Jurnal Inovasi Fisika Indonesia (IFI) Volume 12 Nomor 3 Tahun 2023, hal 1-9

https://ejournal.unesa.ac.id/index.php/inovasi-fisika-indonesia

ovasi Fisika Indonesia

KARAKTERISASI STRUKTUR DAN DISTRIBUSI UKURAN PARTIKEL SERBUK Mg(Ti_{0,96}Sn_{0,04})O₃ HASIL SINTESIS DENGAN METODE PENCAMPURAN LARUTAN SEBAGAI AKIBAT VARIASI WAKTU TAHAN KALSINASI

¹⁾Azhar Andalus, ²⁾ *Frida U. Ermawati

^{1), 2)} Program Studi Fisika, FMIPA, Universitas Negeri Surabaya *Corresponding Author, Email: <u>frida.ermawati@unesa.ac.id</u>

Abstrak

Makalah ini melaporkan pengaruh variasi waktu tahan kalsinasi terhadap komposisi fasa hasil uji XRD (*X-Ray Diffraction*) dan distribusi ukuran partikel hasil uji PSA (*Particle Size Analyzer*) pada serbuk Mg(Ti_{0,%}Sn_{0,04})O₃ (disingkat MTS004). Serbuk MTS004 disintesis dengan mencampur MgCl₂, TiCl₄, dan SnCl₄ secara homogen dan dikalsinasi pada suhu 800 °C selama 4, 6 dan 8 jam. MgTiO₃ *giekeilite* (PDF No. 06-0494) terdeteksi sebagai fasa dominan (91,19-91,35 % berat) dan sisanya fasa TiO₂ *rutile* (PDF No. 34-0180). Hasil penghalusan pola XRD menunjukkan densitas atom fasa MgTiO₃ yang bervariasi, yaitu 3,79 (4 jam), 3,68 (6 jam) dan 3,76 (8 jam); hal ini diduga berkaitan dengan fenomena mikrostrain yang terjadi untuk setiap waktu tahan kalsinasi. Data parameter kisi fasa MgTiO₃ akibat variasi waktu tahan kalsinasi relatif naik, yaitu 5,053 Å (4 jam), 5,055 Å (6 jam) dan 5,055 Å (8 jam), diikuti dengan data volume sel satuannya, yaitu 307,38 Å³ (4 jam); 307,74 Å³ (6 jam); dan 307,79 Å³ (8 jam). Kenaikan data parameter kisi dan volume sel satuan fasa MgTiO₃ tersebut menandakan terjadi larutan padat substitusi MTS004. Ukuran partikel terdistribusi secara normal dengan rata-rata 311,6 nm ± 6,15% (4 jam), 362,5 nm ± 5,28% (6 jam), dan 321,4 nm ± 6,64% (8 jam). Dengan untuk waktu tahan kalsinasi 4 hingga 6 jam meningkatkan rata-rata ukuran partikel serbuk MTS004.

Kata Kunci: Serbuk MTS004; doping ion Sn4+; komposisi fasa; distribusi ukuran partikel

Abstract

This paper reports the effect of variation in calcination holding time on the phase composition examined from the XRD (X-Ray Diffraction) and particle size distribution from PSA (Particle Size Analyzer) on Mg(Ti_{0.96}Sn_{0.04})O₃ powder (abbreviated as MTS004). MTS004 powder was synthesized by mixing MgCl₂, TiCl₄, dan SnCl₄ homogeneously and calcined at 800 °C for 4, 6 and 8 hours. MgTiO₃ giekelilie (PDF No. 06-0494) was detected as the dominant phase (91.19-91.35 % weight) and the impurity phase TiO₂ rutile (PDF No. 34-0180). The results of the XRD pattern refinement showed that the atomic densities of the MgTiO₃ phase varied, namely 3.79 (4 hours), 3.68 (6 hours) and 3.76 (8 hours); this is thought to be related to the microstrain phenomenon that occurs for each calcination holding time. Lattice parameter data of the MgTiO₃ phase due to variations in calcination holding time relatively increased, namely 5,053 Å (4 hours), 5,055 Å (6 hours) and 5,055 Å (8 hours), followed by unit cell volume data, namely 307,38 Å³ (4 hours); 307,74 Å³ (6 hours); and 307,79 Å³ (8 hours). This increase in unit cell volume data and lattice parameters indicates a substitution solid solution of MTS004. The grain morphology is polygon with an average grain size of 170.09 nm (4 hours). Particle sizes were normally distributed with an average of 311.6 nm ± 6.15% (4 hours), 362.5 nm ± 5.28% (6 hours), and 321.4 nm ± 6.64% (8 hours). Thus, increasing the holding time of calcination from 6 to 8 hours increased the density of MgTiO₃ while the holding time of 4 to 6 hours increased the average particle size of MTS004 powder.

