ANALISIS RELASI ANTARA MAGNITUDO MOMEN GEMPA TEKTONIK DAN AMPLITUDO MAKSIMUM TSUNAMI UNTUK KASUS TSUNAMI LINTAS SAMUDERA PASIFIK DAN TSUNAMI INDONESIA

Asiyah Khoiril Bariyah, Tjipto Prastowo

Program Studi Fisika, Jurusan Fisika, FMIPA, Universitas Negeri Surabaya Email: asiyahbariyah16030224026@mhs.unesa.ac.id

Abstrak

Gempa tektonik dan tsunami merupakan bencana kebumian paling berbahaya bila dilihat dari dampak kerusakan dan cakupan wilayah terdampak. Meskipun termasuk penting namun sampai saat ini belum banyak penelitian yang menganalisis relasi antara magnitudo momen gempa dan amplitudo maksimum tsunami. Oleh karena itu, penelitian ini bertujuan untuk menemukan dan menganalisis persamaan empiris yang mendiskripsikan hubungan antara magnitudo momen gempa $M_{\rm w}$ dan amplitudo maksimum tsunami η dengan bantuan 7 kasus tsunami lintas Samudera Pasifik (Kuril, Rusia 2006, Selandia Baru 2009, Maule, Chili 2010, Tohoku, Jepang 2011, Solomon 2013, Iquique, Chili 2014, dan Illapel, Chili 2015) dan 6 kasus tsunami di Indonesia, (Aceh 2004, Sumatera 2007, Sumatera 2010, Mentawai 2010, Sumatera 2012, dan Sumatera 2016). Data penelitian merupakan data sekunder yang diperoleh dari instrumen ukur pemantau tsunami DART buoys dan tide gauges yang dapat diakses di https://nctr.pmel.noaa.gov/database devel.html dan http://ngdc.noaa.gov yang dikelola dan dikontrol oleh National Oceanic and Atmospheric Administration (NOAA) dan http://ptwc.weather.gov/ yang dikelola oleh Pacific Tsunami Warning Centre (PTWC). Hasil-hasil penelitian dalam bentuk persamaan empiris relasi antara M_w dan η untuk 7 kasus tsunami trans-Pasifik (far-field observations) adalah $M_{\rm w} = 0.850 \log \eta + 8.941$ sedangkan untuk kasus 6 tsunami di Indonesia (both near-field and far-field observations), $M_{\rm w} = 1,588 \log \eta + 9,880$. Perbedaan faktor pengali fungsi logaritmik $\log \eta$ pada kedua persamaam empiris tersebut karena perbedaan kompleksitas topografi dan batimetri lautan dan variasi perilaku perambatan gelombang tsunami pada tsunami directivity yang berbeda antara Samudera Pasifik dan Samudera Hindia. Temuan penting penelitian ini adalah kedua persamaan empiris tersebut menunjukkan bahwa magnitudo momen M_w gempa pemicu tsunami merupakan fungsi logaritmik dari amplitudo maksimum tsunami η yang sesuai dengan temuan penelitian terdahulu.

Kata Kunci: magnitudo momen gempa, amplitudo maksimum tsunami, tsunami trans-Pasifik

Abstract

Tectonic earthquakes and tsunamis are the most dangerous geological hazards considering damaging impacts on living things, human properties, and affected areas. Despite its importance, little is known about a relationship between earthquake moment magnitude and tsunami maximum amplitude. Hence, this study aims to find and analyse empirical equations relating earthquake sizes measured as moment magnitudes $M_{\rm w}$ to tsunami maximum amplitudes η for cases of 7 trans-Pacific occurrences (the 2006 Kuril, Russian, 2009 New Zealand, 2010 Maule, Chili, 2011 Tohoku, Japan, 2013 Solomon, 2014 Iquique, Chili, and 2015 Illapel, Chili events) and 6 Indonesian tsunamis (the 2004 Indian Ocean, 2007 Sumatera, 2010 Sumatera, 2010 Mentawai, 2012 Sumatera, and 2016 Sumatera events). Data in this study were acquired from field measurements by tsunami monitoring instrument (DART surface buoys and tide gauges) available at https://netr.pmel.noaa.gov/database devel.html and http://ngdc.noaa.gov officially operated by the National Oceanic and Atmospheric Administration (NOAA) and http://ptwc.weather.gov/ officialy managed by the Pacific Tsunami Warning Centre (PTWC). The research results in terms of empirical relations between the moment magnitude $M_{\rm W}$ and the tsunami maximum amplitude η for 7 trans-Pacific tsunami events at distant observations are then provided by $M_{\rm w}$ = $0,850 \log \eta + 8,941$ whereas for the Indonesian tsunamis monitored at both near-field and far-field observations, $M_{\rm w} =$ 1,588 log η + 9,880. The difference in the multiplying factor of the logarithmic function in each equation is due to differences in complexity in the ocean topography and bathymetri between the Pacific and Indian Oceans as well as the nature of tsunami wave propagation for different tsunami directivities in the two Oceans. The findings are such that the moment magnitude scaled with M_w is found to be a logarithmic function of the tsunami maximum amplitude η for both regions of interest, consistent with that of previous work.

Keywords: earthquake moment magnitude, tsunami maximum amplitude, trans-Pacific tsunamis.

PENDAHULUAN

Wilayah Indonesia berada pada pertemuan lempeng Indo-Australia, Eurasia, dan Pasifik yang aktif bergerak relatif satu sama lain. Aktivitas seismo-tektonik yang kompleks dalam lapisan kerak Bumi tersebut menurut Bock *et al.* (2003) memicu pembentukan zona subduksi sepanjang pantai barat Pulau Sumatera dan busur Sunda, *et al.*, 2020), atau kombinasi gempa pada jalur patahan aktif Palu-Koro dan longsor bawah laut, misalnya tsunami Teluk Palu pada tanggal 18 September 2018 (Carvajal *et al.*, 2019; Mikami *et al.*, 2019), atau kasus gempa tektonik pada zona subduksi pantai barat Sumatera yang memicu tsunami Mentawai pada tanggal 25 Oktober 2010 dan tsunami Aceh pada tanggal 26 Desember 2004 (Satake *et al.*, 2012; Satake, 2014).

Namun demikian, tidak satupun penelitian terdahulu tersebut yang menceritakan hubungan antara magnitudo momen gempa tektonik pemicu tsunami dan tinggi gelombang tsunami yang terukur di laut lepas.

Anwar (2019) dan Putri (2019) mengatakan bahwa dinamika tsunami bisa dipelajari melalui 3 zona terkait, yaitu zona generasi, propagasi, dan mitigasi. Penelitian yang menghubungkan zona generasi dan zona propagasi melalui relasi matematis antara magnitudo momen M_w atau momen seismik M_o gempa pemicu tsunami dan tinggi gelombang terukur sebagai amplitudo tsunami η di laut lepas belum begitu banyak. Namun, kedua parameter gempa-tsunami tersebut dipelajari dalam konteks gempa yang memicu perambatan tsunami lintas Samudera Pasifik (Okal *et al.*, 2014; Heidarzadeh *et al.*, 2018).

Tsunami adalah gelombang permukaan laut yang dibangkitkan di laut lepas dan merambat menuju ke pantai. Kecepatan gelombang tsunami dapat dituliskan sebagai

$$c = \sqrt{\frac{g\lambda}{2\pi} \tanh \frac{2\pi H}{\lambda}} \tag{1}$$

Berdasarkan pendekatan *shallow-water* yang menganggap bahwa $H \ll \lambda$, maka $\frac{2\pi H}{\lambda}$ relatif kecil sehingga $\tanh \frac{2\pi H}{\lambda} \approx \frac{2\pi H}{\lambda}$. Oleh karena itu, persamaan (1) berubah menjadi $c = \sqrt{gH}$ (2)

Berdasarkan persamaan (2), perambatan tsunami untuk baik medan dekat dan medan jauh bersifat non-dispersif dengan kecepatan fase yang tidak bergantung pada frekuensi atau panjang gelombang, melainkan pada kedalaman lokal laut. Pendekatan ini disebut dengan long-wave approximation (Charvet *et al.*, 2013; Cholifah and Prastowo, 2017).

