Analisis Perbandingan Performa Download Pada Manajemen Bandwith Mikrotik Routerboard Menggunakan

Metode Simple Queue dan Queue Tree HTB

Farhan Mohammad Al Aziz¹, Agus Prihanto²

^{1,2} Teknik Informatika, Fakultas Teknik, Universitas Negeri Surabaya ¹farhan.19088@mhs.unesa.ac.id ²agusprihanto@unesa.ac.id

Abstrak— Penelitian ini mengeksplorasi pemanfaatan teknologi jaringan pada MikroTik RouterBoard untuk meningkatkan manajemen bandwidth melalui metode Simple Queue dan Queue Tree HTB. Dengan pertumbuhan pesat pengguna internet, khususnya pada jaringan internet, optimalisasi jaringan komputer menjadi kunci peningkatan produktivitas. Fokus utama penelitian adalah analisis kualitas download jaringan yang diuji melalui simulasi VirtualBox dengan PC sebagai client. Tujuan penelitian mencakup implementasi dan analisis perbandingan kedua metode, dengan MikroTik RouterBoard sebagai platform. Manfaat penelitian mencakup pemahaman mendalam kelebihan dan kelemahan metode, kontrol bandwidth, dan pemahaman performa optimal.

Hasil penelitian menunjukkan bahwa metode Queue Tree HTB lebih ada kepastian bandwith yang diperoleh jika dibandingkan dengan metode Simple Queue, karena pada metode Queue Tree HTB dapat menggunakan priority sehingga bandwith tidak berebut dan dapat disesuiakan dengan skenario Administrator Jaringan

Kata Kunci— MikroTik, bandwidth, Simple Queue, Queue Tree HTB, VirtualBox.

I. PENDAHULUAN

Pemanfaatan teknologi jaringan pada saat ini berkembang semakin pesat seiring dengan bertambahnya pengguna. Terutama pada jaringan internet yang mana jaringan internet pada era ini sudah sangat vital keberadaannya. Jaringan komputer merupakan sekelompok komputer yang menggunakan protokol komunikasi untuk dapat saling berkomunikasi dan berbagi data atau informasi. Internet juga dapat diartikan sebagai jaringan komputer dalam arti jaringan yang lebih luas. Dengan adanya internet, berbagai kemudahan telah didapatkan baik di bidang pendidikan, komunikasi, keuangan sampai dengan bidang pemerintahan.

Dalam upaya peningkatan produktivitas kerja dapat dilakukan dengan memaksimalkan penggunaan jaringan komputer. Analisis manajemen bandwith dengan menggunakan metode Simple Queue Dan Queue Tree HTB pada MikroTik RouterBoard merupakan sebuah eksplorasi yang penting dalam konteks pengembangan dan pengelolaan jaringan. Dalam era di mana ketergantungan pada layanan

online dan aplikasi berbasis internet semakin meningkat, kebutuhan akan manajemen bandwith yang efektif semakin mendesak.

Dalam pengelolaan sumber daya jaringan, khususnya bandwith, Manajemen bandwidth pada MikroTik RouterBoard merupakan aspek krusial dalam mengoptimalkan penggunaan bandwidth dalam jaringan. Dua metode yang umum digunakan untuk manajemen bandwidth adalah Simple Queue dan Queue Tree HTB. Simple Queue memungkinkan pengguna untuk membatasi kecepatan upload dan download berdasarkan IP Address client, sementara Queue Tree HTB memberikan kemampuan lebih kompleks dalam mengatur prioritas dan distribusi traffic di jaringan [13].

MikroTik RouterBoard, sebagai salah satu solusi terkemuka dalam manajemen jaringan, menyajikan berbagai fitur yang dapat dikonfigurasi untuk memenuhi kebutuhan spesifik suatu jaringan. Dalam konteks ini, penelitian bertujuan untuk menguji dan membandingkan efektivitas dua metode manajemen bandwith pada MikroTik RouterBoard, yaitu *Simple Queue* dan *Queue Tree HTB*.

