

Volume 4 No.2, December 2025, 358-377
ISSN 2962-3898 (Online)
DOI: 10.26740/jdbim.v4i2.71684
https://ejournal.unesa.ac.id/index.php/jdbmi/index

Implementation of Enterprise Resource Planning Inventory and Point of Sales Module (Study Case at XYZ Distributor Company)

Adellyna Cantica Febbyanti 1*, Renny Sari Dewi ¹Universitas Negeri Surabaya

¹Department of Digital Business, Faculty of Economics

Universitas Negeri Surabaya

Jalan Ketintang, Surabaya 60231, Indonesia

adellyna.21004@mhs.unesa.ac.id

Abstract

This study aims to implementation of an Enterprise Resource Planning (ERP) system using Inventory and Point of Sales (POS) modules in the XYZ distributor company. ERP was chosen as a solution to address the challenges faced by the company in managing stock and sales transactions, which were still performed manually, often leading to data inaccuracies and operational inefficiencies. The Quickstart Odoo method was employed for system development due to its effective, efficient, and structured approach. The research involved analyzing existing business processes, identifying gaps, and configuring the ERP system to align with the company's needs. Data collection was conducted through stakeholder interviews and literature reviews. The implementation of the Inventory module provided real-time visibility into stock levels, enhancing inventory management efficiency, while the POS module automated sales transactions and enabled real-time data consolidation.

Keywords: ERP; inventory module; point of sales module; quickstart odoo; operational efficiency.

Received: 1 June 2025; Accepted: 25 July 2025; Published: December 2025

*Corresponding author

Email: adellyna.21004@mhs.unesa.ac.id

To cite this document:

Febbyanti, A. C., & Dewi, R. S. (2025). Implementation of Enterprise Resource Planning Inventory and Point of Sales Module (Study Case at XYZ Distributor Company). *JDBIM* (*Journal of Digital Business and Innovation Management*), Vol. 4 Np. 2, pp. 358-377. DOI link

Abstrak

Penelitian ini bertujuan untuk mengimplementasikan sistem Enterprise Resource Planning (ERP) menggunakan modul Inventory dan Point of Sales (POS) pada perusahaan distributor XYZ. ERP dipilih sebagai solusi atas tantangan yang dihadapi perusahaan dalam pengelolaan stok dan transaksi penjualan yang masih dilakukan secara manual, yang sering kali menyebabkan ketidakakuratan data dan ketidakefisienan operasional. Metode quickstart Odoo digunakan dalam pengembangan sistem, karena menawarkan proses yang efektif, efisien, dan terstruktur. Penelitian ini melibatkan analisis proses bisnis eksisting, identifikasi gap, dan konfigurasi sistem ERP yang disesuaikan dengan kebutuhan perusahaan. Data penelitian dikumpulkan melalui wawancara dengan stakeholder dan studi literatur. Implementasi modul inventory memberikan visibilitas real-time terhadap stok dan meningkatkan efisiensi manajemen persediaan, sedangkan modul point of sales mengotomatiskan transaksi penjualan dan memungkinkan konsolidasi data secara real-time penelitian.

Kata kunci: ERP; modul inventory; modul point of sales; quickstart Odoo; efisiensi operasional.

INTRODUCTION

In the book "Enterprise Systems for Management" (Luvai F. Motiwalla & Jeff Thompson, 2011), the information needs at each management level of an organization are depicted by the pyramid in Figure 1 below. Information needs and requirements vary by worker position and management level. Therefore, there is no one information system that can handle all business needs. Typical management levels and their accompanying information needs are depicted in Figure 1 Three management levels are usually distinguished: operational, intermediate, and strategic. Therefore, enterprise systems play an important role in the company's decision-making process. These systems enable most commercial operations through computer-based automation, thus making them an essential component of the company. In general, these systems are essential for the main and auxiliary operations of the organization's value chain. (Luvai F. Motiwalla & Jeff Thompson, 2011).

Figure Error! No text of specified style in document. Management Level

Micro, Small, and Medium Enterprises (MSMEs) are business activities run by individuals, families, or small business entities. MSME classification is generally based on annual revenue, number of employees, and assets owned. MSMEs are one of the important aspects in Indonesia's economic development, so the government has regulated the management of MSMEs in Law No. 20/2008. Therefore, it is important for us to support and encourage MSME businesses to be better by developing technology which is one of the driving aspects of MSME development in Indonesia (Sudrartono dkk., 2022).

For example, XYZ MSME is an aluminum distributor company that still uses a manual management system that often faces various challenges, especially in terms of stock management and sales transactions. Manual systems rely on conventional data recording, namely in the form of ledgers. This causes frequent data inaccuracies, delays in order processing, and difficulties in monitoring real-time inventory (Rahmani, 2018). Another problem that often arises is the difficulty in monitoring the stock of goods that can result in overstock or stockout. This condition can ultimately lead to disruption of operational flow, increased operational costs, and decreased levels of customer satisfaction (Rahayu dkk., 2022).

