify potential problems in the interface display that
could interfere with user performance in running the system [13]. The evaluation was carried
out using 20 sentences that were input into the application. Ten sentences contained profanity,
and ten sentences did not contain profanity. The evaluation was carried out using the Black
Box Testing technique and analysis testing.

E. Refinement

This stage is carried out after the application has been evaluated. Based on the
evaluation, the prototype improvement stage is carried out [14]. Improvements are made based
on input and suggestions provided by users until the prototype meets their needs and
expectations.

F. Implementation

The final stage is the implementation process. This includes final coding, testing, user
training, and initial monitoring to ensure that the system runs according to requirements, so
that users can make optimal use of the solution. Implementation is carried out by developing
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the system based on a validated prototype to accelerate development and minimize the risk of
failure [15].

3. RESULTS AND DISCUSSION
3.1 PROFANITY CLASSIFICATION

This section shows the results of the SVM model in detecting profanity. The
architectural parameters used in this model can be seen in Table 5.

Table 5. Architecture Parameters

Parameter Setting Standard
kernel ‘linear’

c 1.0 ‘rbf>
gamma ‘scale’ ‘scale’
degree 3 3

coef0 0.0 0.0
probability False False
shrinking True True
class_weight None None
random state 42 None

The model was trained using an 80:20 data split and 3-fold cross-validation of the total
data consisting of 1,502 sentences. The data used was divided into two sets, where the first
set was the training and validation data consisting of 1,202 sentences, and the second set was
the test data consisting of 300 sentences. The modeling results can be seen in Table 6.

Table 6. Model Accuracy Results

Fold Accuracy

1 93,75%
2 92,75%
3 91,50%

The best accuracy result was obtained by fold 1 with an accuracy value of 93.75%.
Then, the model from this fold was saved for use in building the interface. An evaluation of
this model was also carried out using the previously saved test data. The evaluation was
carried out using a classification report and confusion matrix. The evaluation results using
the classification report can be seen in Figure 7.

Classification Report:
precision recall fl-score support
Non-Profanity (@) 0.95 0.85 0.90 179
Profanity (1) 0.89 0.96 9.93 221
accuracy @.92 400
macro avg 0.92 @©.91 8.91 400
weighted avg .92 0.92 ®.91 400

Figure 7. Classification Report

Based on the evaluation results, the model achieved an accuracy of 93%, with a macro
and weighted f1-score of 0.93, respectively. In class 0 or non-profanity, precision was 0.97
and recall was 0.87, while in class 1 or profanity, precision reached 0.91 with recall of 0.98.
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These results indicate that the model performs well and is highly effective in detecting class
1, although it is slightly less sensitive to class 0. The results of the evaluation using the
confusion matrix can be seen in Figure 8.

Confusion Matrix - Test Data

160

140

120

Non-Profanity (0)

100

- 80

Actual

- 60

Profanity (1)

I
Non-Profanity (0) Profanity (1)
Prediction

Figure 8. Confusion Matrix

Based on the evaluation results using the confusion matrix, the model was able to
classify the data quite well. Of the total 134 actual data points in the ‘not profanity’ class, 117
were correctly classified, while 17 were incorrectly classified as ‘profanity’. Meanwhile, out
of the 166 actual data points in the ‘profanity’ class, 162 were correctly classified, and only
4 were incorrectly classified as ‘not profanity’.

These results show that the model has excellent ability to recognize data containing
profanity, with a low error rate. In addition, the classification error rate for the “non-
profanity” class is also relatively small and still within reasonable limits.

3.2 DEVELOMPENT

This section presents the results of the application interface development that has been
adapted to the design formulated in the previous stage.

A. Interface

Profanity Detection Application

(Only in Bahasa Indonesia)

Input a Sentence

Detect

Figure 9. Home Page
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As can be seen on the home page interface in Figure 9, users can enter the sentences
they want to detect. After writing the sentence, they can click the “Detect” button, and the
sentence will be detected by the system.

Profanity Detection Application

(Only in Bahasa Indonesia)

Input a Sentence

Detect

Original Sentence : Lu pernah nggak sih lagi ngobrol nih sama temen lu dan
semakin lu ngobrol lama lu sadar ini orang tolol ya

Sentiment Analysis : Negative
Detected Profanity : tolol

Censored Output : Lu pernah nggak sih lagi ngobrol nih sama temen lu dan
semakin lu ngobrol lama lu sadar ini orang *** ya

Figure 10. Detection Ouput Interface

The detection results can be seen in Figure 10. The detection results display the
sentiment analysis of the entered sentence, which can be either ‘Negative’ or ‘Non-Negative’.
This section also displays words that are detected as profanity. The censored output section
displays sentences with censorship on detected profanity.

B. Black Box Testing

Testing was conducted using the black box testing method. This test will examine the
system's functions and focus on the system's inputs and outputs performed by users. The
results of black box testing can be seen in Table 7.

Table 7. Black Box Testing

Test Scenario

Description

Expected Results

Result

Users can
input
sentences

Users can
detect
sentences

The sentences is
input by entering it
into the provided
text field
The users triggers
the detection
process by clicking
the ‘Detect’ button

The system
receives a
sentences input

Display detection
results including
sentiment
analysis, detected
profanities, and
the sentence with
censored words

v

The results of black box testing show that all features work well in all test scenarios,
marked with a ‘v’ in the results section.

C. Analytical Test

Next, an analysis test was conducted to further test the system's ability to detect
profanity. This test was conducted by entering 10 sentences containing profanity and 10
sentences without profanity. The results of the system analysis test can be seen in Table 8.
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Table 8. Analytical Test

Label Successful Accuracy
Profanity 10/10 100%
Non-Profanity 19/20 95%

The test results show that sentences containing profanity were detected correctly,
resulting in an accuracy rate of 100%. Meanwhile, sentences that did not contain profanity
had one detection error, resulting in an accuracy rate of 95%.

CONCLUSION

Based on the research results, it can be concluded that the developed SVM model successfully
detected profanity with good performance, as shown by an accuracy of 93.75% on the training
data and 93% on the test data with an average F1 score of 0.93. Evaluation using the confusion
matrix indicates a low classification error rate, particularly in identifying sentences falling
under the profanity category.

The implementation of the model on the web application also runs optimally, as evidenced by
all features meeting expectations in black box testing. Additionally, analysis testing with 10
sentences containing profanity and 10 without profanity yielded results where sentences
containing profanity achieved 100% accuracy, while sentences without profanity achieved
95% accuracy. This indicates that the system built is effective in automatically detecting and
censoring profanity.
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