Hubungan matematis antara magnitudo momen M_w dan momen seismik M_o menurut Kanamori (1983) adalah sebagai berikut,

$$M_{\rm w} = \frac{2}{3} \left(\log M_{\rm o} - 16, 1 \right) \tag{3}$$

berlaku baik untuk *shallow* maupun *deep earthquakes*. Untuk kebutuhan karakterisasi gempa, secara umum magnitudo momen M_w dipilih daripada momen seismik M_o karena M_w merupakan bilangan kecil. Oleh karena itu, sering suatu gempa dilaporkan dengan nilai M_w tertentu.

Dalam konteks pelepasan energi seismik yang besar maka gempa dengan momen seismik yang besar memiliki peluang yang besar sebagai pemicu tsunami. Okal *et al.* ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

jalur patahan aktif, dan beberapa mikro lempeng yang membatasi wilayah kepulauan Indonesia. Dengan kondisi seperti itu, maka potensi bencana geologi khususnya gempa bumi dan tsunami menjadi ancaman serius bagi hampir seluruh wilayah di Indonesia (Irsyam *et al.*, 2017).

Sumber potensial pembangkit tsunami bisa berasal dari aktivitas vulkanik, misalnya kasus tsunami Selat Sunda 22 Desember 2018 (Giachetti *et al.*, 2012; Heidarzadeh (2014) menurunkan hubungan matematis kualitatif antara parameter gempa, yaitu momen seismik M_0 dan amplitudo maksimum tsunami η sebagai berikut,

$$\log \eta = \log M_{\rm o} - f(\Delta, \Phi) \tag{4}$$

di mana $f(\Delta, \Phi)$ adalah fungsi yang bergantung pada jarak relatif episenter (Δ) menuju stasiun seismik dan posisi azimuth stasiun pemantau (Φ) terhadap episenter tsunami. Okal *et al.* (2014) pada awalnya mendefinisikan η sebagai amplitudo tsunami yang diukur oleh 'virtual gauges' yang tersebar di dekat garis pantai (*near-field*), namun akhirnya juga memasukkan rekaman data η untuk posisi *gauges* yang berada jauh dari garis pantai (*far-field*). 'Virtual gauges' adalah posisi stasiun pemantau yang bisa diperoleh melalui teknik inversi waktu perambatan balik tsunami dengan efek pendangkalan pantai telah direduksi dalam komputasi.

Dengan melihat relasi matematis antara M_w dan M_o pada persamaan (3) serta η dan M_o pada persamaan (4), Heidarzadeh *et al.* (2018) kemudian menggunakan empat kasus tsunami trans-Pasifik untuk menurunkan persamaan empiris yang menghubungkan M_w dan η sebagai berikut,

 $M_{\rm w} = 0,665 \log \eta + 8,245$ (5) Poin penting persamaan (5) tersebut di atas adalah bahwa $M_{\rm w}$ merupakan fungsi logaritmik η dengan tambahan faktor konstanta tertentu.

Penelitian ini bertujuan membahas dan menganalisis relasi antara magnitudo momen M_w gempa pemicu tsunami dan amplitudo maksimum tsunami η untuk 7 kasus tsunami lintas Samudera Pasifik dan 6 kasus tsunami Indonesia. Fokus penelitian ini adalah melihat apakah pola perilaku dinamik gempa tektonik pemicu tsunami dan tsunami yang dibangkitkan masih konsisten berlaku untuk beberapa kasus tsunami yang belum dibahas oleh Heidarzadeh *et al.* (2018) dan tsunami di Indonesia.

METODE

Data penelitian ini merupakan data sekunder berupa magnitudo momen $M_{\rm w}$ gempa tektonik penyebab tsunami, epicentral distance, dan amplitudo maksimum tsunami η terkait dengan 7 kasus tsunami lintas Samudera Pasifik dan 6 tsunami Indonesia. Dalam hal ini, tsunami yang dibahas adalah yang dipicu oleh gempa besar dengan $M_w > 7,5$ dan epicentral distance yang dimaksud adalah jarak antara episenter tsunami dan lokasi geografis instrumen pemantau Deep-ocean Assessment Reports of Tsunamis (DART) buoy atau tide gauge sebagai instrumen pemantau tsunami yang tersebar di perimeter Samudera Pasifik. Untuk kasus tsunami lintas Samudera Pasifik diamati oleh stasiun yang berada dari episenter tsunami, $d \ge 3000$ km (*far-field*) dan kasus tsunami Indonesia dengan memanfaatkan data yang diperoleh dari sumber dekat, d < 3000 km (*near-field*) dan sumber jauh.

Data diperoleh dari *tsunami waveforms* yang direkam oleh instrumen ukur pemantau tsunami DART *surface*

buoys dan tide gauges yang dapat diakses secara bebas dari laman https://nctr.pmel.noaa.gov/database_devel.html disediakan oleh National Oceanic and Atmospheric Administration (NOAA), http://ngdc.noaa.gov dan http://ptwc.weather.gov/ dikelola oleh Pacific Tsunami Warning Centre (PTWC). Data berupa informasi grafis yang dapat dijadikan basis untuk pengumpulan data elevasi muka laut.

Data penelitian yang telah terkumpul awalnya dibuat tabulasi untuk setiap kasus tsunami, baik 7 kasus tsunami lintas Samudera Pasifik maupun 6 kasus tsunami Indonesia. Dalam hal ini, jumlah data pada tiap kasus tidak dibatasi karena karakteristik perambatan gelombang tsunami tidak ditentukan dari kuantitas data melainkan kualitas data. Sesudah proses tabulasi selesai, data numerik untuk tiap kasus tsunami dikonversi menjadi grafik yang dianalisis dengan menggunakan aplikasi *Excel* dan hasilnya dibandingkan dengan hasil-hasil penelitian terdahulu yang relevan (Heidarzadeh *et al.*, 2018).

HASIL DAN PEMBAHASAN

Berdasarkan data penelitian yang telah dikumpulkan, berikut ini adalah hasil-hasil penelitian ini dan pembahasan terkait.

Kasus Tsunami Lintas Samudera Pasifk

Tabel 1 berikut memberikan 13 pengamatan untuk tsunami di Kuril, Rusia pada tanggal 15 November 2006 yang dibangkitkan oleh gempa tektonik M_w 8,3 pada kedalaman 33 km. Data numerik diperoleh dari rekaman DART *buoys* dan *tide gauges* yang dikelola oleh NOAA dan PTWC dari berbagai lokasi geografis yang diukur dari titik episenter tsunami. Sumber data dapat diakses di laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov serta http://ptwc.weather.gov/.

Tabel	1. Data a	amplitu	do maks	simum tsunai	ni untu	ık kasus
Kuril,	Rusia	2006	yang	dihasilkan	oleh	gempa
berkek	uatan M	83		-		

		VV /					
NT	Nama	Posisi Ins	strumen	Episenter Tsunami		d	η
INO	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 46402	163,95° BB	50,98° LU	153,27º BT	46 <mark>,</mark> 58° LU	3131	0,020
2	DART 46403	156,96° BB	52,67º LU	153,27º BT	46,58° LU	3578	0,015
3	DART 46409	148,55° BB	55,31° LU	153,27º BT	46,58° LU	4067	0,006
4	DART 46410	143,75° BB	57,63° LU	153,27º BT	46,58° LU	4306	0,002
5	Mokuolo`e	157,79°BB	21,40° LU	153,27º BT	46,58° LU	5200	0,050
6	Port Vila	168,19°BT	17.44 º LS	153,27º BT	46,58° LU	7283	0,090
7	Nawiliwili	159,36° BB	21,95° LU	153,27º BT	46,58° LU	5044	0,400
8	Honolulu	157,87°BB	21,31°LU	153,27º BT	46,58° LU	5204	0,190
9	Kahului	156,48° BB	20,90° LU	153,27º BT	46,58° LU	5338	0,800
10	King Cove	162,33° BB	55,06° LU	153,27º BT	46,58° LU	3201	0,180
11	Point Reyes	122,98° BB	38,00° LU	153,27º BT	46,58° LU	6634	0,310
12	Santa Monica	118,50° BB	84,01º LU	153,27º BT	46,58° LU	4850	0,150
13	Kawaihae	155,83° BB	20,04° LU	153,27° BT	46,58° LU	5454	0,325

Tabel 2 berikut memberikan 7 data pengamatan lapangan untuk kasus tsunami yang terjadi di Selandia Baru tanggal 15 Juli 2009 yang dibangkitkan oleh gempa

ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

tektonik M_w 7,8 pada kedalaman 33 km. Data numerik berasal dari rekaman *tide gauges* yang dioperasikan oleh NOAA dari berbagai lokasi geografis yang diukur dari titik episenter tsunami. sumber data dapat diakses bebas melalui laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov.