Based on an interview with the partner owner, he explained that transaction recording often experiences errors as below due to ignorance of the number of stock items. So that when a customer has chosen a purchase, the sales admin still records the order, then checks the stock by confirming the stock with the stock keeper. If the stock is available, then payment is made, but if the stock is not available, it is confirmed to the customer that the stock is not available. From this, it proves that the stock is not monitored in real-time, which makes customers cancel orders.

These conditions encourage distributor companies to look for solutions that can improve the efficiency of stock management and sales transactions. The need for an integrated system is increasing, because manual systems are unable to accommodate the growth in data volume and operational complexity (Setiani & Abdillah, 2023). Companies need a solution that is able to simplify business processes, minimize human error, and provide convenience in conducting data analysis accurately and on time. Enterprise Resource Planning (ERP) systems are emerging as a solution that can answer this need, especially through modules such as Inventory and Point of Sales that are relevant to the distribution industry (Wibisono, 2005).

The Inventory module in an ERP system allows distributor companies to manage inventory more efficiently (Novita, 2023). This module provides real-time visibility of available stock, so that companies can minimize the occurrence of overstock and stockout (Hery dkk., 2022). In addition, the Inventory module can also automate the reorder process based on minimum stock levels, thus ensuring the availability of goods in accordance with market demand (Azmi & Uddin, 2023). Other features such as serial number tracking, warehouse management, and inventory analysis can help distributor companies optimize storage space and speed up the delivery process (Nugroho dkk., 2023).

The Point of Sales (POS) module in an ERP system is also very important for distributor companies that have a direct sales network to customers (A. J. Putri dkk., 2021). This module automates the sales transaction process, including recording sales, receiving payments, and managing discounts and promotions (L. C. Putri & Suhendi, 2021). With POS integrated into the ERP system, sales data from various points of sale can be consolidated automatically, providing convenience in financial reporting and sales performance analysis. This not only helps speed up the sales process, but also provides more accurate data for strategic decision making regarding sales and inventory strategies (Nugroho dkk., 2022).

ERP implementation with Inventory and Point of Sales modules has a significant impact on improving the efficiency and effectiveness of distributor company operations (Alfaruqi dkk., 2018). For stakeholders, including management, employees, and business partners, the existence of ERP can provide benefits in the form of data transparency, operational cost savings, and increased customer satisfaction through faster and more accurate services. ERP also allows distributor companies to be more responsive to changes in market demand and business conditions (Nadziroh, 2019). With an integrated system, decision making becomes more data-based and

predictive, so that it can help companies achieve sustainable growth and provide more value to stakeholders in the midst of intense business competition (Susanto, 2013).

Based on the above background, the authors are interested in taking a research entitled "Implementation of Enterprise Resource Planning Inventory and Point of Sales Module at XYZ Distributor Company" with the hope of making a real contribution to the development of the Indonesian economy in accordance with Law Number 20 of 2008 which shows that MSMEs need to be empowered as an integral part of the people's economy which has a strategic position, role and potential to realize an increasingly balanced, developed and equitable national economic structure.

METHODS

The approach used in this research is a qualitative approach with a focus on the implementation of an Enterprise Resource Planning (ERP) system based on the Odoo platform at the XYZ distributor company. This approach was chosen because it is able to describe in depth the ERP implementation process through systematic and efficient stages. The Odoo Quickstart method was used as the main framework as it offers a structured process, consisting of three main stages: kick-off call, analysis, and configuration. Data collection was conducted through in-depth interviews with various resource persons, including the company owner, stock keeper, sales admin, and two customers, as well as literature studies to strengthen the theoretical basis and relevance of the research. The interview process aims to identify system requirements, uncover problems in managing stock and sales transactions, and develop an ERP system configuration that suits the actual conditions of the company (Samer dkk., 2025).

Next, the kick-off call stage focused on a thorough understanding of the existing business processes, followed by the analysis stage to analyze the gap between the current condition and the desired system target. This process resulted in the analysis of system requirements and the design of a more efficient business process. The final stage, configuration, includes the process of customization and installation of Inventory and Point of Sales modules according to the company's needs. System testing is carried out through functionality validation using the blackbox testing method and user acceptance test to ensure the system can be used optimally by users. The research location is on Jl. Parengan, Krian, Sidoarjo where XYZ company operates. With this methodology, the research is able to provide a comprehensive overview of how Odoo ERP can improve operational

efficiency through real-time stock management and an integrated sales system.

RESULT AND DISCUSSION Existing Business Processes at XYZ Distributor Company

Based on the results of observations and interviews that have been conducted, this XYZ company has the main business processes carried out. Anton Hadi as the owner revealed this, namely:

"The main business process in this company is selling products to customers directly and checking the stock needed for real-time reporting."