Penelitian akan difokuskan pada aspek kualitas download jaringan sebagai parameter utama, pengujian akan dilakukan dengan menggunakan PC di VirtualBox sebagai client atau user, dengan aliran internet melalui bridge adapter. Dengan memanfaatkan simulasi, penelitian ini bertujuan untuk menguji dan membandingkan efektivitas Simple Queue dan *Queue Tree HTB* pada router MikroTik, mengingat pentingnya pengalaman pengguna dalam mengakses berbagai layanan online. Dengan demikian, hasil penelitian ini diharapkan dapat memberikan wawasan berharga bagi organisasi atau penyedia layanan internet yang ingin mengoptimalkan penggunaan bandwith mereka.

Dalam konteks kontribusi ilmiah, penelitian ini dapat menjadi landasan untuk memahami lebih lanjut cara mengoptimalkan penggunaan bandwith, khususnya dalam penggunaan MikroTik RouterBoard. Temuan dari penelitian ini diharapkan dapat menjadi dasar untuk pemahaman lebih mendalam tentang strategi manajemen bandwith yang dapat meningkatkan kinerja jaringan dan memenuhi kebutuhan unik dari pengguna jaringan tersebut, maka penulis memberi judul pada penelitian ini "Analisis Perbandingan Performa Download Pada Manajemen Bandwith Mikrotik Routerboard Menggunakan Metode Simple Queue Dan Queue Tree HTB".

II. METODOLOGI PENELITIAN

Penelitian menggunakan metode eksperimen dengan simulasi yang merupakan bentuk penelitian yang bertujuan untuk mencari gambaran melalui sebuah sistem berskala sederhana (model) dimana di dalam model tersebut akan dilakukan manipulasi atau kontrol untuk melihat pengaruhnya.

Pada simulasi penelitian ini menggambarkan suatu mode kecil topologi jaringan internet X yang dimanajemen penggunaan bandwith nya untuk beberapa client, serta memprioritaskan client yang lain dengan membedakan traffic setiap client. Berikut langkah-langkah metode simulasi yang harus dilakukan:

A. Alat dan Bahan Penelitian yang Digunakan

1. Kebutuhan Perangkat Lunak

Perangkat lunak adalah software yang digunakan sebagai penghubung dalam melakukan simulasi, Berikut adalah software yang digunakan:

- a. Windows 10 Pro 64-Bit OS
- b. Oracle Virtual Box
- c. PC Windows XP VM
- d. Winbox

2. Kebutuhan Perangkat Keras

Spesifikasi perangkat keras adalah Hardware yang digunakan sebagai pendukung dalam melakukan simulasi, dibawah ini adalah hardware yang digunakan, hardware yang digunakan adalah:

- a. Laptop
- b. Intel(R) Core (TM) i5-6300U CPU @ 2.40GHz (4 CPUs)
- c. Ram 8192 MB
- d. Storage 256 GB
- e. 2 Mikrotik Routherboard
- f. Kabel LAN UTP

B. Jenis Data

Jenis data yang digunakan oleh peneliti adalah data primer, yaitu data yang diperoleh langsung dari simulasi jaringan yang sedang berjalan.

C. Metode Pengumpulan

Observasi: mengamati kebutuhan akses para pengguna internet di Perusahaan atau Instansi X.

D. Desain Rancangan

1. Topologi Jaringan

Topologi jaringan merupakan hal yang paling mendasar dalam membentuk sebuah jaringan, topologi jaringan yang

diimplementasikan dirancang dengan mempertimbangkan beberapa aspek kunci untuk mencapai tujuan penelitian sesuai dengan latar belakang penelitian. untuk topologi jaringan yang digunakan pada kantor X yaitu Topologi Star. Topologi Star mengutamakan komputer server sebagai pusat kontrol. Hal ini menyangkut fungsi dan efisiensi perusahaan dalam penyimpanan dan pengolahan data sehingga dapat terkontrol dengan baik dan lancar.

