ANALISIS KOMPOSIT Fe₃O₄/c-SiO₂ DARI PASIR TALAUD DAN PASIR LUMAJANG

Anes Yulianingsih¹⁾, Munasir²⁾

¹⁾ Program Studi S1 Fisika, FMIPA, UNESA, E-mail <u>anesyulianingsih@mhs.unesa.ac.id</u>
²⁾Dosen Fisika, FMIPA, UNESA, E-mail <u>munasir_physics@unesa.ac.id</u>

Abstrak.

Sintesis komposit Fe₃O₄/c-SiO₂ yang berasal dari bahan alam dngan menggunakan bahan dasar yaitu SiO₂ dari pasir Talaud, Fe₃O₄ dari pasir besi Lumajang, dan PEG 4000. Dalam penelitian ini terdapat 3 variasi komposisi massa c-SiO₂ dan PEG 4000 (sampel #1,sampel #2,sampel #3). Sintesis ini dilakukan dengan cara mencairkan PEG 4000 kemudian ditambahkan c-SiO₂ dan Fe₃O₄. Setelah itu tercampur dan dikeringkan lalu dikarakterisasi dengan XRD dan FTIR. Hasil uji *X-Ray Diffraction* (XRD) menunjukkan dengan bahwa sintesis partikel Fe₃O₄/c-SiO₂ telah berhasil yang ditandai dengan pola difraksi yang dihasilkan terdapat gabungan pola difraksi nanopartikel magnetic (Fe₃O₄) dan partikel silika (c-SiO₂). Sedangkan hasil *Fourier Transform Infra Red* (FTIR) didapatkan puncak-puncak baru yang menunjukkan adanya puncak partikel c-SiO₂ dan partikel magnetik Fe₃O₄. Hasil *Fourier Transform Infra Red* (FTIR) menunjukkan ikatan Fe-O pada bilangan gelombang 692-694 cm⁻¹ dan ikatan Si-O-Si pada bilangan gelombang 1061-1101 cm⁻¹.

Kata Kunci: nanopartikel, silika, magnetik.

Abstract

The research synthesis composite Fe_3O_4 /c-SiO₂ based on natural material, the material that been used is SiO₂ from Talaud sand, Fe_3O_4 of Lumajang iron sand, and PEG 4000. In this research, the mass composition of c-SiO₂ and PEG 4000 is varied 3 times(sampel #1, sampel #2, sampel #3). The synthesis is done by melting the PEG 4000, then added c-SiO₂ and Fe_3O_4 . After mixed and dried, then it is characterized with XRD and FTIR. The test results of the *X-Ray Diffraction* (XRD) shows that the synthesis of particles of Fe_3O_4 /c-SiO₂ is successfull. It is marked with the resulting diffraction pattern shows the combination pattern of magnetic nanoparticles (Fe_3O_4) and silica particle (c-SiO₂). While the *Fourier Transform Infra-Red* (FTIR) obtained new peaks which shows the particle peak of c-SiO₂ and magnetic particle Fe_3O_4 . This result shows the Fe-O bound on 692-694 cm⁻¹ wavenumber and Si-O-Si bound on 1061-1101cm⁻¹ wavenumber.

Keywords: nanoparticles, silica, magnetic

PENDAHULUAN

Keberadaan pasir besi sangatlah melimpah di Indonesia yang merupakan salah satu Sumber Daya Alam (SDA) yang memiliki daya tarik secara ekonomi. Pasir besi pada umumnya mempunyai komposisi utama besi oksida (Fe₂O₃ dan Fe₃O₄) dan silikon oksida (SiO₂) serta senyawa-senyawa lain, yaitu Fe, Ni, dan Zn dengan kadar yang lebih kecil. Karena minimnya pengetahuan tentang kandungan dan manfaat pasir besi itu sendiri membuat pasir besi yang ada ditambang dan dijual dalam bentuk mentah sehingga memiliki nilai jual yang rendah.

Akhir-akhir ini telah dikembangkan teknologi nanopartikel yang dapat di aplikasikan dibidang industri. Teknologi ini telah membuat perubahan yang signifikan di berbagai kehidupan. Teknologi nano merupakan ilmu yang mempunyai beragam aplikasi karena ukuran dan kinerjanya yang sangat aktif. Partikel Fe₃O₄ merupakan material yang berukuran nano yang mempunyai sifat magnetik yang banyak dipelajari karena memiliki bermacam-macam sifat kimia dan sifat fisik.

Pengaplikasian Fe_3O_4 berukuran nano merupakan alternatif yang dapat digunakan untuk memenuhi kebutuhan bahan baku bidang industri yang dalam perkembangan dan kebutuhannya yang kian meningkat. Magnetit berukuran nano memiliki aplikasi seperti; katalis, energy storage, magnetic data storage, fero fluida, maupun dalam diagnosis medis.