Customers can place orders directly to the sales admin or contact the sales admin via WhatsApp while the admin records the order on a written note and provides a price list of the order. After that, the admin submits the order record to the stock keeper. When the stock keeper checks the availability of the product, the stock keeper reports to the sales admin, if the stock is available then the order can proceed to the payment stage, but if the product is not available then confirm to the customer whether the order continues by reducing the unavailable product or waiting for product restock at a later date. After the payment stage, the admin confirms to the customer to deliver or pick up the product independently by the customer concerned.

According to (Adriansyah, 2020) manually processed records, sales, and data are not guaranteed security and are prone to data loss and errors in the processing process. When the admin records customer orders, several times there are errors in recording, either errors caused by accident or unavailable stock so that the admin has to replace the order recording. This was conveyed by the owner, namely:

"...When recording orders, several times there were mistakes made by the admin. Both errors that occur accidentally and errors caused by product stock that is not in accordance with customer requests. This can take longer to serve customers, not to mention when many customers come at the same time."

When the stock does not match the customer's request, the stock keeper will record the products that are lacking and running low, then report it to the owner, after which the owner orders the product to the supplier, and waits for the supplier to send the restock product. This takes quite a long time, so it often happens that customers cancel the purchase of products whose stock does not meet their needs, and look for other places to order. This statement was expressed by the owner, namely:

"...When the stock in the company does not match the customer's request, the customer can cancel the purchase of the product and order elsewhere. If the customer waits for the product to restock, it can take quite a long time, because the admin must record the products needed by the company, then report to me as the owner, then I place an order to the supplier. The delivery time from the supplier to the company also takes quite a long time."

Some of the obstacles that have occurred in the company can hinder the development of the company. This also happens because there is no integrated system. So that there are many obstacles in communication, such as delays in information between departments and data inaccuracies. Because all departments need interconnected data access to coordinate and time efficiency (Nabila & Nasution, 2025).

ERP System Needs and Objectives

According to (Indrayani, 2022) the Enterprise Resources Planning (ERP) system or integrated application system is an information system used to integrate and automate business processes in company management in a transparent manner and has high accountability. With this integrated system, each department within a company can coordinate with each other which ultimately increases the synergy between departments within the company. ERP systems also help companies automate and standardize company operating processes resulting in increased productivity, efficiency and product quality.

The interviewees provided views regarding the need for an ERP system in the company. Nurfalah as the sales admin explained about the system currently needed, namely the POS (Point of Sales) feature and real time stock checking. Point of Sales is considered important because it greatly affects direct sales to customers, especially in terms of time efficiency and data accuracy. This is based on Nurfalah's own expression as the sales admin as follows:

"According to myself as an admin who plays a direct role in serving customers, the feature that is really needed in this company is POS, because POS plays an important role in sales transactions to minimize product recording errors or price errors. In addition, automation in the system is also needed so that there is no need to record notes / receipts manually anymore, so that it can be faster in serving customers" (Nurfalah)

"In my opinion as a stock keeper, we also need a real-time stock checking system that is integrated with the sales admin. So that when an

item comes in, it can be inputted quickly, or when an item leaves, it can be automatically reduced in real-time. So the sales admin and I don't have to coordinate continuously but just check the stock in the integrated system. In addition, I can also report to the owner about product stocks that are running low, not running out".

Based on the input from the owner and the staff involved in this study, they strongly emphasized the integrated system, especially in sales and real-time stock checking. This is considered very necessary in the company to ensure that in serving customers there are no errors or delays in procuring goods due to inadequate stock.

ERP System Configuration

According to the Big Indonesian Dictionary (KBBI), configuration is a form of form that describes people or objects. According to (Nabil, 2022) also, configuration is an action to carry out a plan that has been made. The configuration results will be maximized if the configuration is carried out in accordance with the previously made plan.

In accordance with the results of observations and interviews conducted by researchers to the company, this company tends to need modules that support the main business operations, namely Inventory and Point of Sales. The Inventory module is used to track stock in real-time, automate the process of receiving and shipping goods, support inventory-related business processes such as purchasing and sales. The Point of Sales module is used to manage transactions directly during sales and this module is integrated with the inventory module in the stock report.

After configuration, a demo session is conducted to the company staff involved in order to understand the use of the system to be implemented. If the system has been officially used by the company, there is still an evaluation to handle obstacles during the implementation of the system. This configuration is to ensure that the selected system and modules are truly in accordance with the business operational needs of the XYZ company.

Discussion of Research Results Odoo ERP Implementation with Quickstart Method

According to (Samer dkk., 2025), in small to medium-sized companies or organizations, the quickstart method is an effective method to use in designing and implementing Enterprise Resource Planning systems according to the standard business operational processes of each

JDBIM (Journal of Digital Business and Innovation Management) Volume 4 No.2, December 2025

E-ISSN 2962-3898

Page 358-377

company. This method consists of 3 main stages, namely kick-off call, analysis, and configuration.