Penggunaan PC di VirtualBox sebagai simulasi klien menjadi langkah penting dalam pengujian kualitas download jaringan. Hal ini dipilih untuk memastikan bahwa pengujian dapat dilakukan secara kontrol dan dapat direplikasi dalam skenario yang berbeda. Aliran internet diarahkan melalui bridge adapter, memungkinkan simulasi kondisi penggunaan nyata dalam jaringan. Keputusan ini diambil agar pengujian lebih mendekati kondisi jaringan sehari-hari, sesuai dengan konteks yang diungkapkan dalam latar belakang penelitian. Melalui pengaturan topologi yang cermat ini, diharapkan penelitian dapat memberikan hasil yang relevan dan representatif dalam mengevaluasi efektivitas kedua metode manajemen bandwith, serta memenuhi tujuan penelitian yang telah ditetapkan

Pada penelitian ini jaringan di kantor X di asumsikan memiliki bandwith Total 20Mb yang akan dibagikan kepada 3 grup user; manager, marketing, dan finance, dengan kebutuhan bandwith internet pada grup manager diasumsikan lebih besar dan diprioritaskan dibanding dengan grup marketing dan finance, asumsi pembagian user untuk masing-masing grup sebagai berikut:

- a. Pada metode Queue Tree HTB Grup Manager dikonfigurasikan bandwith limit-at download sebesar 6 Mb yang didalamnya hanya terdapat satu user, yaitu user manager itu sendiri, dan juga pada metode Simple Queue user juga dikonfigurasikan 6 Mb sebagai limit-at nya
- b. Pada metode Queue Tree HTB Grup Marketing dikonfigurasikan bandwith limit-at download sebesar 7 Mb dengan terdapat 2 user yang masing-masing user dikonfigurasikan 3,5 Mb sebagai limit-at setiap user, sedangkan pada metode Simple Queue masing-masing user hanya dikonfigurasikan 3,5 Mb sebagai limit-at yang didapat
- c. Pada metode Queue Tree HTB Grup Finance mendapat alokasi yang sama dengan gurp marketing dengan dikonfigurasikan bandwith limit-at download sebesar 7 Mb dengan terdapat 2 user yang masing-masing user dikonfigurasikan 3,5 Mb sebagai limit-at setiap user, sedangkan pada metode Simple Queue masing-masing user hanya dikonfigurasikan 3,5 Mb sebagai limit-at yang didapat

Karena penelitian ini dilakukan dengan menggunakan simulasi Virtual Box, maka untuk mempermudah dalam memahami sambungan antar device, topologi yang disajikan pada penelitian kali ini ada 2 macam; yaitu topologi umum dan topologi pengujian untuk memberikan gambaran seperti

simulasi

Berikut gambar topologi umum jaringan Simulasi yang akan dilakukan percobaan dalam penelitian ini.

Gbr 1 Topologi Umum

Topologi ini dirancang untuk mereplikasi kondisi jaringan yang umum ditemui di berbagai lingkungan. Komponen utama topologi ini melibatkan Router MikroTik sebagai Pusat Kontrol, router berfungsi sebagai pusat kontrol dan pengatur manajemen bandwith. Ini memetakan distribusi sumber daya dan mengelola lalu lintas jaringan antara switch dan PC.

Switch sebagai penghubung lokal, switch mengelola konektivitas lokal dan mendistribusikan lalu lintas di dalam jaringan. Ini memfasilitasi komunikasi antar PC dan mengatur akses ke router untuk manajemen bandwith.

PC sebagai pengguna akhir, PC dihubungkan ke switch dan berperan sebagai pengguna akhir atau klien. Pengaturan manajemen bandwith diaplikasikan untuk mengamati pengaruhnya pada pengalaman pengguna akhir.

Berikut adalah topologi pengujian riel yang dilakukan:

Gbr 2. Topologi Pengujian

2. Flowchart Cara Kerja

Gbr 3 Flowchart Cara Kerja

Penjelasan FlowChart :

- a. Start Proses dimulai.
- b. Melakukan konfigurasi IP Address mikrotik pada interface yang menyambung pada client/user
- c. Melakukan konfigurasi DHCP server untuk pembagian ip pada host.
- d. Melakukan konfigurasi pada firewall, yang pertama melakukan konfigurasi pada firewall NAT masquerade agar client bisa mengakses internet, yang kedua melakukan konfigurasi pada firewall mangle ketika sebagai connection yang akan digunakan nantinya pada konfigurasi Queue Tree
- e. Melakukan konfigurasi manajemen bandwith Simple Queue dan Queue Tree HTB
- f. Melakukan setting adapther pada masing-masing pc di virtual box agar mendapat koneksi internet dari Host
- g. Melakukan konfigurasi ip static pada masing-masing pc sesuai dengan ip gateway yang dikonfigurasikan pada mikrotik
- h. Melakukan pengujian ping untuk memastikan setiap pe sudah terkoneksi ke internet
- i. Jika konfigurasi berhasil selanjutnya adalah melakukan konfigurasi manajemen bandwith berupa download pada setiap client/user, jika tidak berhasil maka melakukan pengecekan ulang dari konfigurasi awal.
- j. Melakukan pengamatan dan capturing hasil konfigurasi dan avg.rate download menggunakan winbox
- k. Membuat laporan dari data yang sudah didapat
- l. End–Proses selesai.