Tabel 2. Data amplitudo maksimum tsunami untuk kasus Selandia Baru 2009 yang dihasilkan oleh gempa berkekuatan M_w 7,8.

N -	N	Posisi Instrumen		Episenter	Tsunami	d	η
INO	IvaillaStaStull	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	Honolulu	157,87° BB	21,31° LU	166,58° BT	45,75° LS	8284	0,030
2	Hilo	155,06° BB	19,73° LU	166,58° BT	45,75° LS	8254	0,040
3	Kawaihae	155,83° BB	20,04º LU	166,58° BT	45,75° LS	8249	0,030
4	Nawiliwili	159,36° BB	21,95° LU	166,58° BT	45,75° LS	8285	0,025
5	Crescent	124,18º BB	41,75° LU	166,58° BT	45,75º LS	11912	0,130
6	San Diego	117,17º BB	32,71° LU	166,58° BT	45,75º LS	11614	0,038
7	Green Island	73,50° BB	40,62° LU	166,58° BT	45,75° LS	15243	0,006

Tabel 3 berikut memberikan 19 data pengamatan lapangan untuk kasus tsunami di Maule, Chili pada tanggal 27 Februari 2010 yang dibangkitkan oleh gempa tektonik M_w 8,8 pada kedalaman 55 km. Data numerik berasal dari rekaman *tide gauges* yang dikelola oleh NOAA dan PTWC dari berbagai lokasi geografis yang diukur dari titik episenter tsunami. Sumber data dapat diakses secara bebas di laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov serta http://ptwc.weather.gov/.

Tabel 3. Data amplitudo maksimum tsunami untuk kasus Maule, Chili 2010 yang dihasilkan oleh gempa berkekuatan M_w 8,8.

	Nama	Posisi Ins	strumen	Episenter	Tsunami	d	η
No	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	Hilo	155,08° BT	19,73º LU	72,90° BB	36,12º LS	15036	1,00
2	Kahului	156,48° BB	20,90° LU	72,90° BB	36,12° LS	10824	0,98
3	Honolulu	157,87º BB	21,31º LU	72,90° BB	36,12º LS	10968	0,25
4	San Diego	117,17° BB	32,71° LU	72,90° BB	36,12° LS	8941	0,13
5	Los Angeles	118,27º BB	33,72° LU	72,90° BB	36,12° LS	9092	0,40
6	Crescent	124,18º BB	41,75° LU	72,90° BB	36,12º LS	10118	0,37
7	Kodiak	152,51°BB	57,73° LU	72,90° BB	36,12º LS	12788	0,30
8	Tumaco	78,73° BB	1,83° LU	72,90° BB	36,12° LS	4268	0,12
9	Midway	177,36° BB	28,22º LU	72,90° BB	36,12º LS	13042	0,28
10	Santa Barbara	119,69º BB	34,41° LU	72,90° BB	36,12º LS	9231	0,53
11	Pago Pago	170,69º BB	14,28° LU	72,90° BB	36,12º LS	11640	0,70
12	Sand Point	160,50° BB	55,34° LU	72,90° BB	36,12º LS	13108	0,35
13	Hiva Oa	139,00° BB	9,80° LS	72,90° BB	36,12º LS	7234	1,79
14	Nuku Hiva	140,10° BB	8,90° LS	72,90° BB	36,12º LS	7391	0,95
15	Yakutat	139,73° BB	59,55° LU	72,90° BB	36,12º LS	12280	0,26
16	Hanasaki	145,60° BT	43,30° LU	72,90° BB	36,12º LS	16677	0,82
17	Monterey	121,89º BB	36,61° LU	72,90° BB	36,12º LS	9547	0,32
18	Omaezaki	138,20° BT	34,60° LU	72,90° BB	36,12º LS	15036	0,34

Analisis Relasi antara Magnitudo Momen Gempa Tektonik dan Amplitudo Maksimum Tsunami untuk Kasus Tsunami Litas Samudera Pasifik dan Tsunami Indonesia

N-	Nama	Posisi Instrumen		Episenter	d	η	
No	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
19	Kawaihae	155,80° BB	20,00° LU	72,90° BB	36,12° LS	10824	0,52

Tabel 4 berikut memberikan 18 data pengamatan lapangan untuk kasus tsunami di Tohoku, Jepang pada tanggal 11 Maret 2011 yang dibangkitkan oleh gempa tektonik M_w 8,9 pada kedalaman 10 km. Data numerik diperoleh dari rekaman DART *buoys* dan *tide gauges* yang dioperasikan oleh NOAA dan PTWC dari berbagai lokasi geografis diukur dari titik episenter tsunami Sumber data η kasus tsunami Tohoku dapat diakses di laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov serta http://ptwc.weather.gov/.

Tabel 4. Data amplitudo maksimum tsunami untuk kasus Tohoku, Jepang 2011 yang dihasilkan oleh gempa berkekuatan M_w 8,9.

NT.	Nama	Posisi In	strumen	Episenter	Tsunami	d	ŋ
No	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 21414	178,22° BT	48,97° LU	142,37° BT	38,30° LU	3088	0,20
2	DART 46408	169,90° BB	49,66º LU	142,37º BT	38,30° LU	3952	0,16
3	DART 52403	145,61° BT	4,06° LU	142,37º BT	38,30° LU	3826	0,14
4	DART 46402	163,95° BB	50,98° LU	142,37° BT	38,30° LU	4372	<mark>0,</mark> 25
5	Adak Island	176,63° BB	51,86° LU	142,37° BT	38,30° LU	3499	1,00
6	Hilo	155,10° BB	19,70° LU	142,37º BT	38,30° LU	6306	1,41
7	Talcahuano	73,10° BB	36,68° LS	142,37° BT	38,30° LU	1691 <mark>9</mark>	2,20
8	Valaparaiso	71,63° BB	33,03° LS	142,37° BT	38,30° LU	16925	1,50
9	King Cove	162,33º BB	55,06° LU	142,37º BT	38,30° LU	4474	0,50
10	Seward	149,43º BB	60,12° LU	142,37° BT	38,30° LU	5227	0,25
11	Honolulu	157,87º BB	21,31° LU	142,37° BT	38,30° LU	5967	0,71
12	Kahului	156,48º BB	20,90° LU	142,37º BT	38,30° LU	6113	1,74
13	Kawaihae	155,83° BB	20,04° LU	142,37° BT	38,30° LU	6222	1,22
14	La Push	124,64º BB	47,92° LU	142,37º BT	38,30° LU	7166	0,80
15	Crescent	124,18º BB	41,75° LU	142,37º BT	38, <mark>30</mark> ° LU	7550	2,02
16	Port San Luis	120,76° BB	35,18° LU	142,37° BT	38 <mark>,</mark> 30° LU	8206	1,88
17	Unalaska	166,54º BB	53,88° LU	142,37º BT	38 <mark>,30</mark> ° LU	4197	0,40
18	Midway	177,40° BB	28,60° LU	142,37º BT	38,30° LU	3856	1,27
10	Seward	149,43° BB	60,12° LU	142,37º BT	38,30° LU	5227	0,25
11	Honolulu	157,87° BB	21,31° LU	142,37º BT	38,30° LU	5967	0,71
12	Kahului	156,48º BB	20,90° LU	142,37º BT	38,30° LU	6113	1,74
13	Kawaihae	155,83º BB	20,04° LU	142,37º BT	38,30° LU	6222	1,22
14	La Push	124,64º BB	47,92° LU	142,37° BT	38,30° LU	7166	0,80
15	Crescent	124,18º BB	41,75° LU	142,37º BT	38,30° LU	7550	2,02
16	Port San Luis	120,76° BB	35,18° LU	142,37º BT	38,30° LU	8206	1,88
17	Unalaska	166,54º BB	53,88° LU	142,37º BT	38,30° LU	4197	0,40
18	Midway	177,40° BB	28,60° LU	142,37º BT	38,30º LU	3856	1,27

Tabel 5 berikut memberikan 15 data pengamatan lapangan untuk kasus tsunami di Pulau Solomon pada tanggal 5 Februari 2013 yang dibangkitkan oleh gempa tektonik M_w 8,0 berpusat pada kedalaman 33 km. Data numerik diperoleh dari rekaman DART *buoys* dan *tide gauges* yang dioperasikan oleh NOAA dari berbagai ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

lokasi geografis diukur dari titik episenter tsunam. Sumber data adalah https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov.