Kick-Off Call

According to (Patra dkk., 2021), at this stage an analysis is carried out of the needs that will be used in research on designing an ERP system at XYZ through the Inventory and Point of Sales modules. This stage needs to be done so that researchers and the company can understand the limitations of the research. So that the results of this research can be in accordance with the needs of the company. This stage is divided into two phases, namely strategic planning and goal determination.

Strategic Planning

According to (Patra dkk., 2021), in the strategic planning phase, researchers process research boundaries based on the problems and conditions that occur in related companies. With predetermined limits, strategic steps can be taken according to the needs of the company itself. Strategic planning in this study is as follows:

Table 1 Strategic Planning in Research

rabio i olialogio i iai ii iig ii i	. 100041011	
Environment	Research	Basic Science
1. Business operations	Implementation	 Enterprise
in this company are	of Enterprise	Resource
still manual and not	Resource	Planning
integrated with each	Planning	2. Inventory
other.	Inventory and	Module
2. Sales to customers	Point of Sales	3. Point of
are often recorded	Module at XYZ	Sales
incorrectly	Distributor	Module
3. Stock items that	Company	4. Quickstart
cannot be monitored		Method
in real-time		

Goals Determination

According to (Patra dkk., 2021), in this goal determination, researchers and the company determine the objectives of this research, the agreed objectives will be presented into a requirement which will later be used as a basis for implementing the company's system design. Based on the results of interviews with the company, the implementation of ERP is expected to minimize recording errors, facilitate stock monitoring, and automate the company's business processes. The success of this

implementation is measured by the increase in sales and the fast service process.

Analysis

According to (Irianis, 2020) at this stage it is carried out to analyze the business processes in the sales and stock checking section at the XYZ company. After that, define the target business so that gap analysis can be found, so that it can determine the target business process that suits the company's needs. This stage has two phases, namely business analysis and fit & gap analysis.

Business Analysis

According to (Irianis, 2020) this stage analyzes the existing business processes in related companies, namely by identifying obstacles in the business process so that it can find out what is needed in the target business process.

a) Existing Business Process

Based on the results of observations and interviews with the XYZ company, researchers identified the current business processes as follows:

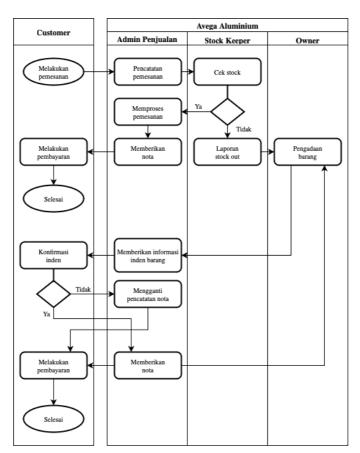


Figure 2 Existing Business Process at XYZ Company

Based on Figure 2, the business processes in the XYZ company are currently carried out manually by involving 4 main parties, namely the customer, sales admin, stock keeper, and owner. The customer contacts the sales admin when placing a product order, then the admin records the new product order checking the stock with the stock keeper. If the stock matches the customer's request, it can immediately process the order, provide a receipt, and the customer can immediately make a payment. However, if the stock does not match the customer's request at that time, the stock keeper reports the stock out to the owner so that procurement can be made. When procuring goods, the owner also confirms to the admin to provide information to the customer about the time required in the procurement of goods to be carried out. After the sales admin provides information to the customer, if the customer agrees to order goods, then the admin confirms to the owner, then the owner procures the goods, and can make payments. But if the customer does not agree to indent goods, then the admin changes the note recording, then reports to the owner, and the owner still procures goods to fulfill stock outs.

The main obstacles in this business process include manual recording that often makes mistakes because the stock is not in accordance with customer requests, a system that is not integrated so that it slows down the business operations process. The solution to these obstacles is to implement Odoo ERP, so that it is expected to overcome these obstacles and improve the company's operational efficiency and reduce recording errors.

b) Targeting Business Process

Based on observations of existing business processes and interviews with the company, the targeting business using Odoo can be designed to overcome obstacles as a solution to the current problems in XYZ company and meet the following needs:

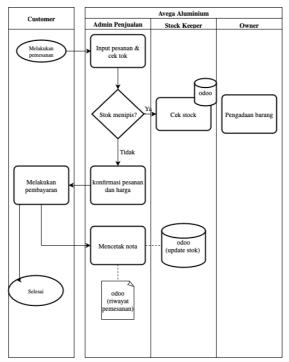


Figure 3 Targeting Business Process at XYZ Company

Based on Figure 3 is the business process after Odoo ERP is implemented in the company. The process shows an improvement in efficiency and system automation compared to the previous manual business process. The most noticeable change is the automation of each stage and its integration.