Dalam mensistesis sebuah material diperlukan pengembangan metode agar reaksi berlangsung lebih efisien. Sintesis material adalah reaksi antara dua zat atau

5

lebih dengan menggunakan alat tertentu untuk membentuk zat baru. Salah satu bahan adsorbsi adalah silika. Bahan silika memiliki beberapa keuntungan diantaranya bahan murninya dapat dengan mudah disintesis dalam skala besar dan memiliki kapasitas pertukaran kation yang tinggi.

Metode dalam sintesis nanopartikel magnetik banyak sekali, diantaranya hidrolisis, mikroemulsi dan kopresipitasi. Berdasakan penelitian sebelumnya yang pernah dilakukan oleh Merdekani mengenai nanokomposit Fe₃O₄/SiO₂ dengan menggunakan metode kopresipitasi yang bahan dasarnya FeCl₃ dan larutan silika (Merdekani, 2013). Dalam proses pembuatan nanokomposit penelitian ini menggunakan metode kopresipitasi. Melalui metode kopresipitasi diperoleh ukuran material yang lebih kecil sampai skala nanometer serta meminimalisir pengotor yang mungkin masih ada. Material komposit adalah kombinasi antara dua material atau lebih yang masing-masing material penyusun (matrik dan filler) memiliki sejumlah sifat berbeda. Pada bahan komposit, komponennya tidak mengalami perubahan kimia. Material Fe₃O₄/SiO₂ adalah material komposit. Silika berasal dari bahan alam atau sintetik dan pada umumnya dalam bentuk kristalin maupun amorf. Hasil dari komposit nanopartikel Fe₃O₄/SiO₂ adalah partikel ferromagnetic Fe₃O₄ terselimuti dalam rongga partikel SiO2 (Liu G et al, 2011).

METODE PENELITIAN

A. Alat dan Bahan

Peralatan yang digunakan pada penelitian ini adalah alu, corong, crucible, gelas kimia, gelas ukur, kardus, kertas saring, lampu 60 watt, magnet permanen, *magnetic stirrer*, mortal, pH meter, pipet, spatula dan timbangan digital. Bahan yang digunakan dalam penelitian ini antara lain pasir Bancar Tuban, pasir besi Lumajang, NaOH, HCl 2M, NH₄OH, PEG 4000, dan aquades.

B. Variabel Operasional Penelitian

Variabel operasional yang digunakan dalam penelitian ini ialah variabel manipulasi adalah massa a-Si O_2 dan massa PEG. Variabel kontrol adalah massa Fe $_3O_4$. Sedangkan variabel respon adalah fasa baru dari nanokomposit Fe $_3O_4$ /c-Si O_2 .

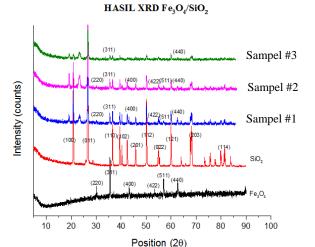
C. Metode Sintesis Fe₃O₄/c-SiO₂.

Pada proses awal sintesis nanopartikel Fe_3O_4/c - SiO_2 yaitu serbuk PEG dicairkan terlebih dahulu dengan dipanaskan dengan suhu $60^{\circ}C$. Setelah PEG mencair semua maka ditambahkan serbuk silika (c- SiO_2) sambil diaduk hingga merata. Kemudian dimasukkan serbuk Fe_3O_4 ke dalam campuran PEG dan serbuk silika (c- SiO_2)

ISSN: 2303-4313 © Prodi Fisika Jurusan Fisika 2016

distirer dan tidak menggunakan panas karena panas akan merubah senyawa Fe_3O_4 menjadi Fe_2O_3 . Partikel Fe_3O_4 itu akan berputar sendiri tanpa memakai magnetic stirrer. Apabila sudah merata dan terlihat silika mengelilingi partikel Fe_3O_4 maka terbentuklah endapan $Fe_3O_4/c\textsc{-}SiO_2$. Setelah terjadi endapan, komposit ini harus dibiarkan pada suhu ruang karena bila agar PEG tidak akan mencair lagi. Serbuk $Fe_3O_4/c\textsc{-}SiO_2$ yang dihasilkan, maka dilakukan karakterisasi dengan XRD dan FTIR.