3. Cara Kerja Sistem

Cara kerja Sistem adalah client menerima bandwith dari pembagian yang dilakukan oleh mikrotik routherboard. Lalu dilakukan proses download kemudian menganalisa grafik pada fitur avg.rate download untuk menganalisa mana yang lebih baik secara kemampuan dari dua metode yang digunakan.

III. HASIL DAN PEMBAHASAN

Tahap awal dalam melakukan pengujian Simple Queue dan Queue Tree Hierarchical Token Bucket (HTB) adalah membuat topologi jaringan sesuai dengan skenario yang diinginkan, kemudian melakukan konfigurasi pada Mikrotik Routherboard menggunakan aplikasi Winbox dan melakukan setting pada masing-masing pc di virtualbox yang meliputi:

- 1. Konfigurasi pada mikrotik 1
 - a. Konfigurasi DHCP Client
 - b. Konfigurasi Ip address
 - c. Konfigurasi DHCP server
 - d. Konfigurasi Firewall NAT
 - e. Konfigurasi Simple Queue Limitasi Bandwith
- 2. Konfigurasi pada mikrotik 2
 - a. Konfigurasi DHCP Client
 - b. Konfigurasi Ip address
 - c. Konfigurasi DHCP Server

- d. Konfigurasi Firewall NAT
- e. Konfigurasi Firewall Mangle (untuk Queue tree HTB)
- f. Konfigurasi Manajemen Bandwith Simple Queue dan Queue Tree HTB
- 3. Konfigurasi Pc Virtual Box

Т

- a. Setting Adapter
- b. Konfigurasi Ip Static setiap PC virtual

Setelah seluruh konfigurasi telah dilakukan dan metode Simple Queue dan Queue Tree HTB telah diterapkan sesuai dengan skenario topologi maka akan diuji sesuai dengan skenario pengujian, pada pengujian terdapat 5 kemungkinan kondisi yang akan berlaku, pada tabel disajikan dengan "ON" yang berarti user grup sendang menggunakan alokasi bandwith dan "OFF" yang berarti user grup tidak sedang menggunakan bandwith, adapun skenario pengujian sebagai berikut:

abel	1	Skenario	Pengu	jiar
------	---	----------	-------	------

NO	MANAGER	MARKETING	FINANCE
1	ON	ON	ON
2	OFF	ON	OFF
3	OFF	ON	ON
4	ON	ON	OFF
5	ON	OFF	OFF

A. Hasil Implementasi

Berikut adalah hasil konfigurasi mikrotik sebagai router bandwith management dan PC client diatas guest VirtualBox yang digunakan untuk pengetesan bandwith.

1. Konfigurasi pada router mikrotik 1 (Limitasi ISP)

Berdasarkan topologi diatas yang dimana pada penelitian ini menggunakan 2 router mikrotik, Router mikrotik 1 pada penelitian ini berfungsi sebagai limtasi bandwith yang didapat dari isp, adapun konfigurasi yang digunakan pada router mikrotik 1 sebagai berikut:

a. Konfigurasi DHCP Client

Dengan mengaktifkan DHCP client pada interface yang terhubung ke ISP yang disini adalah ether1, MikroTik akan secara otomatis mendapatkan alamat IP dari ISP. Ini memungkinkan MikroTik untuk terhubung ke internet tanpa perlu mengonfigurasi alamat IP secara manual, menggunakan DHCP client memungkinkan MikroTik untuk mendapatkan tidak hanya alamat IP, tetapi juga informasi jaringan lainnya seperti gateway, DNS server, dan subnet mask secara otomatis.