Keywords: MTS004 powder; doped Sn⁴⁺ ions; phase composition; particle size distribution

novasi Fisika Indonesia

I. PENDAHULUAN

https://ejournal.unesa.ac.id/index.php/inovasi-fisika-indonesia

Material dielektrik magnesium titanat (MgTiO₃) memiliki peran penting dalam dunia teknologi komunikasi, salah satunya sebagai komponen pembangkit frekuensi resonansi dalam modul *dielectric resonator oscillator* (DRO) pada gelombang mikro (Ishak et al., 2022; Izza & Ermawati, 2021; Zhou et al., 2007).

Material dielektrik MgTiO₃ telah disintesis dengan berbagai macam metode. Adapun metode yang umum digunakan adalah metode pencampuran padat (solid-state reaction) disertai dengan ball-milling yang mampu memproduksi MgTiO₃ dalam jumlah banyak sehingga praktis digunakan di dalam skala industri (Yuan et al., 2018). Namun demikian, suhu kalsinasi yang dibutuhkan untuk metode tersebut masih tinggi, yaitu 1000-1100 °C yang mengakibatkan ukuran butir yang dihasilkan besar. Selain itu furnace yang mampu menjangkau suhu tinggi tidak mudah ditemukan di laboratorium-laboratorium. (Tang et al., 2010) melaporkan sintesis serbuk MgTiO₃ menggunakan metode pencampuran padat dengan bahan awal Mg(OH)₂ 4MgCO₃ 5H₂O dan TiO₂ pada suhu 700-1100 °C selama 3 jam. Pada sampel dengan rasio MgO:TiO₂ = 1,03:1 berhasil diperoleh fasa tunggal MgTiO₃ pada suhu kalsinasi 1100 °C. Pada sampel yang sama diperoleh polifasa, yaitu MgTiO₃ sebagai fasa dominan pada suhu 800-1000 °C; disertai MgO pada suhu 800-1000 °C, TiO₂ rutile pada suhu 700-900 °C, TiO₂ anatase pada suhu 700 °C, dan MgTi₂O₅ karroite pada suhu 900 °C. Beberapa peneliti telah menggunakan metode pencampuran larutan (liquid mixing method) guna memperoleh fasa MgTiO3 pada suhu yang rendah, yaitu kurang dari 1000 °C seperti yang dilaporkan oleh (Farisa & Pratapa, 2012), (Ermawati et al., 2016), (Ermawati et al., 2017), dan (Zharvan et al., 2020). (Zharvan et al., 2020) melaporkan sintesis serbuk MgTiO₃ pada sistem (Mg_{0.8}Zn_{0.2})TiO₃ menggunakan prekursor MgO, TiO₂ dan ZnO yang dilarutkan pada HCl selama 2,5 jam hingga homogen. Kalsinasi dilakukan pada suhu 650 °C selama 4 jam dan diperoleh fasa tunggal MgTiO₃.

Publikasi yang melaporkan penggunaan ion Sn⁴⁺ sebagai doping bagi ion Ti⁴⁺ pada sistem Mg(Ti₁₋xSn_x)O₃ masih jarang ditemukan. Belum lama ini, Ermawati et al. pada (Ermawati et al., 2019) telah melaporkan sintesis serbuk MgTiO₃ dengan doping ion Sn⁴⁺ pada sistem Mg(Ti_{1-x}Sn_x)O₃ dengan *x* = 0-0,04 (MTS0-MTS04). Serbuk dikalsinasi pada suhu 800 °C selama 2 jam. Diperoleh fasa MgTiO₃ (95,40-98,54 % molar) disertai fasa impuriti TiO₂. Dilaporkan data komposisi fasa, serta distribusi ukuran partikel yang normal dengan rata-rata ukuran partikel bervariasi, yaitu 256 nm (untuk MTS0), 287 nm (MTS01), 263 nm (MTS02), 230 nm (MTS03) dan 726 nm (MTS04). Ion Sn⁴⁺ dipilih sebagai agen dopan ion Ti⁴⁺ karena beberapa faktor, yaitu: 1) Sn⁴⁺ memiliki titik leleh yang rendah, yaitu 231,9 °C (Science Lab, 2013) dimana lebih rendah dari suhu pembentukan fasa MgTiO₃. 2) Jari-jari ion Sn⁴⁺ (0,069 nm) juga saling bermiripan dengan jari-jari ion Ti⁴⁺ (0,061 nm) sehingga ion Sn⁴⁺ diharapkan dapat menempati sebagian *sites* ion Ti⁴⁺ pada struktur Mg(Ti_{1-x}Sn_x)O₃ untuk membentuk larutan padat substitusi dengan fasa tunggal MgTiO₃, tanpa disertai munculnya fasa yang mengandung Sn, dan juga tanpa fase intermediet. 3) Ion Sn⁴⁺ dan ion Ti⁴⁺ keduanya memiliki elektron valensi yang sama, yaitu 4+, serta bilangan koordinasi milik keduanya juga sama, yaitu koordinasi oktahedral sehingga diharapkan tidak terjadi transfer elektron (donor dan akseptor) diantara ion-ion yang dapat mengganggu struktur larutan padat substitusi Mg(Ti_{1-x}Sn_x).