Tabel 5. Data amplitudo maksimum tsunami untuk kasus Solomon 2013 yang dihasilkan oleh gempa berkekuatan M_w 8,0.

N-	Nama Posisi I		strumen	Episenter	Tsunami	d	η
INO	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 52401	155,74° BT	19,29º LU	165,14º BT	10,74°LS	3498	0,0150
2	Kaumalapau	156,90° BB	20,78° LU	165,14º BT	10,74°LS	5437	0,0320
3	Christmas	157,47° BB	1,98°LU	165,14° BT	10,74° LS	4376	0,0370
4	Port Kembla	150,91° BB	34,47° LS	165,14° BT	10,74° LS	3011	0,0750
5	Honolulu	157,87° BB	21,31° LU	165,14º BT	10,74°LS	5393	0,1000
6	Kawaihae	155,83° BB	20,04° LU	165,14º BT	10,74°LS	5479	0,1400
7	Sand Island	177,36° BB	28,21° LU	165,14° BT	10,74° LS	4728	0,0800
8	Port San Luis	120,76° BB	35,18º LU	165,14º BT	10,74°LS	9299	0,1500
9	Monterey	121,89° BB	36,61° LU	165,14° BT	10,74°LS	9253	0,0950
10	Toke Point	123,97° BB	46,71° LU	165,14º BT	10,74° LS	9477	0,0350
11	Newport	71,33° BB	41,51° LU	165,14º BT	10,74°LS	13581	0,1100
12	Point Reyes	122,98° BB	37,99° LU	165,14º BT	10,74°LS	9212	0,2000
13	San Fransisco	122,47° BB	37,81° LU	165,14º BT	10,74°LS	9248	0,0650
14	Santa Monica	118,50° BB	34,01° LU	165,14° BT	10,74°LS	9458	0,0850
15	Kodiak	152,51° BB	57,73° LU	165,14º BT	10,74°LS	8538	0,0450

Tabel 6 berikut memberikan 19 data pengamatan lapangan untuk kasus tsunami Iquique, Chili pada tanggal 1 April 2014 yang dibangkitkan gempa M_w 8,2 berpusat pada kedalaman 10 km. Data numerik berasal dari rekaman DART *buoys* dan *tide gauges* yang dikelola oleh NOAA dan PTWC dari berbagai lokasi geografis diukur dari episenter tsunami. Sumber data dapat diakses bebas di laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngde.noaa.gov serta http://ptwc.weather.gov/.

Tabel 6. Data amplitudo maksimum tsunami untuk kasus Iquique, Chili 2014 yang dihasilkan oleh gempa berkekuatan M_w 8,2.

N.	Nama Stasiun	Posisi Instrumen		Episenter	d	η	
No		Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 51426	168,39° BB	23,11°LS	70,82° BB	19,64º LS	9905	0,1750
2	Crescent	124,18º BB	41,75°LU	70,82° BB	19,64º LS	8764	0,1420
3	Hilo	155,08° BT	19,73° LU	70,82° BB	19,64º LS	15242	0,5280

No	Nama	Posisi Instrumen		Episenter	Tsunami	d	η
110	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
4	Honolulu	157,87° BB	21,31° LU	70,82°BB	19,64º LS	10510	0,0550
5	Hanasaki	145,58° BB	43,28° LU	70,82°BB	19,64º LS	10339	0,1300
6	Kushiro	144,37° BT	42,98° LU	70,82°BB	19,64º LS	15851	0,1100
7	Honokohau	156,02° BB	19,66° LU	70,82°BB	19,64º LS	10267	0,1010
8	Kahului	156,48° BB	20,90° LU	70,82°BB	19,64º LS	10359	0,4850
9	Los Angeles	135,34° BB	57,05° LU	70,82°BB	19,64º LS	10412	0,0800
10	Sitka	152,51°BB	57,73° LU	70,82°BB	19,64º LS	11378	0,0400
11	Kodiak Island	162,33º BB	55,06° LU	70,82°BB	19,64º LS	11894	0,0700

Analisis Relasi antara Magnitudo Momen Gempa Tektonik dan Amplitudo Maksimum Tsunami untuk Kasus Tsunami Litas Samudera Pasifik dan Tsunami Indonesia

12	Yakutat	139,73° BB	59,55° LU	70,82° BB	19,64º LS	10773	0,0475
13	Boat Cove	177,90° BB	29,28° LS	70,82°BB	19,64º LS	10510	0,0490
14	Unalaska	166,54° BB	53,88° LU	70,82° BB	19,64º LS	12142	0,0450
15	Kawaihae	155,83° BB	20,04º LU	70,82° BB	19,64º LS	10263	0,2500
16	Midway	177,36° BB	28,22º LU	70,82° BB	19,64º LS	12610	0,0930
17	Nawiliwili	159,36° BB	21,95° LU	70,82° BB	19,64° LS	10679	0,0360
18	Toke Point	123,97° BB	46,71° LU	70,82° BB	19,64º LS	9106	0,0170
19	Port Orford	124,50° BB	42,74º LU	70,82° BB	19,64º LS	8854	0,0800

Tabel 7 berikut memberikan 18 data pengamatan lapangan untuk kasus tsunami di Illapel, Chili pada tanggal 17 September 2015 yang dibangkitkan oleh gempa tektonik M_w 8,3 pada kedalaman 10 km. Data numerik diperoleh dari rekaman DART *buoys* dan *tide gauges* yang dikelola oleh NOAA dan PTWC dari berbagai lokasi geografis yang diukur dari titik episenter tsunami. Data diperoleh dari laman yang dapat diakses bebas di https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov serta http://ptwc.weather.gov/.

Tabel 7. Data amplitudo maksimum tsunami untuk kasus Illapel, Chili 2015 yang dihasilkan oleh gempa berkekuatan M_w 8,3.

N-	Nama Stadium	Posisi In	strumen	Episenter	Tsunami	d	η
INO	Nama Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 46409	148,55° BB	55,31º LU	71,65° BB	31,57º LS	12100	0,015
2	DART 46411	127,07° BB	39,33º LU	71,65° BB	31,57º LS	9749	0,010
3	DART 43413	100,10º BB	10,80° LU	71,65° BB	31,57º LS	5608	0,020
4	DART 32411	90,80° BB	5,00° LU	71,65° BB	31,57º LS	4550	0,030
5	Unalaska	166,54° BB	53,88° LU	71,65° BB	31,57° LS	13109	0,240
6	King Cove	162,33° BB	55,06° LU	71,65° BB	31,57° LS	12889	0,280
7	Kodiak	152,51°BB	57,73° LU	71,65° BB	31,57º LS	12439	0,100
8	Atka	174,17°BB	52,23° LU	71,65° BB	31,57º LS	13559	0,170
9	Sand Point	160,50° BB	55,34° LU	71,65° BB	31,57º LS	12790	0,200
10	Seward	149,43° BB	60,12º LU	71,65° BB	31,57º LS	12396	0,080
11	Honolulu	157,87° BB	21,31º LU	71,65° BB	31,57º LS	10901	0,060
12	Point Reyes	122,98° BB	37,99° LU	71,65° BB	31,57° LS	9397	0,210
13	Kushiro	144,37° BT	42,98º LU	71,65° BB	31,57º LS	16635	0,110
14	Pago Pago	170,69° BB	14,28° LU	71,65° BB	31,57º LS	11689	0,670
15	Crescent	124,18° BB	41,75° LU	71,65° BB	31,57° LS	9775	0,250
17	Nawiliwili	159,36° BB	21,95º LU	71,65° BB	31,57º LS	11070	0,120
18	Kawaihae	155,83° BB	20,04º LU	71,65° BB	31,57º LS	10646	0,300

Untuk mempermudah diskripsi, berikut adalah Tabel 8 yang memberikan ringkasan relasi antara M_w dan η untuk 7 kasus tsunami lintas Samudera Pasifik yang dibahas dalam penelitian ini. Meskipun Tabel 8 merupakan ringkasan informasi, namun kehadirannya belum mengungkap secara eksplisit relasi antara M_w dan η untuk 7 kasus tsunami lintas Samudera Pasifik. Oleh karena itu, Gambar 1 berikut diberikan agar diskripsi kualitatif relasi antara M_w dan η menjadi jelas.