Tabel 1. Komposisi sintesis Fe₃O₄/c-SiO₂


Sampel	Massa Fe ₃ O ₄ : Massa c-SiO ₂ : Massa PEG (gram)
1	0.5 : 1.00 : 0.50
2	0.5 : 0.75 : 0.75
3	0.5 : 0.60 : 0.90

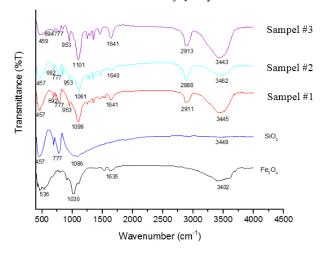
Tahap Karakterisasi Fe₃O₄/c-SiO₂.

Fe₃O₄c-SiO₂ dikarakterisasi menggunakan XRD untuk mengetahui terjadinya komposit antara keduanya yaitu Fe₃O₄ dan c-SiO₂. Selain itu dikarakterisasi juga menggunakan FTIR untuk mengetahui gugus fungsi yang dimiliki oleh sampel Fe₃O₄/acSiO₂.

HASIL DAN PEMBAHASAN A. Hasil Uji XRD

Hasil uji XRD menunjukkan pola difraksi dari silika kristal dan Fe_3O_4 yang ditunjukkan pada Gambar 1.

Gambar 1. Hasil uji XRD Fe₃O₄/c-SiO₂


Kurva tersebut menunjukkan bahwa terdapat kemiripan puncak-puncaknya antara Sampel #1, Sampel #2 maupun Sampel #3. Dari hasil XRD membuktikan adanya gabungan dari puncak partikel Fe $_3$ O $_4$ dan partikel c-SiO $_2$ dan terlihat puncak-puncak difraksi. Pada sampel #1 menunjukkan adanya puncak-puncak karakteristik komposit Fe $_3$ O $_4$ /c-SiO $_2$ terdapat pada 2 θ = 30.11°, 35.54°, 43.1°, 56.9° dan 62.5° yang sesuai dengan bidang kristal

masing-masing (220), (311), (422), (511), (440). Kemudian pada sampel #2 menunjukkan adanya puncakpuncak karakteristik komposit Fe₃O₄/c-SiO₂ terdapat pada $2\theta = 30.11^{\circ}$, 35.54° , 43.1° , 56.9° dan 62.5° yang sesuai dengan bidang kristal masing-masing (220), (311), (422), (511), (440). Selanjutnya Pada sampel #3 menunjukkan adanya puncak-puncak karakteristik komposit Fe₃O₄/c- SiO_2 terdapat pada $2\theta = 35.54$ °dan 62.5° yang sesuai dengan bidang kristal masing-masing (311) dan (440). Sehingga terlihat silika tidak mengubah struktur partikel Fe₃O₄ meskipun sudah dikompositkan. Pada sampel #1, sampel #2, dan sampel #3, peak tertinggi pada $2\theta \approx 26^{\circ}$ menunjukkan adanya bentuk peak silika kristal. Puncak intensitas akan meningkat seiring dengan penambahan silika, dimana kedudukan bentuk polimer sangat berpengaruh pada komposit (Farzad Zamani et al, 2014).

B. Hasil Uji FTIR

Pengujian FTIR bertujuan untuk mengetahui gugus fungsi dari komposit Fe_3O_4/c - SiO_2 . Setelah pengujian selesai dilakukan diperoleh grafik antara panjang gelombang dengan transmitansi.

HASIL FTIR Fe₃O₄/SiO₅ KRISTAL

Gambar 2. Hasil uji FTIR Fe₃O₄/c-SiO₂

Dari hasil uji FTIR sintesis nanokomposit Fe_3O_4/c -Si O_2 dengan variasi komposisi massa yang berbeda menunjukkan bahwa terdapat kemiripan spektra FTIR dengan adanya puncak partikel Fe_3O_4 dan partikel SiO_2 baik sampel #1, sampel #2 maupun sampel #3. Selanjutnya, puncak-puncak nanokomposit Fe_3O_4/c - SiO_2 hasil sintesis yang terbentuk dicocokkan dengan puncak-puncak karakteristik Fe_3O_4/SiO_2 dari penelitian-penelitian sebelumnya. Pencocokkan hasil FTIR ini perlu dilakukan untuk mengetahui dengan jelas gugus fungsi yang telah terbentuk dari sampel yang telah diuji .

 gelombang 1640-3462 cm⁻¹ merupakan vibrasi *stretching* dan *bending* ikatan H-O-H. Pada bilangan gelombang 1099 merupakan vibrasi *antisymmetric stretch* ikatan Si-O-Si yang mengkaitkan dengan gerakan oksigen. Kemudian pada bilangan gelombang 459 cm⁻¹ adanya vibrasi bending ikatan Si-O-Si or O-Si-O. Sedangkan pada bilangan gelombang 777 cm⁻¹ merupakan vibrasi symmetric stretch ikatan Si-O-Si di dalam SiO₂. Pada bilangan gelombang 953 cm⁻¹ merupakan gugus fungsi symmetric stretch ikatan Si-O dan bilangan gelombang 692 cm⁻¹ terdapat ikatan Fe-O sehingga diidentifikasi adanya nanopartikel Fe₃O₄.

