SINTESIS DAN KARAKTERISASI REDUCED GRAPHENE OXIDE DARI CANGKANG SAWIT TERMODIFIKASI SILIKA

Authors

  • Mohamad Fikri Aliansah ali Universitas Negeri Surabaya
  • Munasir Munasir Universitas Negeri Surabaya

DOI:

https://doi.org/10.26740/ifi.v14n2.p268-275

Keywords:

rGO@SiO₂, Cangkang Sawit, Metode Sol-Gel, Palm kernel shell

Abstract

Abstrak

Penelitian ini melaporkan hasil sintesis reduced graphene oxide (rGO) yang dimodifikasi silika (SiO₂) dari bahan alam; rGO dibuat dari cangkang inti sawit menggunakan metode hummer kemudian dilapisi dengan SiO₂ dari prekursor TEOS menggunakan metode sol-gel dan direduksi menggunakan metode hidrotermal-hidrazin. Analisis XRD menunjukkan bahwa rGO cangkang inti sawit yang dimodifikasi SiO₂ menunjukkan pergeseran kisi yang disebabkan oleh penjangkaran SiO₂ pada struktur grafen yang konsisten dengan hasil SEM/EDX. Pengamatan FTIR menunjukkan bahwa SiO₂ telah terbentuk pada rGO dengan adanya gugus Si-O-C dan Si-OH serta reduksi gugus OH yang menunjukkan bahwa proses modifikasi rGO terjadi melalui ikatan hidrogen. Pada pengamatan konduktivitas sampel, sampel rGO memiliki konduktivitas sebesar 23,65x10⁻² S/m sedangkan sampel rGO@SiO₂ memiliki konduktivitas sebesar 16,71x10⁻² S/m dimana terjadi penurunan konduktivitas yang disebabkan oleh sifat intrinsik SiO₂ yang bersifat sangat isolator.

 

Abstract

This work reports the results of the synthesis of silica (SiO)-modified reduced graphene oxide (rGO) from natural materials; rGO was made from palm kernel shells using the hummer method then coated with SiO from TEOS precursor using the sol-gel method and reduced using hydrothermal-hydrazine. XRD analysis showed that SiO-modified palm kernel shell rGO exhibited rid shift caused by SiO anchoring on the graphene structure which was consistent with the SEM/EDX results. FTIR observations showed that SiO had formed on rGO with the presence of Si-O-C and Si-OH groups and a reduction in OH groups indicating that the rGO modification process was through hydrogen bonds. In the observation of sample conductivity, the rGO sample had a conductivity of 23.65x10² S/m while the rGO@SiO sample had a conductivity of 16.71x10² S/m where there was a decrease in conductivity caused by the intrinsic nature of SiO which was very insulating.

Downloads

Download data is not yet available.

References

Chu, Z., Zhao, X., Wang, Q., Bao, T., Li, H., Cao, Y., Zhang, B., Cao, J., & Si, W. (2023). Preparation of a Flexible Reduced Graphene Oxide-Si Composite Film and Its Application in High-Performance Lithium Ion Batteries.

Das, Papari, Deoghare, A. B., & Ranjan, S. (2021). A Novel Approach to Synthesize Reduced Graphene Oxide ( RGO ) at Low Thermal Conditions. Arabian Journal for Science and Engineering, 46(6), 5467–5475. https://doi.org/10.1007/s13369-020-04956-y

Das, Poulomi, Ibrahim, S., Chakraborty, K., Ghosh, S., & Pal, T. (2024). Stepwise reduction of graphene oxide and studies on defect-controlled physical properties. Scientific Reports, 14(1), 1–10. https://doi.org/10.1038/s41598-023-51040-0

Dwiana, W., Zaqiyah, R., Yuliana, E. S., Wibowo, S. R., Harly, M., Sunaryono, S., Amrillah, T., Aziz, M., & Mufti, N. (2025). Simple synthesis of reduced graphene oxide (rGO) from lignite via controlled carbonization temperature for energy storage electrodes. Kuwait Journal of Science, 52(3). https://doi.org/10.1016/j.kjs.2025.100417

Faaizatunnisa, N., Ediati, R., Yusof, E. N. M. D., Fadlan, A., Karelius, K., Kulsum, U., & Ariesta, M. N. (2025). Optimized photocatalytic degradation of 2-naphthol using ZnO/rGO nanocomposites synthesized from palm kernel shell waste. Journal of Water Process Engineering, 70, 106977.

Gao, J., Li, B., Huang, X., Wang, L., Lin, L., Wang, H., & Xue, H. (2019). Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chemical Engineering Journal, 373, 298–306. https://doi.org/10.1016/j.cej.2019.05.045

Hanif, W., Hardiansyah, A., Randy, A., & Asri, L. A. T. W. (2021). Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. RSC Advances, 11(46), 29029–29041. https://doi.org/10.1039/d1ra04992e

Irwan, I., Rahmin, R., Dali, N., Nohong, N., Ratna, R., Azis, T., Alimin, A., & Muzakkar, M. Z. (2025). Synthesis and Characteristics Of Graphene Oxide (GO) from the Skin Shell: Candlenut, Palm Oil and Coconut Hybrids. Letters in Applied NanoBioScience, 14(2), 1–9. https://doi.org/10.33263/LIANBS142.094

Jiang, W., Sun, C., Zhang, Y., Xie, Z., Zhou, J., Kang, J., Cao, Y., & Xiang, M. (2023). Preparation of well dispersed graphene oxide-silica nanohybrids/ poly(lactic acid) composites by melt mixing. Polymer Testing, 118(December 2022), 1–10. https://doi.org/10.1016/j.polymertesting.2022.107912