In this Odoo ERP system, when a customer places an order, the sales admin will check the stock in real-time through the Inventory module and input the order according to the customer's request through the Point of Sales module. When there is a low stock, the stock keeper will make a recap to be reported to the owner to immediately procure goods. After the sales admin inputs the order in the Point of Sales system, the admin confirms the order and price to ensure the order so that there is no mistake. After that, the customer makes a payment and the admin can immediately print a note.

The integrated Point of Sales and Inventory modules can minimize errors that occur in the company's business processes because every transaction in the POS system can be directly connected to the Inventory module which updates the stock in real time every time a transaction occurs. With the Point of Sales module, transactions that occur are immediately recorded in the system, so that the company has a history of customer orders that can be checked at any time. Likewise, with the Inventory module, stock keepers can monitor stock in real-time, so they can immediately report low stocks to the owner so that procurement can be carried out immediately.

Page 358-377

In addition, the owner can also monitor stock directly to minimize stock outs in the company, which in turn can also maintain customer confidence in the company.

Compared to the previous manual business process, the implementation of Odoo ERP has had a significant positive impact on XYZ's business process. Not only does it benefit the company, but it also benefits the customers who can fulfill their requests without constraints and can be efficient in serving customers quickly.

Activity Diagram

Figure 4 System Model Design

Figure 4 shows the design of the system model that will be implemented together with the Odoo system. The figure is divided into three main parts, namely: internal network, network infrastructure, and external network. The restrictions in the Odoo system will be applied to each user's access rights according to the module concerned.

Based on the design of the Figure, the internal network is part of the system used within the company, including the implementation of the ERP system. This internal network consists of 3 components, namely the owner has system access rights to monitor all processes in the business and make decisions, the sales admin has access rights in processing the Point of Sales module to make direct sales to customers and manage sales data, and the stock keeper also has access rights in managing the Inventory module which functions for stock management. These three components are connected to the Switch as part of the LAN (Local Access Network).

For network infrastructure, this section acts as a link between internal and external networks. In this section, there are three components, namely Switch is a network device that connects internal devices to the LAN network, Router functions to direct data traffic from the local network to the

internet or cloud server, Firewall functions as a system protector from external threats.

In addition, there is an external network that functions to display servers and services hosted outside the local network (cloud). The external network also has three components, namely the Odoo server which provides modules as needed, namely Inventory and Point of Sales which are mutually integrated and run business processes within the company, a PostgreSQL database that stores system data such as data on goods, customers, stock, and order history, besides that there is an internet component which is a link for connectivity between users and the Odoo system.

In this design, the expected flow is that users (owner, sales admin, and stock keeper) can access Odoo through a browser, then the request is sent through Switch - Router - Firewall - Internet. Next, the Odoo server receives the request and then processes and retrieves data from the PostgreSQL Database. After processing, the Odoo userinterface displays the results according to the role. By using this design, the system can be integrated, each user has access rights according to their duties and functions, data security can be guaranteed due to the firewall, and of course the system can still be accessed at any time via an internet connection.

1) Hardware Specifications

Hardware specifications that will be used in the implementation of Odoo can be seen in the table below.

Operating System
Database
We Browser
ERP Application
Windows 10 Home 64-bit
PostgreSQL
Google Chrome, Microsoft Edge
Odoo 18.3

2) Software Specifications

Software specifications that will be applied in the implementation of Odoo can be seen in the table below

RAM 8 GB
Storage 512 GB
Processor Inter Core i5-1135G7
PC HP Envy 13-ba1030TX

a) Installation and Configuration of Odoo Modules

According to Anisya (2024), Odoo offers efficiency and flexibility through modules that have been assembled in stages as needed. In this research, the modules to be implemented are adjusted to the results of fit &

JDBIM (Journal of Digital Business and Innovation Management)

Volume 4 No.2, December 2025

E-ISSN 2962-3898

Page 358-377

gap analysis based on the needs of business processes in XYZ company namely:

- a. Inventory: This Inventory module functions as stock management and real-time stock monitoring in XYZ company. This Inventory module is integrated with the Point of Sales module which can facilitate stock recording and stock updates when goods are released.
- b. Point of Sales: This POS module serves as a tool to serve customers directly, namely by creating transaction notes, recording transaction history in XYZ company, so that the sales process can run more structured and efficient.

Configuration in module settings is used to adjust the Odoo features needed and not activate features that are not yet needed so that business processes can run optimally according to XYZ's needs.

Master Data Creation

According to Gottschalk (2011) master data refers to core entities in an organization, such as customers, products, suppliers, and accounts, which are important for operations and analytics across multiple business units and systems. In this research, master data such as item data, item quantities, and customer data are the basis for running business processes. Master data is created in the Inventory and Point of Sales modules by importing product data lifted from XYZ's manual data recap into the Odoo system. Based on the documentation (Odoo, 2025), below are the steps to import data in Odoo:

 Start: The data is imported into Odoo using Excel (.xlsx) or CSV (.csv) format. Start: Open the view of the object to be imported. Odoo has provided templates that can be downloaded, filled in according to the company's needs, and then imported into the system.