Penelitian mengenai metode dalam mengukur ukuran distribusi partikel sampel keramik MgTiO3 telah banyak dikembangkan, yaitu laser diffraction yang dilaporkan oleh (Tuhkala et al., 2016), sedimentation analysis yang dilaporkan oleh (Nakagoshi & Suzuki, 2015), dan dynamic light scattering (DLS) yang dilaporkan oleh (Ashok et al., 2015). (Saukani, 2016) dengan menggunakan metode sintesis yang sama dengan (Ermawati et al., 2019) telah melaporkan distribusi ukuran partikel sampel serbuk Mg_{0.8}Zn_{0.2}TiO₂ yang dikalsinasi pada suhu 550 °C dengan variasi waktu tahan kalsinasi 1, 2, 3, 4 dan 6 jam menggunakan teknik laser diffraction. Diperoleh rata-rata nilai ukuran partikel yang semakin tinggi seiring naiknya waktu tahan kalsinasi, yaitu 310,1 nm (untuk 1 jam); 313,9 nm (2 jam); 334,2 nm (4 jam); dan 365,4 nm (6 jam). Namun, ukuran partikel terdistribusi tidak normal yang diakibatkan beberapa partikel memiliki ukuran yang lebih besar dari partikel rata-rata. Menurut (Kelly & Metzler, 2006) metode laser diffraction memiliki distorsi pengukuran. Contoh, (Kaye et al., 1997) mengasumsikan adanya partikel "X" akibat tepi sampel yang tajam dimana menghasilkan sudut difraksi yang tinggi ketika diuji. Difraksi dari partikel "X" tersebut dibaca oleh instrumen laser diffraction sebagai partikel kecil sehingga mengakibatkan output yang tidak akurat. Mengingat keramik MgTiO₃ memiliki morfologi poligonal seperti vang dilaporkan oleh (Obradović et al., 2011; Pavlovic, 2013), maka teknik DLS dipilih sebagai metode dalam mengukur ukuran distribusi partikel. Berbeda dengan teknik laser diffraction, teknik DLS dipilih karena tidak mengasumsikan partikel uji berbentuk spherical (Kelly & Metzler, 2006). Selain itu, (Jia et al., 2023) melaporkan bahwa teknik DLS memiliki beberapa keunggulan lainnya, yaitu memiliki sifat non-invasif terhadap sampel uji dengan durasi pengukuran yang singkat, preparasi sampel uji yang dibutuhkan sederhana, sifat *repeatability* terhadap diameter partikel yang diukur sangat baik, serta biaya uji yang terjangkau.

Dalam penelitian ini, serbuk Mg(Ti_{0.96}Sn_{0.04})O₃ (selanjutnya disingkat MTS004) disintesis dengan metode pencampuran larutan dan dikalsinasi pada suhu yang sama seperti (Ermawati et al., 2019), yaitu 800 °C namun dengan variasi waktu tahan 4, 6 dan 8 jam. Tujuannya adalah: 1) untuk memperoleh fasa MgTiO₃; 2) mengkaji komposisi fasa berupa % berat, densitas atom, parameter kisi, serta volume sel satuan; dan distribusi ukuran partikel serbuk MTS004 menggunakan teknik DLS akibat variasi waktu tahan kalsinasi.

II. MATERIAL DAN METODE

A. Material

Pada penelitian ini, bahan awal yang digunakan adalah serbuk logam Mg, Ti dan Sn (*Merck*) dan HCl 12 M (37%).

B. Metode Sintesis Serbuk

Serbuk MTS004 disintesis menggunakan metode pencampuran larutan. Serbuk logam Mg, Ti dan Sn dengan kemurnian tinggi ditimbang pada suhu ruang berdasarkan stokiometri Mg(Ti_{0,%}Sn_{0,04})O₃ dengan perbandingan Mg:Ti:Sn = 1: 0,96: 0,04 dan dilarutkan secara terpisah ke dalam HCl 12 M (37%) menggunakan *hotplate stirrer* (Cimarec) untuk memproduksi larutan MgCl₂, TiCl₄, dan SnCl₄. Selanjutnya, ketiga larutan tersebut dicampur hingga homogen menggunakan *hotplate stirrer* (*Cimarec*) dan dipanaskan sampai terbentuk kerak kering. Kerak tersebut dihaluskan secara manual untuk mendapatkan serbuk MgTiO₃ amorf dengan ukuran partikel yang homogen. Serbuk amorf MgTiO₃ dikalsinasi menggunakan furnace (*Nabertherm B170*) dengan langkah pemanasan 10 °C/menit pada suhu 800 °C dan ditahan selama 4, 6 dan 8 jam untuk memperoleh serbuk kristalin MgTiO₃.