Khodaee, Z., Mazinani, S., & Sharif, F. (2023). Reduced graphene oxide-modified polyvinyl alcohol hydrogel with potential application as skin wound dressings. Journal of Polymer Research, 30(1). https://doi.org/10.1007/s10965-022-03384-w

Li, C., Zhu, J., Zhou, M., Zhang, S., & He, X. (2019). Investigation on water vapor adsorption of silica-phosphonium ionic liquids hybrid material. Materials, 12(11). https://doi.org/10.3390/ma12111782

Liu, W., & Speranza, G. (2021). Tuning the Oxygen Content of Reduced Graphene Oxide and Effects on Its Properties. ACS Omega, 6(9), 6195–6205. https://doi.org/10.1021/acsomega.0c05578

Munasir, Prapanca, A., Aliansah, M. F., Paramudhita, F. A., Faaizatunnisa, N., Ariesta, M. N., & Taufiq, A. (2025). Self-Healing Graphene-Based Composite Hydrogels for Motion Sensing: Source, Fabrication, and Applications in Assistive Technologies – A Review. Sensors International, 124250. https://doi.org/https://doi.org/10.1016/j.sintl.2025.100338

Namsar, O., Autthawong, T., Boonprachai, R., Yu, A., & Sarakonsri, T. (2022). Enhancement in lithium storage performances of SiO2/graphene-based nanocomposites prepared by low cost and facile approach. Journal of Materials Science: Materials in Electronics, 33(9), 6536–6548. https://doi.org/10.1007/s10854-022 07828-3

Nie, M., Xia, Y. han, & Yang, H. shan. (2019). A flexible and highly sensitive graphene-based strain sensor for structural health monitoring. Cluster Computing, 22(s4), 8217–8224. https://doi.org/10.1007/s10586-018-1727-9

Öztekin, D., Arbağ, H., & Yaşyerli, S. (2025). Preparation of RGO with Enhanced Electrical Conductivity: Effects of Sequential Reductions of L-Ascorbic Acid and Thermal. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-09915-5

Pingan, H., Mengjun, J., Yanyan, Z., & Ling, H. (2017). RSC Advances transparency , thermostability and mechanical. 2450–2459. https://doi.org/10.1039/c6ra25579e

Putri, N. A., & Supardi, Z. A. I. (2023). Sintesis Dan Karakterisasi Graphene Oxide (Go) Dari Bahan Alam Tempurung Kelapa. Inovasi Fisika Indonesia, 12(2), 47–55. https://doi.org/10.26740/ifi.v12n2.p47-55

Romero, A., Lavin-Lopez, M. P., Sanchez-Silva, L., Valverde, J. L., & Paton-Carrero, A. (2018). Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide. Materials Chemistry and Physics, 203, 284–292. https://doi.org/10.1016/j.matchemphys.2017.10.013

Ruidíaz-Martínez, M., Álvarez, M. A., López-Ramón, M. V., Cruz-Quesada, G., Rivera-Utrilla, J., & Sánchez-Polo, M. (2020). Hydrothermal synthesis of RGO-TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation. Catalysts, 10(5). https://doi.org/10.3390/catal10050520

Sadroddini, M., & Razzaghi-Kashani, M. (2020). Silica-decorated reduced graphene oxide (SiO2@rGO) as hybrid fillers for enhanced dielectric and actuation behavior of polydimethylsiloxane composites. Smart Materials and Structures, 29(1). https://doi.org/10.1088/1361-665X/ab57e8

Saleh, M., Doi, J., & Pasae, Y. (2023). Pembuatan Arang Aktif dari Cangkang Kelapa Sawit, Tempurung Kelapa, dan Cangkang Kakao dengan Proses Torefaksi. Chem Engineering Journal, 1(1), 1–15.

Sharma, V., Jain, Y., Kumari, M., Gupta, R., Sharma, S. K., & Sachdev, K. (2017). Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromolecular Symposia, 376(1), 1–5. https://doi.org/10.1002/masy.201700006

Sujiono, E. H., Zurnansyah, Zabrian, D., Dahlan, M. Y., Amin, B. D., Samnur, & Agus, J. (2020). Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization. Heliyon, 6(8), e04568. https://doi.org/10.1016/j.heliyon.2020.e04568

Zhao, B., Sun, T., Zhou, X., Liu, X., Li, X., Zhou, K., Dong, L., & Wei, D. (2019). Three-dimensional graphene composite containing graphene-SiO 2 nanoballs and its potential application in stress sensors. Nanomaterials, 9(3), 1–11. https://doi.org/10.3390/nano9030438

Zhou, J., Long, X., Huang, J., Jiang, C., Zhuo, F., Guo, C., Li, H., Fu, Y. Q., & Duan, H. (2022). Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform. npj Flexible Electronics, 6(1), 1–11. https://doi.org/10.1038/s41528-022-00189-1

Downloads

Published

2025-09-30

How to Cite

ali, M. F. A., & Munasir, M. (2025). SINTESIS DAN KARAKTERISASI REDUCED GRAPHENE OXIDE DARI CANGKANG SAWIT TERMODIFIKASI SILIKA. Inovasi Fisika Indonesia, 14(2), 268–275. https://doi.org/10.26740/ifi.v14n2.p268-275

Issue

Section

Fisika Material
Abstract views: 134 , PDF Downloads: 58

Most read articles by the same author(s)

1 2 > >>