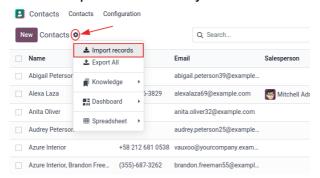


Figure 5 Odoo Data Import Source: Odoo.com

2. Adapt the template: The import template includes data that can be adapted to the fields in Odoo.

1	External ID	Name	Product Type	Sales Price
2	product_template_1	1*1 Kotak CA	Goods	47500
3	product_template_2	1*1 Kotak BR	Goods	51500
4	product_template_3	1*1 Kotak MW	Goods	51500
5	product_template_4	1*1 Oval CA	Goods	46000
6	product_template_5	1*1 Oval BR	Goods	49500
7	product_template_6	1*1 Oval MW	Goods	49500
8	product_template_7	7/8 Kotak CA	Goods	42000
9	product_template_8	7/8 Kotak BR	Goods	46500
10	product_template_9	7/8 Kotak MW	Goods	46500
11	product_template_10	7/8 Oval CA	Goods	40000
12	product_template_11	7/8 Oval BR	Goods	44000
13	product_template_12	7/8 Oval MW	Goods	44000
14	product_template_13	Korek 10*16 CA	Goods	27000
15	product_template_14	Korek 10*16 BR	Goods	29500
16	product_template_15	Korek 10*16 MW	Goods	29500
17	product_template_16	Korek 10*20 CA	Goods	31500
18	product_template_17	Korek 10*20 BR	Goods	34000
19	product_template_18	Korek 10*20 MW	Goods	34000
20	product_template_19	Korek 11*23 CA	Goods	35500
21	product_template_20	Korek 11*23 BR	Goods	38500
22	product_template_21	Korek 11*23 MW	Goods	38500
23	product_template_22	Tanduk 10*21 CA	Goods	37500
24	product_template_23	Tanduk 10*21 BR	Goods	42000
25	product_template_24	Tanduk 10*21 MW	Goods	42000
26	product_template_25	Tanduk 11*23 CA	Goods	41500
27	product_template_26	Tanduk 11*23 BR	Goods	46000
28	product_template_27	Tanduk 11*23 MW	Goods	46000
29	product template 28	Tanduk 1*1 CA	Goods	64000

Figure 6 Product data based on Odoo template Source: Research Documentation

Testing and Validation

According to (Shafira dkk., 2025) from the results of the Odoo configuration, testing needs to be done to ensure that the system can run according to company needs. In this study, *blackbox testing* and *user acceptance testing* were carried out.

Table 2 Blackbox Testing

No	Tested Features	Expected Result	Test Result
1	Add New Product	Product appears in the product list	Appropriate
2	Add stock items	Product stock increases	Compliant
3	Make Sales via PoS	Transaction successful, stock reduced	Compliant
4	Print Sales Receipt	Receipt is printed automatically	As per
5	Role-based Access (Stock Keeper)	Can only access Inventory	Compliant
6	Role-based Access (Sales Admin)	Can only access the PoS module and reports	Compliant
7	Daily Sales Report	Daily transaction data appears	Suitable

Page 358-377

No	Tested Features	Expected Result	Test Result
8	•	Incoming products are recorded in Inventory	Compliant
9	Delete Product	Product no longer appears in the list	Suitable

Blackbox Testing is a method used to test a software without having to pay attention to software details. This test is needed to find out that the program runs according to what is needed by the company (Febriyanti dkk., 2021). So that from the results of this test it can be seen that business processes can be carried out on the system accordingly.

Furthermore, *User Acceptance Testing (UAT)* is carried out to evaluate system functions in accordance with the objectives. System testing is carried out to show the level of user satisfaction when using the implemented system (Febriyanti dkk., 2021). This test was conducted with 3 respondents including the owner, sales admin, and stock keeper. UAT is carried out by distributing questionnaires to the relevant parties with 17 statements to test three aspects of the system, namely system appearance, system performance, and user satisfaction with the system. In this test, measurement is carried out with a Likert scale consisting of five answer categories, namely:

- Strongly Disagree (STS) = 1
- Disagree (TS) = 2
- Agree enough (CS) = 3
- Agree (S) = 4
- Strongly Agree (SS) = 5

Based on the table, namely User Acceptance Testing (UAT) testing on the display aspect of Odoo, the majority of users gave a positive response to the ease of use of Odoo, which obtained a score of 66.67% strongly agree, 20% agree, and 13.33% moderately agree. Then for the system performance aspect, users also showed satisfaction with the performance of this system with a test value of 9.52% moderately agree, 38.10% agree, and 52.38% strongly agree. Also, users show a high level of satisfaction in the effectiveness of this Odoo system with the results of test scores of 13.33% moderately agree, 40% agree, and 46.67% strongly agree.