Tabel 8. Ringkasan data relasi antara M_w dan η untuk 7 tsunami trans-Pasifik.

No	Nama Tsunami	Magnitudo Momen M _w	Rerata Amplitudo Maksimum η (m)
1	Kuril, Rusia 2006	8,3	0,195
2	Selandia Baru 2009	7,8	0,043
3	Maule, Chili 2010	8,8	0,550
4	Tohoku, Jepang 2011	8,9	0,980
5	Solomon 2013	8,0	0,084
6	Iqueque, Chili 2014	8,2	0,133
7	Illapel, Chili 2015	8,3	0,165

Gambar 1. Grafik M_w sebagai fungsi logaritmik η untuk 7 kasus tsunami lintas Samudera Pasifik.

Gambar 1 menunjukkan nilai amplitudo maksimum tsunami yang terukur oleh tiap-tiap stasiun pemantau yang direpresentasikan sebagai lingkaran-lingkaran kecil yang memiliki warna sesuai dengan warna pada bagian 'legend' masing-masing kasus tsunami yang dibahas. Misalnya, amplitudo maksimum untuk kasus tsunami Maule 2010 yang direpresentasikan oleh lingkaran-lingkaran berwarna hijau muda. Sedangkan nilai rerata amplitudo maksimum tsunami tap kasus tsunami pada Tabel 8 direpresentasikan oleh lingkaran-lingkaran berwarna merah. Berdasarkan gambar tersebut, relasi antara magnitudo momen M_w gempa tektonik pemicu tsunami dan rerata amplitudo maksimum tsunami η untuk 7 kasus tsunami lintas Samudera Pasifik dapat dituliskan sebagai berikut,

$$M_{\rm w} = 0,866 \log \eta + 9,001 \tag{6}$$

di mana digunakan bantuan konversi $\ln x = 2,303 \log x$.

Grafik yang diperoleh dari data penelitian memiliki koefisien korelasi $R^2 = 0,99$. Koefisien korelasi sebesar itu menunjukkan bahwa ada kesesuaian yang tinggi antara data penelitian ini (merupakan kombinasi data M_w dan η) dan persamaan empiris (6).

Persamaan empiris (6) yang mendiskripsikan relasi antara M_w dan η dalam penelitian skripsi ini tidak berbeda signifikan dengan temuan Heidarzadeh *et al.* (2018) yaitu $M_w = 0,665 \log \eta + 8,245$ untuk kasus trans-Pasifik yang lebih sedikit. Hal ini menunjukkan metodologi penelitian yang dilakukan tidak keliru karena memberikan hasil yang sama dengan penelitian terdahulu (Heidarzadeh *et al.*, 2018). Temuan penting lain adalah magnitudo momen M_w merupakan fungsi logaritmik dari η (Prastowo *et al.* 2020, *submitted to publication for* AIP Conference Proceedings).

Tampilan data pada Tabel 8 dan Gambar 1 juga menunjukkan bahwa data amplitudo maksimum tsunami tidak bergantung pada jarak episentral. Misalnya, untuk satu kasus tsunami tertentu nilai η yang terukur oleh DART atau tide gauge pada stasiun pemantau yang lebih jauh bisa saja memberikan nilai yang lebih besar daripada nilai yang diberikan oleh stasiun pemantau yang lebih dekat dengan episenter. Hal ini menunjukkan bahwa tsunami directivity ikut menentukan variasi η terhadap epicentral distance. Beberapa penelitian terdahulu mencoba untuk mengungkap faktor yang mempengaruhi variasi η terhadap *epicentral distance*. Misalnya, kompleksitas topografi dan batimetri lokal yang berbeda antara Samudera Pasifik dan Samudera Hindia (Prastowo et al., 2018), tsunami energy decay (Rabinovich et al., 2011; Prastowo et al., 2019), dan energy dissipation in different oceans (Prastowo et al. 2020). Namun demikian, semua faktor dan topik bahasan tersebut di luar konteks penelitian ini.

Kasus Tsunami Indonesia

Tabel 9 berikut memberikan 15 data pengamatan lapangan untuk tsunami Aceh tanggal 26 Desember 2004 yang dipicu gempa tektonik M_w 9,0 pada kedalaman 30 km. Data numerik diperoleh dari rekaman *tide gauges* yang dikelola *United States Geological Survey* (USGS) dari berbagai lokasi geografis diukur dari episenter tsunami yang juga menjadi sumber data dari penelitian terdahulu yang relevan dengan penelitian ini (Merrifield *et al.*, 2005). Tsunami Aceh 2004 merupakan kasus tsunami di Indonesia yang mendapatkan perhatian luas dari komunitas sains kebencanaan tsunami. Sumber data η kasus tsunami Aceh 2004 diperoleh melaluli laman http://earthquake.usgs.gov/eqinthenews/2004/usslav/.

Tabel 9. Data amplitudo maksimum tsunami untuk kasus Aceh 2004 yang dihasilkan oleh gempa berkekuatan M_w 9,0.

N	Nama	Posisi In	strumen	Episenter	Tsunami	d	η
INO	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	Belawan	98,72 ° BT	3,92°LU	95,98° BT	3,30º LU	312	0,51
2	Sibolga	98,77º BT	1,73° LU	95,98° BT	3,30º LU	356	0,43
3	Cocos Islands	96,90 ° BT	12,10°LS	95,98° BT	3,30º LU	1717	0,33
4	Panjang	105,27° BT	5,45°LS	95,98° BT	3,30º LU	1420	0,11
6	Prigi	111,73° BT	8,28° LS	95,98° BT	3,30° LU	2172	0,15
7	Hillarys	115,74° BT	31,83°LS	95,98° BT	3,30° LU	4434	0,35
8	Portland	141,61° BT	38,34° LS	95,98° BT	3,30º LU	6591	0,17
9	Dumont D'Urville	140,00° BT	66,67° LS	95,98° BT	3,30° LU	8529	0,06
10	Gan	73,22° BT	0,57°LS	95,98° BT	3,30º LU	2569	0,51
11	Diego Garcia	72,40° BT	7,28° LS	95,98° BT	3,30º LU	2772	0,43
12	Salalah	54,00° BT	17,00° LS	95,98° BT	3,30° LU	2872	0,33
13	Zanzibar	39,18° BT	6,15°LS	95,98° BT	3,30º LU	6160	0,11
14	Richard's Bay	32,08° BT	28,81°LS	95,98° BT	3,30º LU	6401	0,15
15	Port Elizabeth	25,63° BT	33,95° LS	95,98° BT	3,30° LU	7690	0,35

ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

Tabel 10 berikut memberikan 14 data pengamatan lapangan untuk kasus tsunami di Sumatera pada tanggal 12 September 2007 yang dibangkitkan oleh gempa tektonik M_w 8,5 pada kedalaman 30 km. Data numerik berasal dari rekaman DART *buoys* dan *tide gauges* dari berbagai lokasi geografis yang diukur dari titik episenter tsunami. Data diperoleh dari laman yang dikelola oleh PTWC di http://ptwc.weather.gov/.

Tabel 10. Data amplitudo maksimum tsunami untuk kasus Sumatera 2007 yang dihasilkan oleh gempa berkekuatan M_w 8,5.