DHCP Client	
DHCP Client DHCP Client Options	
+ - 🖉 🖾 🍸 Release Renew	Find
Interface 🛆 Use P Add D IP Address	Expires After Status 💌
ether1 yes yes 10.64.104.1/	/22 00:09:10 bound
DHCP Client <ether1> DHCP Advanced Status Interface: ether1 ▼ ✓ Use Peer DNS ✓ Use Peer NTP Add Default Route: jyes ▼</ether1>	OK Cancel Apply Disable Comment
18	Copy Remove Release

Gbr 4 Konfigurasi DHCP Client

b. Konfigurasi IP Address

Langkah pertama dalam melakukan konfigurasi agar mikrotik dan user bisa mengakses internet adalah memberikan ip address pada mikrotik, perlu memberikan ip address pada router mikrotik 1 sebagai identitas dalam jaringan, pada penelitian ini ip address yang digunakan pada ether2 yang nantinya akan tersambung pada ether1 mikrotik 2 sebagai gateway internet user adalah 192.168.100.1/24.

Addre	ess List			
+	- / × 🖻 🍸		Find	
	Address List ▼ Find ▲ ✓ ✓ ✓ Find ▲ Address ✓ Network Interface ▼ ⊕ ⊕ 10.60.104.80/22 10.60.104.0 ether1 ■ ⊕ 192.168.100.1/24 192.168.100.0 ether2 ■ ■ ■			
D	10.60.104.80/22	10.60.104.0	ether1	
	Interse Image: Constraint of the second secon			

Gbr 5 Konfigurasi IP Address

c. Konfigurasi DHCP Server

Seperti yang dijelaskan diatas bahwa router 1 sebagai limitasi bandwith dari isp, maka pada pembagian ip untuk router 2 pada penelitian ini menggunakan DHCP server untuk memberikan ip address secara otomatis.

HCP Ser	ver									
DHCP	Networks	Leases	Options	Option Sets	Alert	3				
• -	Ø	7	DHCP Conf	ig DHCP S	etup					Find
Name		∠ Interfa	ice	Relay	Lea	se Tim	e	Address Pool	Add AR	•
dhcp1		ether2	2				00:10:00	dhcp_pool0	no	
DHCP	Address Sp	bace: 19	2.168.100.0)/24						
		B	ack Ne	xt Cancel						

Gbr 6 Konfigurasi DHCP Server

d. Konfigurasi Firewall NAT (Network Address Translation) Router Mirotik Routherboard pada skenario ini merupakan router yang berada diantara jaringan publik (internet) dan jaringan lokal (LAN). Router yang berada pada posisi ini perlu menjalankan NAT (Network Address Translation) dengan menggunakan action masquerade

Frewall										[]>
Filter Rules	NAT	Mangle	Raw	Service	Ports C	Connections	Address	Lists Layer7	Protocols		
+			70	o Reset Co	unters	00 Reset A	I Counters		Find	all	Ŧ
# Ac	tion mas	Chain srcnat	Sn	c. Address	Dst. Add	dress Proto	Src. Por	Dst. Port	In. Inter.	Out. Int ether1	E
				Nev	NAT Ru	le					×
				Ad	vanced	Extra Ad	tion State	tics		ОК	1
					Actio	n: masquer	ade	Ŧ	0	ancel	il
				_		Log			A	pply	1
					Log Prefi	x:		•	D	sable	1
				_	To Port	s:		•	Co	ment	1
									(Сору	1
									Re	move	1
•									Reset	Counters	
i cem									Reset A	VI Counters	1

Gbr 7 Konfigurasi NAT Router 1

e. Konfigurasi limitasi bandwith

Sesuai dengan skenario diatas, router 1 sebagi limtasi bandwith yang didapat dari ISP, bandwith yang akan dilimitasi sebesar 20300 kb/20,3 Mb agar konsep hirarki dan priority bisa berjalan sesuai dan berjalan lebih baik, pada limitasi ini menggunakan konfigurasi Simple Queue