C. Metode Karakterisasi Serbuk

Serbuk MTS004 hasil kalsinasi dikarakterisasi difraktometer sinar-x (XRD) menggunakan alat PanAnalytical X'Pert Pro dengan radiasi CuKa (λ = 1,54056 Å), pada rentang sudut 2 θ = 15-70° dan langkah detektor = 0,02 °/min untuk memperoleh data pola XRD. Pola XRD yang dimaksud selanjutnya dianalisis secara kualitatif menggunakan metode *Search and Match*, yaitu pencarian dan pencocokan fasa hasil eksperimen terhadap fasa kandidat pada basis data difraksi (PDF) yang dilakukan menggunakan program "*Match*!" untuk mendeteksi fasa-fasa kristalin apa saja yang terbentuk pada serbuk uji. Pola XRD selanjutnya dianalisis secara kuantitatif menggunakan metode Rietveld dengan program "*Rietica*". Distribusi ukuran partikel dianalisis dengan uji *Particle Size Analyzer* (PSA) menggunakan teknik *dynamic light scattering* (DLS) dengan instrumen *Malvern Zetasizer Nano ZS*. Instrumen tersebur memiliki rentang ukuran 0.3 nm-10 µm yang terintegrasi dengan program komputer "*Malvern Zetasizer*".

III. HASIL DAN PEMBAHASAN

A. Identifikasi Fasa

Gambar 1 memperlihatkan pola XRD dari sampel serbuk MTS004 setelah dikalsinasi pada suhu 800 °C dengan variasi waktu tahan 4, 6 dan 8 jam menggunakan XRD PANalytical X'Pert Pro beserta hasil identifikasi fasa-fasa yang terbentuk (hasil analisis kualitatif) yang dilakukan menggunakan perangkat lunak *Match*!

Gambar 1. Pola XRD serbuk MTS004 setelah dikalsinasi pada suhu 800 °C dengan variasi waktu tahan 4, 6 dan 8 jam, * = Mg(Ti_{0.94}Sn_{0.04})O₃ yang dapat diindeks sesuai dengan fasa MgTiO₃ *Geikeliete* (PDF No. 06-0494), # = (Ti_{0.94}Sn_{0.04})O₂ yang bersesuaian dengan fasa TiO₂ *Rutile* (PDF No. 21-1276)

Seperti terlihat pada **Gambar 1**, secara umum, variasi waktu tahan kalsinasi dari 4 hingga 8 jam semuanya menghasilkan fasa yang sama, yaitu fasa MgTiO₃ (puncak dengan simbol "*", PDF No. 06-0494) sebagai fasa utama disertai dengan fasa impuriti TiO₂ (puncak dengan simbol "#", PDF No. 21-1276). Dengan demikian, ketiga pola XRD tersebut memiliki struktur ilmenit MgTiO₃.

B. Analisis Komposisi Fasa

Gambar 2 menampilkan hasil penghalusan (*refinement*) terhadap pola XRD sampel MTS004 untuk waktu tahan kalsinasi 4 jam dari Gambar 1 dengan metode *Rietveld* menggunakan perangkat lunak *Rietica*. Tabel 1 merangkum parameter kesesuaian (*Figures-of-Merit, FoM*) yang dihasilkan dari proses *refinement* pada Gambar 1, serta *output* refinement pola XRD (Gambar 2), yaitu data densitas, parameter kisi, volume sel satuan, % molar, dan % berat dari semua fasa yang teridentifikasim. Gambar 3 menampilkan perbandingan antara parameter kisi dan volume sel satuan fasa MgTiO₃ pada Tabel 1 untuk ketiga variasi waktu tahan kalsinasi.

Gambar 2. Hasil *refinement* pola XRD serbuk MTS004 4 jam dari Gambar 1 dengan metode *Rietveld* dan perangkat lunak *Rietica* (mewakili *refinement* yang sama untuk kedua waktu tahan lainnya)