SIMPULAN DAN SARAN

A. SIMPULAN

Berdasarkan hasil analisis data yang telah dilakukan, dapat disimpulkan bahwa

- Nanokomposit Fe₃O₄/c-SiO₂ dari bahan alam (Pasir Talaud dan Pasir Lumajang) telah dapat disintesis dengan mudah menggunakan metode kopresipitasi karena tidak membutuhkan waktu yang lama dalam mensintesis.
- 2. Karakteristik nanokomposit $Fe_3O_4/c-SiO_2$ disintesis dengan metode kopresipitasi, menunjukan bahwa serbuk nanopartikel Fe₃O₄ dapat terlapisi oleh silika (c-SiO₂). Hasil analisis XRD membuktikan bahwa sintesis partikel Fe₃O₄/c-SiO₂ yang di tandai adanya pola difraksi yang dihasilkan yaitu pola difraksi oksida besi magnetik dan silika kristalin (c-SiO₂) fase quartz. Adapun berdasarkan analisis FTIR membuktikan bahwa masih belum terdapat gugus Si-O-Fe yang menandakan bahwa belum semua partikel Fe₃O₄ yang dilapisi oleh c-SiO₂ walaupun gugus fungsi yang dihasilkan komposit Fe₃O₄/c-SiO₂ mempunyai kemiripan dengan penelitian sebelumnya.

B. SARAN

Dalam penelitian ini disarankan sebelum melakukan komposit Fe_3O_4/c - SiO_2 , pastikan bahwa partikel Fe_3O_4 dan SiO_2 itu benar-benar sampel Fe_3O_4 dan SiO_2 yang berukuran nanometer. Selain itu, pada proses sintesis nanokomposit Fe_3O_4/c - SiO_2 , setelah memasukkan serbuk Fe_3O_4 itu tidak perlu diberi suhu panas karena akan merubah partikel Fe_3O_4 menjadi partikel Fe_2O_3 . Dan pilihlah komposisi massa dan suhu yang sesuai agar menghasilkan komposit yang sempurna.

DAFTAR PUSTAKA

- Ahangaran et al. 2013. Surface modification of Fe_3O_4 @ SiO_2 microsphere by silane coupling agent. Jurnal International Nano Letters.
- Du, G.H. 2006. Characterization and application of Fe₃O₄/SiO₂ nanocomposites. J sol Gel Sci Techn 39:285-291.
- Liu G et al. 2011. Synthesis and applications of fluorescent-magnetic-bifunctional dansylated Fe₃O₄@SiO₂ nanoparticles. 46: 5959-5968.
- Mashudi, Munasir. 2015. Pengaruh Waktu Tahan Pada Proses Hydrotermal dan Temperatur Kalsinasi Terhadap Kekristalan Silika Dari Bahan Alam Pasir Kuarsa. Universitas Negeri Surabaya.
- Merdekani, Sera. 2013. Sintesis Partikel Nanokomposit Fe₃O₄/SiO₂ dengan Metode Kopresipitasi. UNPAD.
- Mitra Helmi,dkk. 2013. Synthesis and study of structural and magnetic properties of super paramagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications. Vol. 1, No. 2, Winter 2014, page 71-78.

- Mufid, Ali, and Mochamad Zainuri. "The Influence of Calcination Temperature on Quantitative Phase of Hematite from Iron Stone Tanah Laut." *Advanced Materials Research*. Vol. 1112. 2015.
- Munasir, dkk. 2013. Ekstraksi dan Sintesis Nanosilika Berbasis Pasir Bancar dengan Metode Basah. Universitas Negeri Surabaya.
- Sholihah, Lia Kurnia 2010. Sintesis partikel nanopartikel Fe₃O₄ yang bersal dari pasir besi dan Fe₃O₄ bahan komersial (Aldrich). Surabaya: Institut Teknologi Sepuluh November
- Suryani,dkk. 2015. Sintesis Nanopartikel Magnetite (Fe₃O₄) dengan Template silika (SiO₂) dan Karakterisasi Sifat Kemagnetannya. Universitas Gadjah Mada.
- Zamani, Farzad. 2014. Polyvinyl amine coated Fe3O4@SiO2 magnetic microspheres for Knoevenagel condensation. Dalian Institute of Chemical Physics. Chinese academy.

ISSN: 2303-4313 © Prodi Fisika Jurusan Fisika 2016