N-	Nama	Posisi In	strumen	Episenter '	Tsunami	d	η
INO	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 23401	88,53° BT	8,90° LS	101,37º BT	4,44º LS	2058	0,023
2	Trinconmalee	81,20° BT	8,56° LS	101,37º BT	4,44º LS	2277	0,280
3	Cocos Island	96,89º BT	12,12° LS	101,37º BT	4,44º LS	987	0,110
4	Prigi	103,25° BT	0,25° LS	101,37º BT	4,44º LS	511	0,190
5	Benoa	115,22° BT	8,75° LS	101,37° BT	4,44º LS	1605	0,020
6	Male	73,53° BT	4,19º LS	101,37° BT	4,44º LS	3090	0,120
7	Hanimadhoo	73,17º BT	6,77° LU	101,37° BT	4,44º LS	3373	0,130
8	Sibolga	98,77° BT	1,73°LU	101,37° BT	4,44º LS	745	0,160
9	Point La Rue	55,53° BT	4,67° LS	101,37° BT	4,44º LS	5086	0,190
10	Gan	73,15° BT	0,69º LS	101,37º BT	4,44º LS	3165	0,070
11	Cilacap	109,00° BT	7,73° LS	101,37º BT	4,44º LS	920	0,230
12	Masirah	58,87° BT	20,68° LU	101,37° BT	4,44º LS	4937	0,070
13	Lamu	40,90° BT	2,27º LS	101,37 BT	4,44º LS	6723	0,040
14	Colombo	79,85° BT	6,95° LS	101,37° BT	4,44º LS	2400	0,245

Tabel 11 berikut memberikan 5 data pengamatan lapangan untuk kasus tsunami di Sumatera pada tanggal 6 April 2010 yang dibangkitkan oleh gempa tektonik M_w 7,8 pada kedalaman 19,3 km. Data numerik berasal dari rekaman DART *buoys* dan *tide gauges* yang dioperasikan oleh NOAA dari berbagai lokasi geografis yang diukur dari titik episenter tsunami. Sumber data dapat diakses di laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov.

Tabel 11. Data amplitudo maksimum tsunami untuk kasus Sumatera 2010 yang dihasilkan oleh gempa berkekuatan M_w 7,8.

N	Nama	Posisi Ins	strumen	Episenter	Tsunami	d	η
INO	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 56001	109,94° BT	14,02° LS	97,13° BT	2,36º LU	2307	0,003
2	DART 23401	88,55° BT	8,86° LU	97,13° BT	2,36° LU	1194	0,007
3	Teluk Dalam	97,82° BT	0,55° LU	97,13° BT	2,36º LU	216	0,170
4	Padang	100,37° BT	0,90°LS	97,13° BT	2,36º LU	516	0,070
5	Tanahbala	98,50°BT	0,53° LS	97,13° BT	2,36º LU	356	0,070

Tabel 12 berikut memberikan 10 data pengamatan lapangan untuk tsunami Mentawai tanggal 25 Oktober 2010 yang dibangkitkan oleh gempa tektonik M_w 7,8 pada kedalaman 20,6 km. Data numerik berasal dari rekaman DART *buoys* dan *tide gauges* dari berbagai lokasi geografis

Analisis Relasi antara Magnitudo Momen Gempa Tektonik dan Amplitudo Maksimum Tsunami untuk Kasus Tsunami Litas Samudera Pasifik dan Tsunami Indonesia

diukur dari episenter tsunami. Sumber data η kasus tsunami Menatawai 2010 dapat dikases secara bebas melalui laman yang dikelola oleh PTWC, yakni http://ptwc.weather.gov/.

Tabel 12. Data amplitudo maksimum tsunami untuk kasus Mentawai 2010 yang dihasilkan oleh gempa berkekuatan M_w 7,8.

N-	Nerre	Posisi In	strumen	Episenter 7	r Tsunami d	d	η
NO	Inama	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 56001	109,94° BT	14,02° LS	100,11° BT	3,48° LS	1595	0,007
2	Hillarys Harbor	115,74° BT	31,83° LS	100,11° BT	3,48º LS	3554	0,080
3	Trinconmalee	81,20° BT	8,56° LS	100,11° BT	3,48º LS	2168	0,070
4	Colombo	79,85° BT	6,95° LS	100,11° BT	3,48º LS	2279	0,090
5	Gan	73,15° BT	0,69° LS	100,11° BT	3,48º LS	3015	0,005
6	Male	73,53° BT	4,19º LS	100,11° BT	3,48º LS	2953	0,080
7	Diego Garcia	72,39° BT	7,30° LS	100,11° BT	3,48º LS	3101	0,060
8	Karachi	66,98° BT	24,81° LU	100,11° BT	3,48º LS	4269	0,060
9	Masirah	58,87° BT	20,68° LU	100,11° BT	3,48º LS	4858	0,040
10	Chabahar	60,60 ° BT	25,30° LU	100,11° BT	3,48° LS	4872	0,040

Tabel 13 memberikan 6 data pengamatan lapangan untuk tsunami di Sumatera pada tanggal 11 April 2012 yang dibangkitkan oleh gempa M_w 8,6 pada kedalaman 23 km. Data numerik berasal dari rekaman DART *buoys* dan *tide gauges* dari berbagai lokasi geografis yang diukur dari episenter tsunami. Data sekunder diperoleh dari laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov yang dikelola oleh NOAA dan penelitian terdahulu yang relevan dengan penelitian ini (Heidarzadeh *et al.*, 2017).

Tabel 13. Data amplitudo maksimum tsunami untuk kasus Sumatera 2012 yang dihasilkan oleh gempa berkekuatan M_w 8,6.

N-	Nama	Posisi In	strumen	Episenter	Tsunami	d	η
INO	Stasiun	Bujur	Lintang	Bujur	Lintang	(km)	(m)
1	DART 23227	88,79º BT	6,26° LU	93,06° BT	2,33º LU	645	0,125
2	DART 23401	88,55° BT	8,86° LU	93,06° BT	2,33º LU	882	0,070
3	DART 56001	109,94° BT	14,02° LS	93,06° BT	2,33º LU	2604	0,015
4	Sabang	95,32° BT	5,89º LS	93,06° BT	2,33º LU	949	0,400
5	Hanimadhoo	73,17° BT	6,78° LS	93,06° BT	2,33° LU	2432	0,150
6	Cocos Islands	96,89º BT	12,12° LS	93,06° BT	2,33º LU	1663	0,085

Tabel 14 berikut memberikan 9 data pengamatan lapangan untuk tsunami di Sumatera tanggal 2 Maret 2016 yang dibangkitkan oleh gempa tektonik berkekuatan M_w 7,8 pada kedalaman 24 km. Data numerik berasal dari rekaman DART *buoys* dan *tide gauges* yang dioperasikan oleh NOAA dan PTWC dari berbagai lokasi geografis yang diukur dari episenter. Data dapat diakses secara bebas di laman https://nctr.pmel.noaa.gov/database_devel.html dan http://ngdc.noaa.gov serta http://ptwc.weather.gov/.

Tabel 14. Data amplitudo maksimum tsunami untuk kasus Sumatera 2016 yang dihasilkan oleh gempa berkekuatan M_w 7,8.

ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

N-	Norra Stadion	Posisi In	strumen	Episenter	Tsunami	d (1)	η (m) 0,011
INO	Nama Stasiun	Bujur	Lintang	Bujur	Lintang	u (kiii)	
1	DART 23227	88,79º BT	6,26° LU	94,28° BT	4,91º LS	9293	0,011
2	DART 23401	88,55° BT	8,86° LU	94,28° BT	4,91º LS	9007	0,009
3	DART 56001	109,94° BT	14,02° LS	94,28° BT	4,91º LS	11376	0,016
4	DART 56003	118,07º BT	15,02° LS	94,28° BT	4,91º LS	11428	0,005
5	Cocos Island	96,89º BT	12,12° LS	94,28° BT	4,91º LS	11267	0,060
6	Sabang	95,32° BT	5,89° LU	94,28° BT	4,91º LS	9280	0,018
7	Christmas Island	157,47°BB	1,98° LU	94,28° BT	4,91º LS	9376	0,085
8	Sadeng	110,80° BT	8,19° LS	94,28° BT	4,91º LS	10722	0,150
9	Gan	73,17º BT	0,70° LS	94,28° BT	4,91º LS	10195	0,014

Tabel 16 berikut memberikan ringkasan relasi antara M_w dan η untuk 6 kasus di Indonesia yang dibahas pada penelitian ini.

Tabel 16. Ringkasan data relasi antara M_w dan η untuk 6 tsunami di Indonesia.