Serbuk MTS004, 800 °C	FoM		Fasa	%Molar	%Berat	Densitas (g/cm ³)	Parameter kisi (Å)		Volume sel satuan (Å ³)
4 jam	R_p	13,84	. MgTiO ₃	87,83 ± 2,30	91,35 ± 2,41	3,790	a=b	5,053	
	R_{wp}	19,50					с	13,897	307,38
	R_B (MgTiO ₃)	1,70							± 0,06
	R_B (TiO ₂)	2,76	TiO ₂	12,17 ± 0,49	8,65 ± 0,35	4,245	a=b	4,593	62,48 ± 0,28
	R_{exp}	14,92					с	2,961	
	χ^2	1,71							
6 jam	R_p	12,88	MoTiO₃	88,13 ± 2,32	91,36 ± 2,44	3,683	a=b	5,055	307,74 ± 0,06
	R_{wp}	17,74					с	13,904	
	R_B	1 39	ing nos						
	(MgTiO ₃)	1,07							
	R_B (TiO ₂)	3,40	TiO ₂	11,87 ± 0,42	8,64 ± 0,31	4,237	a=b	4,595	62,59 ± 0,01
	R_{exp}	15,57					с	2,963	
	χ^2	1,30							
8 jam	R_p	12,97	MgTiO ₃	87,68 ± 2,49	91,19 ± 2,63	3,760	a=b	5,055	307,79 ±
	R_{wp}	17,98					с	307,79 13,905 0,07	
	R_B	1.83							0,07
	(MgTiO ₃)	1,00							
	R_B (TiO ₂)	3,83	TiO ₂	12,32 ± 0,43	8,81 ± 0,31	4,245	a=b	4,594	- 62,48 ± 0,03
	R_{exp}	15,97					с	2,961	
	χ^2	1,27							

Tabel 1. Output refinement Rietveld pola XRD milik serbuk MTS004 dengan waktu tahan kalsinasi 4 jam padaGambar 2, serta milik kedua waktu tahan lainnya pada Gambar 1

Pada **Gambar 2** simbol '+' berwarna hitam merupakan pola difraksi terukur (eksperimen) sedangkan garis merah menandakan pola difraksi terhitung (model) yang dibangkitkan dengan cara mengumpankan data-data kristalografi dari semua fasa yang telah teridentifikasi pada **Gambar 1**, yaitu MgTiO₃ dan TiO₂. Data-data kristalografi tersebut diperoleh dari basis data *Powder Diffraction File* (PDF) No. 06-0494 untuk fasa MgTiO₃ dan No. 21-1276 untuk fasa TiO₂, serta dari basis data *Inorganic Crystal Structure Database* (ICSD) No. 65794 untuk MgTiO₃ dan No. 64987 untuk TiO₂. Garis hijau menyatakan selisih tinggi intensitas antara puncak pola terukur dan puncak pola terhitung, sedangkan garis tegak kecil berwarna biru menyatakan posisi puncak-puncak Bragg milik semua fasa yang teridentifikasi. Seperti terlihat, garis hijau tersebut berupa garis horizontal dengan sedikit selisih intensitas puncak pada beberapa posisi 2 θ , yang menunjukkan bahwa proses *refinement* tersebut berhasil ditandai dengan hampir tidak ada perbedaan tinggi intensitas antara pola terhitung dengan pola terukur.

Menurut (Hunter & Howard, 1998), *output refinement* yang sesuai adalah nilai *profile residual* (R_p), *weighted profile residual* (R_{wp}) dan *expected residual* (R_{exp}) ketiganya di bawah 20%; nilai *Bragg residual* (R_B) semuanya berada di bawah 10%; dan nilai *Goodness of Fit* (χ^2) berada di bawah 2%. Hal ini menunjukkan bahwa hasil *refinement* telah selesai dengan tuntas dan hasil *refinement* dinyatakan dapat diterima. Dengan demikian, data *output refinement* pada **Tabel 1** dapat digunakan untuk analisis lebih lanjut.

Gambar 3. Perbandingan antara parameter kisi dan volume sel satuan fasa MgTiO₃ dari ketiga waktu tahan kalsinasi pada Tabel 1