Simple Queues Interface Queues Queue Tree Queue Types	
🕨 🗕 🖌 💢 🕜 00 Reset Counters 🛛 00 Reset All Counters	Find
# Name / Target Download Max Limit Download Avg. R 0 ß LIMITASI ISP ether2 20300k	▼
Simple Queue <limitasi isp=""></limitasi>	
General Advanced Statistics Traffic Total Total Statistics	ОК
Name: LIMITASI ISP	Cancel
Target: ether2	Apply
Dst.:	Disable
Target Upload Target Download	Comment
Max Limit: unlimited ∓ 20300k ∓ bits/s	Copy
- A · Burst ·····	
Burst Limit: unlimited ∓ unlimited ∓ bits/s	Remove
Burst Threshold: unlimited 🛛 🔻 unlimited 🐺 bits/s	Reset Counters
Burst Time: 0 0 s	Reset All Counters

Gbr 8 Konfigurasi Limitasi Router 1

Konfigurasi pada mikrotik 2 (Limitasi User)

Setelah konfigurasi pada router mikrotik 1 telah dilakukan pada penelitian ini, langkah berikutnya adalah melakukan konfigurasi pada router mikrotik 2 sebagai router yang melakukan manajemen bandiwth pada user atau pc di virtualbox, berikut konfigurasi yang berlaku pada router 2 mikrotik:

a. Konfigurasi DHCP Client

2.

Dengan mengaktifkan DHCP client pada interface yang terhubung ke ISP yang disini adalah ether1, mikroTik akan secara otomatis mendapatkan alamat IP dari router 1, yang mana router 1 sebagai gateway user agar bisa terhubung dengan jaringan publik

DHCP Client					
DHCP Client	DHCP Client Options	5			
+ - 🖉	× 🖻 🍸 [Release Renew			Find
Interface	∠ Use P Ad	dd D IP Address	Expires After	Status	-
ether1	yes ye	s 192.168.100	00:09:08	bound	
1800					
T REIT					

b. Konfigurasi Ip Address

Berdasarkan skenario topologi dan menyesuaikan dengan kemampuan pembagian ip agar dapat dilalui oleh pc virtual box, yang mana ip yang didapat hanya melalui interface yang terhubung pada host, maka IP Address yang dikonfigurasikan pada Mikrotik Routherboard di ether2 adalah 192.168.20.1/24 untuk ip yang terhubung pada Host, ether2 192.168.30.1/24 sebagai gateway pada grup manager, ether2 192.168.40.1/24 sebagai gateway pada grup marketing, ether2 192.168.50.1/24 sebagai gateway

pada grup finance, tampilan pada Winbox sebagai berikut:

A	ldress List			
4				Find
	Address /	Network	Interface	•
	192.168.20.1/24	192.168.20.0	ether2	
	192.168.30.1/24	192.168.30.0	ether2	
	192.168.40.1/24	192.168.40.0	ether2	
	192.168.50.1/24	192.168.50.0	ether2	
ЧD	192.168.100.249/24	192.168.100.0	ether1	
5	items			

Gbr 10 Konfigurasi Ip Address Router 2

c. Konfigurasi DHCP Server

Pada penelitian ini router 2 yang terhubung pada host diberlakukan konfigurasi DHCP server dengan menggunakan ip 192.168.20.1/24 yang mana ip tersebut adalah ip dari ether2 mikrotik yang terhubung pada host, namun pada ip address yang menjadi gateway masingmasing pc di virtualbox tidak diberlakukan aturan DHCP server agar mempermudah pengujian manajemen bandwith dengan aturan queue.

	DHCP Confi	g DHCF	9 Setup			Find
Name	∇ Interface	Relay	/ Lease Time	Address Pool	Add AR	
dhcp1	ether2		00:10:0	0 dhcp_pool1	no	
DHCP Address S	pace: 192.168.20.0/24					
	Back Next	Cancel	1			

Gbr 11 Konfigurasi Ip DHCP Server Pada Ether Yang Terhubung Pada Host

d. Konfigurasi Firewall NAT

Router Mirotik Routherboard pada skenario ini merupakan router yang berada diantara jaringan publik (internet) dan jaringan lokal (LAN). Router yang berada pada posisi ini perlu menjalankan NAT (Network Address Translation) dengan menggunakan action masquerade