No	Nama Tsunami	Magnitudo Momen M _w	Rerata Amplitudo maksimum η (m)
1	Aceh 2004	9,0	0,324
2	Sumatera 2007	8,5	0,131
3	Sumatera 2010	7,8	0,064
4	Mentawai 2010	7,8	0,048
5	Sumatera 2012	8,6	0,141
6	Sumatera 2016	7,8	0,045

Keberhasilan plot grafik relasi antara M_w dan η untuk kasus trans-Pasifik dikembangkan untuk kasus tsunami di Indonesia. Fokus perhatian adalah grafik yang diperoleh apakah juga akan memberikan diskripsi perilaku relasi yang sama seperti terlihat pada Gambar 1. Gambar 2 adalah plot relasi M_w dan η , di mana lingkaran-lingkaran merah merepresentasikan rerata amplitudo maksimum tsunami.

Gambar 2. Grafik M_w sebagai fungsi logaritmik η untuk 6 kasus tsunami yang terjadi di Indonesia.

Berdasarkan Gambar 2 tersebut, maka relasi antara magnitudo momen M_w gempa pembangkit gelombang tsunami dan rerata amplitudo maksimum tsunami η untuk kasus tsunami Indonesia dapat dituliskan sebagai berikut,

 $M_{\rm w} = 1,588 \log \eta + 9,880 \tag{7}$ di mana digunakan konversi ln x = 2,303 log x. Grafik $M_{\rm w}$

sebagai fungsi logaritmik η pada Gambar 2 memiliki nilai koefisien korelasi R² = 0,96. Koefisien korelasi sebesar itu menunjukkan bahwa ada kesesuaian yang tinggi antara data penelitian ini (merupakan kombinasi data M_w dan η) dan persamaan empiris (7).

Persamaan empiris (7) yang mendiskripsikan relasi antara M_w dan η untuk 6 kasus tsunami di Indonesia dalam penelitian ini memiliki koefisien fungsi logaritmik yang hampir 2,5 kali lebih besar dari koefisien fungsi logaritmik persamaan empiris $M_{\rm w} = 0,665 \log \eta + 8,245$ temuan Heidarzadeh et al. (2018) untuk 4 tsunami trans-Pasifik. Meskipun dalam penelitian ini magnitudo momen $M_{\rm w}$ secara kualitatif tetap terlihat sebagai fungsi logaritmik η , namun perbedaan koefisien fungsi logaritmik (1,588 dan 0,665) memberikan perbedaan yang cukup signifikan pada ketajaman grafik eksponensial $M_{\rm w}$ terhadap η sebagaimana dapat dilihat pada Gambar 1 dan Gambar 2 sebelum ini. Beberapa faktor yang bisa menjadi penyebab perbedaan tersebut adalah ketersediaan data tsunami Indonesia relatif lebih sedikit daripada tsunami lintas Samudera Pasifik dan dari jumlah data yang relatif sedikit itu tingkat akurasinya relatif rendah.

Kasus Tsunami Lintas Samudera Pasifik dan Tsunami Indonesia

Untuk melihat perbedaan pola ketajaman grafik eksponensial M_w terhadap η antara kasus tsunami lintas Samudera Pasifik dan tsunami Indonesia, maka Gambar 3 dibuat di mana grafik keduanya dibuat dalam satu plot.

Gambar 3. Grafik M_w sebagai fungsi logaritmik η untuk tsunami lintas Samudera Pasifik dan tsunami Indonesia.

Pola grafik M_w terhadap η pada masing-masing kasus tsunami yang terlihat pada Gambar 3 mendiskripsikan bahwa kasus trans-Pasifik (biru) lebih sensitif terhadap variasi kekuatan gempa daripada kasus tsunami Indonesia. Perubahan kecil magnitudo momen M_w akan memberikan efek perubahan nilai rerata amplitudo maksimum tsunami η di kawasan Pasifik yang lebih signifikan. Hal ini bukan berarti bahwa fenomena tsunami di Samudera Hindia relatif lebih aman karena tinggi gelombang dan energi gelombang tsunami yang didistribusikan oleh sumber gempa dari episenter tsunami di Samudera Hindia tidak akan melebihi seandainya peristiwa tersebut terjadi di Samudera Pasifik. Salah satu alasan yang masuk akal adalah *non-uniformity in energy decay times* dan perbedaan karakteristik serapan energi

ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

tsunami untuk berbagai *tsunami directivity* atau variasi lintasan perambatan tsunami di laut (Rabinovich *et al.*, 2011; Prastowo *et al.*, 2018; Prastowo *et al.*, 2019).

Hal paling penting dari Gambar 3 adalah bahwa baik untuk tsunami trans-Pasifik maupun tsunami Indonesia magnitudo momen M_w gempa tektonik pemicu tsunami merupakan fungsi logaritmik amplitudo tsunami η , seperti dapat dilihat pada Tabel 17 di bawah. Temuan M_w sebagai fungsi logaritmik dari η ini sesuai dengan temuan penelitian terdahulu (Heidarzadeh *et al.*, 2018). Perlu diperhatikan bahwa persamaan empiris 2 pada tabel tersebut dibentuk dari 6 kasus tsunami Indonesia dengan episenter di laut.

Tabel 17. Persamaan empiris relasi antara $M_w \, dan \, \eta$ kasus tsunami trans-Pasifik dan tsunami Indonesia.

No	Kasus Tsunami	Persamaan Empiris	Koefisien Korelasi R ²
1	Trans-Pasifik	$M_{\rm w} = 0,866 \log \eta + 9,001$	0,99
2	Indonesia	$M_{\rm w} = 1,588 \log \eta + 9,880$	0,96

Seperti juga banyak kasus fenomena alam yang lain, temuan utama penelitian ini masih membutuhkan konfirmasi dari analisis serupa terhadap perilaku tsunami pada kedua wilayah lautan dengan karakteristik geologi kelautan dan proses fisis yang berbeda, yaitu Samudera Pasifik dan Samudera Hindia. Dengan demikian, temuan persamaan empiris relasi antara M_w dan η yang berbeda (Tabel 17) untuk kedua wilayah lautan tersebut adalah wajar untuk saat ini.

Dalam konteks studi mitigasi bencana, persamaan empiris pada Tabel 17 bisa digunakan untuk prediksi tinggi gelombang tsunami di laut terbuka apabila kekuatan sumber gempa tektonik pemicu tsunami diketahui. Pada gilirannya nanti, tinggi gelombang tsunami di laut terbuka bisa digunakan untuk prediksi tinggi gelombang tsunami saat tiba di pantai atau biasa dikenal sebagai *run-up*. Jadi, hasilhasil penelitian ini penting karena memberikan kontribusi positif dan mengisi 'celah' yang diperlukan untuk pengembangan studi mitigasi bencana tsunami.

PENUTUP

Simpulan

Penelitian ini mereplikasi metodologi penelitian Heidarzadeh *et al.* (2018) dengan menggunakan 7 kasus tsunami trans-Pasifik (Kuril 2006, Selandia Baru 2009, Maule, Chili 2010, Tohoku, Jepang 2011, Solomon 2013, Iquique, Chili 2014, dan Illapel, Chili 2015) dan 6 kasus di Indonesia (Aceh 2004, Sumatera 2007, Sumatera 2010, Mentawai 2010, Sumatera 2012, dan Sumatera 2016). Untuk kasus tsunami trans-Pasifik, persamaan empiris yang mendiskripsikan relasi matematis antara M_w dan η adalah $M_w = 0.850 \log \eta + 8,941$ sedangkan untuk kasus tsunami di Indonesia adalah $M_w = 1,588 \log \eta + 9,880$. Perbedaan yang muncul pada kedua persamaan empiris karena perbedaan karakteristik perambatan gelombang tsunami di Samudera Pasifik dan Samudera Hindia (Rabinovich *et al.*, 2011; Prastowo *et al.*, 2018).

Persamaan empiris tersebut menceritakan bahwa baik untuk kasus tsunami trans-Pasifik maupun tsunami Indonesia, kedua parameter dinamik yaitu parameter tsunami (η) dan parameter sumber gempa tektonik (magnitudo momen M_w) terhubung melalui temuan M_w 12 Analisis Relasi antara Magnitudo Momen Gempa Tektonik dan Amplitudo Maksimum Tsunami untuk Kasus Tsunami Litas Samudera Pasifik dan Tsunami Indonesia

merupakan fungsi logaritmik dari η . Temuan ini sesuai dengan penelitian terdahulu (Heidarzadeh *et al.*, 2018).