Table 3 Total Score

Answer Category	Weight Value	Number of Answers	Total Score (Weight Value x Number of Answers)
SS	5	28	140
S	4	16	64
CS	3	7	21
TS	2	0	0
STS	1	0	0

Based on table 3, the level of user satisfaction with the ERP implementation reached a score of 140 with 28 answers. The answer to agree with the ERP system reached a score of 64 with 16 answers. And the answer moderately agreed got a score of 21 with 7 answers. So overall, the test results based on this UAT show that the implementation of Odoo in XYZ company almost meets user expectations. However, there should still be an evaluation phase because the assessment also shows that there is still room for improvement.

CONCLUSION

The implementation of Odoo-based ERP system in XYZ has successfully improved business process efficiency, data accuracy, and speed of stock management and sales transactions. The integrated Inventory and Point of Sales modules are able to provide real-time visibility, automation, and coordination between departments, thus overcoming the constraints of previous manual processes. System testing showed a high level of user satisfaction and positive results, although there is still room for improvement to increase the effectiveness and sustainability of the ERP system in the company. This implementation is expected to support business growth and increase customer confidence.

REFERENCES

Adriansyah, R. (2020). Perancangan Sistem Informasi Penjualan Pada Toko Udin Makasar. *Jurnal Fasilkom*, *10*(3), 277–281.

Alfaruqi, Z., Darwiyanto, E., & Widowati, S. (2018). Implementasi dan Analisis Enterprise Resource Planning Modul Purchasing, Point of Sale, Inventory dan Accounting untuk 3 outlet dan Gudang Utama di UD. Gudang Kuota. *eProceedings of Engineering*, *5*(3).

Page 358-377

- ANISYA, A., WARMAN, I., PUTRA, D. W. T., YULIANTI, E. V. A., & Setiawan, H. C. (2024). INTEGRASI XML DAN PYTHON PADA PENGEMBANGAN FRAMEWORK ODOO SISTEM GUDANG. *Device*, *14*(1), 1–8.
- Azmi, F., & Uddin, B. (2023). Perancangan ERP (Enterprise Resource Planning) Modul Sales And Inventory Pada PT UV VORTEX. Jurnal Manajemen, Ekonomi, Hukum, Kewirausahaan, Kesehatan, Pendidikan dan Informatika (MANEKIN), 2(2: Desember), 350–361.
- Faridatun Nadziroh. (2019). ANALISA PROSES BISNIS SISTEM ERP (ENTERPRISE RESOURCE PLANNING) PADA PERUSAHAAN DISTRIBUTOR BATU BARA. *JurnalTeknologidanTerapanBisnis*, 2, 59–64.
- Febriyanti, N. M. D., Sudana, A. A. K. O., & Piarsa, I. N. (2021). Implementasi black box testing pada sistem informasi manajemen dosen. *Jurnal Ilmiah Teknologi Dan Komputer*, *2*(3), 535–544.
- Fitriana, G. F. (2020). Pengujian Aplikasi Pengenalan Tulisan Tangan menggunakan Model Behaviour Use case. *Jatisi (Jurnal Teknik Informatika Dan Sistem Informasi)*, 7(2), 200–213.
- Gottschalk, P., Filstad, C., Glomseth, R., & Solli-Sæther, H. (2011). Information management for investigation and prevention of white-collar crime. *International Journal of Information Management*, 31(3), 226–233. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2010.07.002
- Hery, H., Wiratama, J., & Jayamangala, W. R. (2022). ANALISIS PERANCANGAN FITUR PADA SISTEM ERP UNTUK INVENTORY MODULE DI PT XYZ UNTUK MENGURANGI BULLWHIP EFFECT. *Jurnal Ilmiah MATRIK*, *24*(2), 196–205.
- Indrayani, N. L. (2022). PENERAPAN SISTEM ENTERPRISE RESOURCE PLANNING (ERP) PADA PERUSAHAAN JASA KONSTRUKSI. Dalam *CRANE: Civil Engineering Research Journal* (Vol. 3). https://ojs.unikom.ac.id/index.php/craneNiLuh/CRANE/2022
- Irianis, N. (2020). PERANCANGAN SISTEM ENTERPRISE RESOURCE PLANNING MODUL PURCHASE BERBASIS SOFTWARE ODOO DENGAN METODE QUICKSTART (STUDI KASUS: RUMAH SAKIT UMUM DAERAH SOREANG).