Seperti terlihat pada Tabel 1, tren yang berbeda ditunjukkan oleh data %molar dan %berat, yaitu nilai kedua data tersebut naik dari 87,83 ± 2,30 % dan 91,35 ± 2,41 % pada 4 jam menjadi 88,13 ± 2,32 % dan 91,36 ± 2,44 % (6 jam), kemudian turun menjadi 87,68 ± 0,43 % dan 91,19 ± 2,63 % (8 jam). Nilai % molar yang dihasilkan lebih rendah 10,37% dari (Ermawati et al., 2015) dengan menggunakan metode sintesis yang sama, hal tersebut dapat terjadi akibat penggunaan jenis dan konsentrasi dopan yang berbeda. Jari-jari ion dopan r $(Zn^{2+}) = 0,074$ nm dengan ion host $r(Mg^{2+}) = 0,072$ nm (Ermawati. F.U., 2017) sampel Mg_{0.8}Zn_{0.2}TiO₃ milik (Ermawati et al., 2015) lebih bermiripan dari jari-jari ion dopan $r(Sn^{4+}) = 0,069$ nm terhadap ion host $r(Ti^{4+}) = 0,061$ nm (Ermawati. F.U., 2017) MTS004 pada penelitian ini. Nilai densitas fasa MgTiO3 mengalami penurunan dari 3,790 g/cm³ (pada 4 jam) menjadi 3,683 g/cm³ (6 jam), kemudian naik lagi menjadi 3,760 g/cm³ (8 jam), hal ini terjadi akibat variasi waktu tahan kalsinasi yang mempengaruhi jumlah atom tiap satuan luas pada orientasiorientasi bidang kristal yang ada (Mohammed et al., 2020). (Fabbrizzi, 2022) menjelaskan bahwa suatu material yang memiliki densitas atom yang tinggi cenderung memiliki gaya inter-molekul yang lebih kuat. Hal ini secara tidak langsung menyebabkan partikel bersifat lebih kohesif atau sulit untuk terpisah sehingga menimbulkan ukuran partikel yang besar. Berdasarkan Gambar 3, volume sel satuan milik fasa utama MgTiO₃ mengalami kenaikan seiring naiknya waktu tahan kalsinasi dari 4 hingga 8 jam, yaitu 307,38 ± 0,06 Å³ (pada 4 jam), menjadi 307,74 ± 0,06 Å³ (6 jam) dan 307,79 ± 0,07 Å³ (8 jam). Naiknya volume sel satuan tersebut menandakan telah terbentuk larutan padat MTS004 mengingat jari-jari ion Sn4+, yaitu 0,069 nm yang sedikit lebih besar dari jari-jari ion Ti⁴⁺, yaitu 0,061 nm. Hal ini didukung oleh tren yang sama yang dimiliki oleh parameter kisi dimana volume sel satuan dibangun dari perkalian antara ketiga parameter kisi tersebut $(a \times b \times c)$.

C. Distribusi ukuran partikel

Gambar 4a-c menampilkan distribusi ukuran partikel dari sampel MTS004 pada suhu kalsinasi 800 °C dengan waktu tahan 4 jam (Gambar 4a), 6 jam (Gambar 4b) dan 8 jam (Gambar 4c). Gambar 5 menunjukkan hubungan antara densitas atom fasa MgTiO₃ (lihat Tabel 1) terhadap ukuran partikel rata rata untuk ketiga waktu tahan kalsinasi.

Gambar 4. Distribusi ukuran partikel serbuk MTS004 dengan waktu tahan kalsinasi **(a)** 4 jam, **(b)** 6 jam dan **(c)** 8 jam hasil ukur menggunakan PSA

Gambar 5. Hubungan antara densitas atom fasa MgTiO₃ pada Tabel 1 dan ukuran partikel rata rata untuk ketiga waktu tahan kalsinasi

Pada **Gambar 4**, terlihat diagram batang yang merupakan intensitas distribusi ukuran partikel yang teridentifikasi oleh Malvern Zetasizer Nano ZS, sedangkan titik-titik merah yang saling bersambung merupakan akumulasi intensitas distribusi ukuran partikel tersebut. Distribusi ukuran partikel dari ketiga sampel serbuk MTS004 disajikan menggunakan mode *log10-normal* dengan puncak tunggal. **Gambar 4a** untuk serbuk MTS004 4 jam memperlihatkan rentang nilai ukuran partikel dari 122,42-955,40 nm dengan rata-rata sebesar 311,6 nm dan deviasi sekitar 6,15%. Sedangkan ukuran partikel serbuk MTS004 6 jam pada **Gambar 4b** bernilai 78,81-824,99 nm dengan rata-rata 362,5 nm dan deviasi sekitar 5,28%. **Gambar 4c** milik serbuk MTS004 8 jam memperlihatkan rentang nilai ukuran partikel dari 105,71-1281,34 nm dengan rata-rata sebesar

321,4 nm dan deviasi sekitar 6,64%. Berdasarkan data-data tersebut, kurva distribusi dari ketiga sampel serbuk MTS004 masing-masing memiliki *single mode* dengan deviasi kecil sehingga dapat disimpulkan bahwa partikel-partikel serbuk MTS004 dengan waktu tahan kalsinasi 4, 6 dan 8 jam tersebut semuanya terdistribusi normal (homogen).