Data penelitian ini menunjukkan bahwa tidak ada korelasi yang jelas antara amplitudo maksimum tsunami dan *epicentral distance*. Hal ini sesuai dengan temuan Heidarzadeh *et al.* (2018). Stasiun pemantau yang berada lebih jauh bisa memberikan nilai amplitudo maksimum tsunami yang lebih besar dari nilai yang diberikan oleh stasiun pemantau yang berada lebih dekat dari episenter. Hal ini menunjukkan bahwa faktor *propagation directivity* atau 'geometrical spreading' tsunami (Okal *et al.*, 2014) ikut menentukan variasi η terhadap *epicentral distance*.

Saran

mitigasi bencana Studi tsunami meliputi pemahaman perilaku tsunami dalam zona generasi, zona propagasi, dan zona mitigasi. Kemajuan penelitian dalam salah satu zona ikut menentukan kemajuan penelitian dalam zona yang lain. Oleh karena itu, sangat penting penelitian. akurasi hasil-hasil untuk memastikan setidaknya secara kualitatif. Akurasi hasil-hasil penelitian secara kualitatif bisa diuji melalui perbandingan langsung atau uji kesesuaian dengan hasil-hasil penelitian terdahulu.

Ketidaksesuaian yang terjadi (jika ada bukti kasus) tidak selalu berarti kekeliruan hasil penelitian saat ini. Kesesuaian hasil penelitian untuk kasus wilayah Samudera Pasifik dapat ditingkatkan lagi dengan menguji lebih banyak kasus tsunami, terutama tsunami masa lalu dengan harapan tersedia data lapangan dalam jumlah yang cukup dan akurat. Perbedaan karakteristik perambatan gelombang tsunami pada kedua wilayah samudera dalam penelitian ini dapat ditindaklanjuti melalui penelitian serupa dengan jumlah data yang lebih banyak, khususnya untuk data tsunami di wilayah Samudera Hindia.

Mengingat tsunami dapat dibangkitkan oleh gempa tektonik dengan episenter baik di laut maupun di darat, maka penelitian ini dapat ditindaklanjuti untuk kasus tsunami Indonesia yang dibangkitkan oleh gempa tektonik dengan episenter di darat. Dengan demikian, bisa diketahui apakah pola hubungan antara magnitudo momen M_w dan amplitudo maksimum tsunami η pada penelitian ini masih berlaku atau tidak.

UCAPAN TERIMAKASIH

Tim Penulis menyampaikan ucapan terimakasih kepada pihak NOAA dan PTWC atas data sekunder yang disediakan bebas untuk penelitian ini. Tim Penulis juga menyampaikan ucapan terimakasih kepada 2 *reviewers* yang telah memberikan masukan bermanfaat untuk kesempurnaan artikel IFI ini.

DAFTAR PUSTAKA

- Anwar, N. A. 2019. Estimasi tsunami run-up¹¹dengan pendekatan modifikasi hukum Green dalam zona mitigasi. Skripsi. Program Studi Fisika, FMIPA, Universitas Negeri Surabaya. Tidak dipublikasikan. pp.1-52.
- Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C.W., McCaffrey, R., Subarya, C., Puntodewo, S. S.O. and Calais, E. 2003. Crustal motion in

ISSN : 2302-4216 © Prodi Fisika Jurusan Fisika 2020

Indonesia from global positioning system measurements. *Journal of Geophysical Research*, Vol.108, No.B8, p.2367.

- Carvajal, M., Araya-Cortejo, C., Sépulveda, I., Melnick, D. and Haase, J. S. 2019. Nearly instantaneous tsunamis following the M_w 7.5 2018 Palu earthquake. *Geophysical Research Letters*, Vol.46, doi:10.1029/2019GL082578, pp.1-33.
- Charvet, I., Eames, I. and Rossetto, T. 2013. New tsunami runup relationships based on long wave experiments. *Ocean Modelling*, Vol.69, pp.79-92.
- Cholifah, L. and Prastowo, T. 2017. A simple parameterization for tsunami run-up prediction. *Journal of Science and Science* Education, Vol.1, No.2, pp.7-13.
- Giachetti, T., Paris, R., Kelfoun, K. and Ontowirjo, B. 2012. Tsunami hazards related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. *The Geology Society of London, Special Publication*, pp.79-90.
- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T. and Takagawa, T. 2017. Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 M_w 7.8 event and its relationship with the April 2012 M_w 8.6 event. *Geophysical Journal International*, Vol.211, pp.1601-1612.
- Heidarzadeh, M., Satake, K., Takagawa, T., Rabinovich, A. and Kusumoto, S. 2018. A comparative study of far-field tsunami amplitudes and ocean-wide propagation properties: insight from major trans-Pacific tsunamis of 2010–2015. *Geophysical Journal International*, Vol.215, pp.22-36.
- Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A. and Wijanarko, A. B. 2020. Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. *Ocean Engineering*, Vol.195, No.106733, pp.1-11.
- Irsyam, M., Hendriyawan, Asrurifak, M., Mikail, R., Sabaruddin, A., Faisal, L., Meilano, I., Widiyantoro, S., Natawidjaja, D. H., Triyoso, W., Hidayati, S., Rudiyanto, A., Imran, I. dan Sakti, L. M. 2017. *Pemutakhiran Sumber dan Peta Gempa Indonesia* 2017. Pusat Studi Gempa Bumi Nasional: Jakarta.
- Merrifield, M. A., Firing, Y. L., Aarup, T., Agricole, W., Brundrit, G., Chang-Seng, D., Farre, R., Kilonsky, B., Knight, W., Kong, L., Magori, C., Manurung, P., McCreery, C., Mitchell, W., Pillay, S., Schindele, F., Shillington, F., Testut, L., Wijeratne, E. M. S., Caldwell, P., Jardin, J., Nakahara, S., Porter, F-Y. and Turetsky, N. 2005. Tide gauge observations of the Indian Ocean tsunami, December 26, 2004. *Geophysical Research Letters*, Vol.32, L09603, doi:10.1029/2005GL022610.
- Mikami, T., Shibayama, T., Esteban, M., Takabatake, T., Nakamura, R., Nishida, Y., Achiari, H., Rusli, E. Marzuki, A. G., Marzuki, M. F. H., E. Stolle,

J., Krautwald, C., Robertson, I., Aránguiz, R. and Ohira, K. 2019. Field survey of the 2018 Sulawesi Tsunami: inundation and run-up heights, and damage to coastal communities. *Pure and Applied Geophysics*, doi:10.1007/s00024-019-02258-5, pp.1-25.

- Okal, E. A., Reymond, D. and Hébert, H. 2014. From earthquake size to far-field tsunami amplitude: development of a simple formula and application to DART buoy data. *Geophysical Journal International*, Vol.196, pp.340-356.
- Prastowo, T., Cholifah, L. and Madlazim. 2018. Analysis of travel time delay for large tsunamis across the Pacific and Indian Oceans. *Science of Tsunami Hazards*, Vol.34, No.4, pp.195-212.
- Prastowo T. and Cholifah, L. 2019. The nature of tsunami energy decay with epicentral distance in the open ocean for two large trans-Pacific tsunamis. *IOP Conference Series, Journal of Physics: Conference Series,* Vol.1153, No.012017. doi:10.1088/1742-6596/1153/1/012017.
- Prastowo, T., Bariyah, A. K. and Cholifah, L. 2020. Two dynamic parameters relating earthquake magnitude and tsunami maximum amplitude for distant observations. *Submitted to* 2020 ICSAS Committee for publication in AIP.
- Putri, B. B. 2019. Analisis travel time delay kasus transoceanic tsunamis dalam zona propagasi. Skripsi. Program Studi Fisika, FMIPA, Universitas Negeri Surabaya. Tidak dipublikasikan. pp.1-43.
- Rabinovich, A. B., Candella, R. H. and Thomson, R. E. 2011. Energy decay of the 2004 Sumatra tsunami in the world ocean. *Pure and Applied Geophysics*, Vol.168, pp.1919-1950, doi:10.1007/s00024-011-0279-1.
- Satake, K., Nishimura, Y., Putra, P. N., Gusman, A. R., Sunendar, H., Fujii, Y., Tanioka, U., Latief, H. and Yulianto, E. 2012. Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and waveform modeling. *Pure* and Applied Geophysics, doi:10.1007/s00024-012-0536-y, 1-17.
- Satake, K. 2014. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami. *Geoscience Letters*, Vol.1, No.15, pp.1-13.