- Implementation of Enterprise Resource Planning Inventory and Point of Sales Module (Study Case at XYZ Distributor Company)
- Luvai F. Motiwalla, & Jeff Thompson. (2011). Second Edition: ENTERPRISE SYSTEMS FOR MANAGEMENT.
- Muhammad, A. (2022). Penerapan Sistem Point of Sales Berbasis Website pada Food and Beverage Terintegrasi. *Syntax Literate; Jurnal Ilmiah Indonesia*, 7(12), 18691–18722.
- Nabila, N. A., & Nasution, M. I. P. (2025). PENGARUH SISTEM INFORMASI TERINTEGRASI TERHADAP KOMUNIKASI PERUSAHAAN. *Jurnal Rumpun Manajemen dan Ekonomi, 2*(1), 60–67.
- Nadziroh, F. (2019). ANALISA PROSES BISNIS SISTEM ERP (ENTERPRISE RESOURCE PLANNING) PADA PERUSAHAAN DISTRIBUTOR BATU BARA: ANALISIS OF ERP (ENTERPRISE RESOURCE PLANNING) SYSTEM IN COAL DISTRIBUTOR COMPANIES. *Jurnal Teknologi dan Terapan Bisnis*, 2(1), 59–64. https://doi.org/10.0301/jttb.v2i1.62
- Novita, A. (2023). Implementasi enterprise resource planning (ERP) berbasis odoo pada modul inventory. *Qualitative Research of Business and Social Sciences*, 1(1), 30–40.
- Nugroho, B. S., Lestari, D., Rahayu, E. P., Pertiwi, F. A. D., Izzatin, N., & Suryani, N. S. (2023). Penerapan Sistem Manufacturing, Inventory, dan Purchasing Berbasis Enterprise Resource Planning (ERP) Odoo. *Solusi*, 21(2), 530–542.
- Nugroho, B. S., Rahma, A., Amelya, G. M., Yuniarti, I. D., Arum, L. D. S., & Pramudia, R. A. (2022). Implementasi Sistem Point of Sale (POS) dan Customer Relationship Management (CRM) Menggunakan Enterprise Resource Planning Pada UKM Zahira Sprei. *JTET (Jurnal Teknik Elektro Terapan)*, 11(3), 103–113.
- Patra, L. A., Budiono, A., & Witjaksono, R. W. (2021). Implementasi Sistem Erp Berbasis Odoo Modul Project Management Dengan Metode Quickstart Pada Pt. Telkom Prima Cipta Certifia. *eProceedings of Engineering*, 8(5).
- Putri, A. J., Syafira, A. S., & Meiah, K. N. (2021). Implementasi Enterprise Resource Planning Menggunakan Software Odoo Modul Point of Sales Pada PT. XX. *Prosiding Sains Nasional dan Teknologi*, 1(1).
- Putri, L. C., & Suhendi, S. (2021). Analisis dan Implementasi ERP pada Modul Point of Sale Studi Kasus Toko Tas Apidah. *Jurnal Informatika Terpadu*, 7(1), 1–7.

JDBIM (Journal of Digital Business and Innovation Management) Volume 4 No.2, December 2025

E-ISSN 2962-3898

Page 358-377

- Rahayu, P., Tambunan, V. Y., Agutina, M., Anastasya, W., Japin, D., & Melinda, D. (2022). Penerapan Sistem Erp (Enterprise Resource Planning) Warehouse Management Dalam Meningkatkan Kinerja Perusahaan. *Eqien-Jurnal Ekonomi dan Bisnis*, 10(2), 241–245.
- Rahmani, H. F. (2018). Pengaruh Penerapan Enterprise Resource Planning (ERP) Terhadap Kinerja Perusahaan. *Jurnal Indonesia Membangun*, *17*(3), 1–18.
- Samer, F., Septo, U., & Firdaus, T. (2025). Perancangan Sistem Pemantauan Proses Tugas Akhir Berbasis Odoo Menggunakan Metode Quickstart.
- Setiani, C. C., & Abdillah, L. (2023). Implementasi Sistem ERP Menggunakan Odoo Modul Point of Sales pada UMKM Sambel Korek DNO. *KALBISIANA Jurnal Sains, Bisnis Dan Teknologi*, *9*(2), 414–426.
- Shafira, N. D., Hediyanto, U. Y. K. S., & Firdaus, T. M. (2025). Perancangan Sistem Pendaftaran Sidang Tugas Akhir Dan Pengumpulan Persyaratan Yudisium Menggunakan Odoo Dengan Metode Quickstart. *eProceedings of Engineering*, *12*(1).
- Sudrartono, T., Nugroho, H., Irwanto, I., Agustini, I. G. A. A., Yudawisastra, H. G., Maknunah, L. U., Amaria, H., Witi, F. L., Nuryanti, N., & Sudirman, A. (2022). KEWIRAUSAHAAN UMKM DI ERA DIGITAL. Dalam D. E. Putri & E. P. Sari (Ed.), CV WIDINA MEDIA UTAMA. CV WIDINA MEDIA UTAMA.
- Susanto, A. (2013). Implementasi Sistem ERP (Enterprise Resources Planning) PT Pos Indonesia: Sebuah Inisiasi dan Strategi. *Jurnal Penelitian Pos dan Informatika*, *3*(2), 115–128.
- Wibisono, S. (2005). Enterprise resource planning (erp) solusi sistem informasi terintegrasi. *Dinamik*, *10*(3).