Berdasarkan **Gambar 5**, tren densitas atom fasa MgTiO₃ dan ukuran partikel rata-rata yang saling berbanding terbalik diduga akibat doping ion Sn⁴⁺ yang mengindikasikan terjadi peristiwa mikrostrain dimana mempengaruhi distribusi atom pada kisi (Kremenovic et al., 2007). Seperti diketahui bahwa tidak ada kristal yang ideal di alam (*perfect*) dimana selalu terdapat ketidakteraturan pola susunan atom. Ketidakteraturan tersebut menjadi cacat (*defects*). Serangkaian cacat yang paling mungkin terjadi pada sistem MgTiO₃ akibat doping yang ditambahkan telah dilaporkan oleh (Kuganathan et al., 2019). Menurut (Kuganathan et al., 2019), nilai energi reaksi yang semakin tinggi menandakan pembentukan fasa yang diinginkan terbentuk secara normal. Ditinjau dari energi reaksi yang paling tinggi, urutan cacat yang dimaksud adalah cacat Schottky (cacat kekosongan *site* dari kedua anion dan kation), cacat Frenkel (ion yang menyisip diantara *site* ion-ion tetangga dan meninggalkan sebuah vakansi), serta cacat *anti-site* (pertukaran posisi ion dari kedua *site* yang berbeda). Adanya cacat-cacat tersebut tentu saja mengurangi jumlah atom pada kisi sehingga menyebabkan rapat atom pada volume tertentu berkurang.

IV. PENUTUP

Simpulan

Pekerjaan sintesis serbuk larutan padat Mg(Ti_{0.96}Sn_{0.04})O₃ disingkat MTS004 yang disintesis menggunakan metode pencampuran larutan dengan variasi waktu tahan kalsinasi selama 4, 6 dan 8 jam pada suhu 800 °C telah selesai dilakukan. Ketiga variasi waktu tahan kalsinasi tersebut semuanya memberikan fasa utama yang sama, yaitu Mg(Ti_{0.96}Sn_{0.04})O₃ atau MgTiO₃ dan disertai fasa impuriti (Ti_{0.96}Sn_{0.04})O₂ atau TiO₂ yang dibuktikan dengan hasil XRD. Kenaikan waktu tahan kalsinasi ternyata mempengaruhi % berat, % molar, volume sel satuan dan densitas atom sampel serbuk MTS004. Partikel sampel serbuk MTS004 terdistribusi normal ditandai dengan kurva dengan mode tunggal.

DAFTAR PUSTAKA

- Ashok, C., Venkateswara Rao, K., & Shilpa Chakra, C. (2015). Synthesis and Characterization of MgO/TiO₂ Nanocomposites. *Journal of Nanomedicine & Nanotechnology*, 06(06), 323–328. https://doi.org/10.4172/2157-7439.1000329
- Ermawati. F.U. (2017). Fisika Bahan Keramik. Unipress UNESA. ISBN 978-602-449-047-8
- Ermawati, F. U., Ahfa, M. H., & Supardiyono. (2019). Phase Composition and Particle Size Distribution in Mg(Ti_{1-x}Sn_x)O₃ powders. *Journal of Physics: Conference Series*, 1171(1). https://doi.org/10.1088/1742-6596/1171/1/012038
- Ermawati, F. U., Pratapa, S., Suasmoro, S., Hübert, T., & Banach, U. (2016). Preparation and Structural Study of Mg_{1-x}Zn_xTiO₃ Ceramics and Their Dielectric Properties from 1 Hz to 7.7 GHz. *Journal of Materials Science: Materials in Electronics*, 27(7), 6637–6645. https://doi.org/10.1007/s10854-016-4610-6
- Ermawati, F. U., Suasmoro, S., & Pratapa, S. (2015). A Simple Dissolved Metals Mixing Route to Prepare Nanostructured Mg_{0.8}Zn_{0.2}TiO₃ Solid Solution. *Advanced Materials Research*, 1112, 47–52. https://doi.org/10.4028/www.scientific.net/amr.1112.47
- Ermawati, F. U., Suasmoro, S., & Pratapa, S. (2017). Grain Size Analysis on Pure and Zn-doped Ilmenite Magnesium Titanane Powders. *Omega: Jurnal Fisika Dan Pendidikan Fisika*, 3(1), 15–22.
- Farisa, A., & Pratapa, S. (2012). Sintesis Zn_{0.5}Mg_{0.5}TiO₃ dengan Variasi Rasio Mol Serbuk (Zn+Mg):Ti menggunakan Metode Pencampuran Larutan pada Suhu 600 °C. *Jurnal Sains Dan Seni ITS*, 1(1), 63–65.
- Hunter, B. A., & Howard, C. J. (1998). LPHM: A Computer Program for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns. Lucas Heights Research Laboratories.
- Ishak, S. N. M., Ermawati, F. U., Fisika, J., & Aplikasinya, D. (2022). Characterization of (Mg_{0.6}Zn_{0.4})TiO₃ Ceramics as Dielectric Resonator Materials in Microwave Frequencies. *Spektra: Jurnal Fisika Dan Aplikasinya*. https://doi.org/10.21009/SPEKTRA
- Izza, L., & Ermawati, F. U. (2021). Characterization of (Mg_{1.0}Zn_{0.0})TiO₃+4 wt%Bi₂O₃ Ceramics for Application as Resonator in Dielectric Resonator Oscillator Circuit. *Jurnal Ilmu Fisika*, 13(2), 62–69. https://doi.org/10.25077/jif.13.2.62-69.2021
- Jia, Z., Li, J., Gao, L., Yang, D., & Kanaev, A. (2023). Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing. *Colloids and Interfaces*, 7(1), 15. https://doi.org/10.3390/colloids7010015

- Kaye, B. H., Alliet, D., Switzer, L., & Turbitt-Daoust, C. (1997). The Effect of Shape on Intermethod Correlation of Techniques for Characterizing the Size Distribution of Powder. Part 1: Correlating the Size Distribution Measured by Sieving, Image Analysis, and Diffractometer Methods. *Particle & Particle Systems Characterization*, 14(5), 219–224. https://doi.org/10.1002/ppsc.199700048
- Kelly, R. N., & Metzler, F. M. (2006). What is Wrong with Laser Diffraction? A Critical Review of Current Laser Diffraction Methods for Particle Size Analysis.
- Kremenovic, A., Antic, B., Nikolic, A. S., Blanusa, J., Jancar, B., Meden, A., & Mentus, S. (2007). The Dependence of Cation Distribution, Microstrain and Magnetic Susceptibility on Particle Size in Nanocrystalline Gd₂O₃/Y₂O₃. Scripta Materialia, 57(12), 1061–1064. https://doi.org/10.1016/j.scriptamat.2007.09.002
- Kuganathan, N., Iyngaran, P., Vovk, R., & Chroneos, A. (2019). Defects, dopants and Mg diffusion in MgTiO₃. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-019-40878-y
- Mohammed, M. A., Uday, M. B., & Izman, S. (2020). Effects of Calcination Temperature and Time on the Ca₃Co₄O₉ Purity when Synthesized Using Starch-assisted Sol-Gel Combustion Method. *Journal of Advanced Ceramics*, 9(2), 162–172. https://doi.org/10.1007/s40145-019-0356-y
- Nakagoshi, Y., & Suzuki, Y. (2015). Pseudobrookite-type MgTi₂O₅ Water Purification Filter with Controlled Particle Morphology. *Journal of Asian Ceramic Societies*, 3(3), 334–338. https://doi.org/10.1016/j.jascer.2015.06.005
- Obradović, N., Filipović, S., Pavlović, V. B., Maričić, A., Mitrović, N., & Ristić, M. M. (2011). Sintering of mechanically activated magnesium-titanate and barium-zinc-titanate ceramics. *Science of Sintering*, 43(2), 145–151. https://doi.org/10.2298/SOS1102145O
- Pavlovic, V. B. (2013). Ceramic Processing Research Sintering of the mechanically activated MgO- Processing Research Sintering of the mechanically activated MgO-TiO 2 system. *Journal of Ceramic Processing Research, February*, 1–5.
- Saukani, M. (2016). Observation Particle Size Of Mg_{0.8}Zn_{0.2}TiO₃ by Laser Diffraction Method. *Jurnal Teknik Mesin UNISKA*, 01(02), 40–43.
- Science Lab. (2013). Material Safety Data Sheet Tin (Sn).
- Tang, B., Zhang, S., Zhou, X., Deng, C., & Yu, S. (2010). Preparation of Pure MgTiO₃ Powders and The Effect of The ZnNb₂O₆-dope onto The Property of MgTiO₃-based Ceramics. *Journal of Alloys and Compounds*, 492(1–2), 461–465. https://doi.org/10.1016/j.jallcom.2009.11.140
- Tuhkala, M., Maček, M., Siponkoski, T., Juuti, J., Teirikangas, M., Suvorov, D., & Jantunen, H. (2016). The Effect of BaTiO₃ Particle Shape on Complex Permittivity of 0.98MgTiO₃-0.02BaTiO₃ Composite Powders at GHz Frequencies. *Materials Research Bulletin*, *76*, 300–304. https://doi.org/10.4172/2157-7439.1000329
- Yuan, S., Gan, L., Ning, F., An, S., Jiang, J., & Zhang, T. (2018). High-Q×f 0.95MgTiO₃-0.05CaTiO₃ microwave Dielectric Ceramics with The Addition of LiF Sintered at Medium Temperatures. *Ceramics International*, 44(16), 20566–20569. https://doi.org/10.1016/j.ceramint.2018.07.202
- Zharvan, V., Nur, I. A. S., & Saukani, M. (2020). Studi Pengaruh Variasi Temperatur Kalsinasi Terhadap Fasa Mg_{0.8}Zn_{0.2}TiO₃. Jurnal Ilmu Fisika: Teori Dan Aplikasinya, 2(9), 45–48.
- Zhou, X., Yuan, Y., Xiang, L., & Huang, Y. (2007). Synthesis of MgTiO₃ by Solid-state Reaction and Characteristics with Addition. *Journal of Materials Science*, 42(16), 6628–6632. https://doi.org/10.1007/s10853-007-1510-4