Frewall					
Filter Rules NAT Mangle Raw S	ervice Ports Conne	ctions Address List	ts Layer7 F	Protocols	
🛉 - 🖉 🛪 🖅 oor	eset Counters 00 F	Reset All Counters	1	Find	Ŧ
# Action Chain Src. Ar 0 ≠∎ mas srcnat	ldress Dst. Address	Proto Src. Port	Dst. Port	In. Inter Out. Int ether1	E .
	New NAT Rule				×
	Advanced Extr	a Action Statistic	×	OK]
	Action: 🗖	asquerade	Ŧ	Cancel	
		Log		Apply	
	Log Prefix:		•	Disable	
	To Ports:		•	Comment	
				Сору	
	_			Remove	
Item	-			Reset Counters	
	-			Reset Al Counter	3

Gbr 12 Konfigurasi NAT Router 2

e. Konfigurasi Firewall Mangle (untuk Queue Tree HTB)

Firewall Mangle berperan dalam identifikasi dan pemisahan lalu lintas jaringan. Ini memungkinkan untuk mengelompokkan pengguna atau layanan ke dalam kategori yang sesuai dengan kebutuhan manajemen bandwith. Dalam hal ini memungkinkan pemberian prioritas dan pembatasan bandwith yang efektif. Memberikan kemampuan untuk manajemen lalu lintas yang lebih terperinci dan presisi, tampilan konfigurasi firewall mangle pada penelitian kali ini seperti pada gambar berikut:

Firewall											
Filter Ful	les NAT Mang	e Raw	Service Po	orts Co	onnections	Address List	ts Layer7 Protocols				
• =	0 2 2	7 00	Reset Cour	nters	00 Reset Al	Counters			Find	al	¥
#	Action	Src. Addr	ess	Proto	Src. Port	In. Inter	Connection Mark	Bytes	Packets	Det. Address	
0	mark conne	192,168.	30.254					2727 B	27		
1	🥒 mark packet					ether1	Conn-User1	6.3 KB	23		
2	/ mark conne	192.168	40.254					5.8 KB	69		
3	/ mark packet					ether1	Conn-User2	24.8 KB	79		
4	/ mark conne	192.168/	40.253					0 B	0		
5	🖌 mark packet					ether1	Conn-User3	0 B	0)	
6	/ mark conne	192,168.	50.254					08	0		
7	🥒 mark packet					ether1	Conn-User4	08	0		
8	/ mark conne	192.168	50.253					0 B	0		
9	🥒 mark packet					ether1	Conn-User5	0 B	0		
10 items											_

Gbr 13 Konfigurasi Firewall Mangle

f. Konfigurasi Queue Tree HTB

Setelah proses marking telah dilakukan maka selanjutnya adalah mengkonfigurasi Queue Tree HTB untuk melakukan pembagian bandwith yang disesuaikan dengan skenario diatas dengan konsep Hierarki, tampilan setelah dilakukan konfigurasi seperti gambar dibawah ini:

ueue List									
Simple Queues Interface	Queues Que	ue Tree Queue Type	3						
	T OO Res	et Counters 00 Rese	t All Counters						
Name /	Parent	Packet Marks	Priority	Limit At (b	Max Limit	Avg. Rate	Queued By 4	Bytes	Packets
🔒 ALL	global		1		20M	0 bps	0 B	1741.2	1 269 0
Finance	ALL		1	7M	20M	0 bps	0 B	532.4	2 351
Finance1	Finance	Down-User4	1	3500k	20M	0 bps	0 B	326.8	1 364
Enance2	Finance	Down-User5	1	3500k	20M	0 bps	0 B	205.6	987
Manager	ALL	Down-User1		6M	20M	0 bps	0 B	959.6	699 476
Marketing	ALL		1	7M	20M	0 bps	0 B	780.3	566 673
Marketing1	Marketing	Down-User2	1	3500k	20M	0 bps	0 B	515.8	374 102
Marketino2	Marketing	Down-Uker3	1	3500k	20M	0 hos	0.8	263.9	192 120

Gbr 14 Konfigurasi Queue Tree HTB

g. Konfigurasi Simple Queue

Setelah proses konfigurasi Ip address pada mikrotik routherboard, DHCP Server, Firewall NAT, maka user sudah bisa mengakses internet, selanjutnya adalah melakukan konfigurasi Simple Queue sesuai pembagian pada skenario, tampilan setelah dilakukan konfigurasi Simple Queue seperti gambar berikut:

Que	ue List					
Sim	nple Queu	les Interface Queues	Queue Tree Queue Types			
t		/ 🛛 🖪 🍸 🛛	Reset Counters 00 Reset All Counter	ers		
#	Na	ime /	Target	Download Max Limit	Download Limit At	D Download Avg /
2	8	Finance1	192.168.50.254	20M	3500k	8
3	2	Finance2	192.168.50.253	20M	3500k	8
0	8	Manager	192.168.30.254	20M	6M	7
1	2	Marketing1	192.168.40.254	20M	3500k	8
4	8	Marketing2	192.168.40.253	20M	3500k	8

Gbr 15 Konfigurasi Simple Queue

General	Network		
System	Adapter 1 Adapter 2 Adapter 3 Adapter 4		
Display	C Enable Network Adapter		
Storage	Name Intel® Eberget Connection 2210 IM		
Audio	Advanced		
Network			
Serial Ports			
USB			
Shared Folders			
User Interface			
	System Display Skorage Audio Network Serial Ports USB Shared Folders User Interface	System Adapter 1 Adapter 2 Adapter 4 Display Storage Audio Network Serial Ports USB Shared Folders User Inteface	System Adapter 1 Adapter 2 Adapter 4 Display Storage Audio Network Serial Ports USB Shared Folders User Inteface

- 3. Konfigurasi Pc Virtualbox
- a. Setting Adapter

Setelah Konfigurasi pada router mikrotik sudah dilakukan, maka selanjutnya adalah melakukan setting pada pc virtualbox, agar pc virtualbox bisa teraliri internet dan sesuai dengan ip gateway yang ada pada mikrotik 2, maka perlu untuk mengubah default adapter menjadi Bridge

Gbr 16 Setting Adapter Pada Pc Virtualbox

b. Konfigurasi Ip Static pada PC

Setelah setting adapter dilakukan maka pc sudah bisa teraliri oleh internet dari host, namun agar pc juga bisa mengakses internet maka masing-masing pc harus diberikan konfigurasi ip static sesuai dengan ip gateway dan skenario dari masing-masing grup pada topologi.

- 1. Pada Pc 1 (Manager) diberikan Ip static 192.168.30.254 dengan prefix /24 dan default gateway 192.168.30.1 yang menjadi ip gateway pada mikrotik ether2, DNS 10.60.104.1 sesuai dengan DNS yang ada pada ISP.
- Pada Pc 2 (Marketing1) diberikan Ip static 192.168.40.254 dengan prefix /24 dan default gateway 192.168.40.1 yang menjadi ip gateway pada mikrotik ether2, DNS 10.60.104.1 sesuai dengan DNS yang ada pada ISP.
- 3. Pada Pc 3 (Marketing2) diberikan Ip static 192.168.40.253 dengan prefix /24 dan default gateway 192.168.40.1 yang menjadi ip gateway pada mikrotik ether2, DNS 10.60.104.1 sesuai dengan DNS yang ada pada ISP.
- 4. Pada Pc 4 (Finance1) diberikan Ip static 192.168.50.254 dengan prefix /24 dan default gateway 192.168.50.1 yang menjadi ip gateway pada mikrotik ether2, DNS 10.60.104.1 sesuai dengan DNS yang ada pada ISP.
- 5. Pada Pc 5 (Finance2) diberikan Ip static 192.168.50.253 dengan prefix /24 dan default gateway 192.168.50.1 yang menjadi ip gateway pada mikrotik ether2, DNS 10.60.104.1 sesuai dengan DNS yang ada pada ISP.
- c. Proses Download

Setelah pc virtualbox telah disetting dan dikonfigurasi langkah selanjutnya untuk mengukur dan melakukan pengujian pada penelitian kali ini adalah melakukan proses download, proses download dilakukan sesuai dengan skenario yang tadi dijelaskan, adapun proses download dilakukan melalui google drive agar proses download berjalan stabil dibanding dengan melakukan download melalui internet yang traffic dan kecepatan juga bergantung pada server web nya masing-masing.

Gbr 17 Proses Download PC Virtualbox

B. Hasil Pengujian

1. Hasil Pengujian Metode Simple Queue

a. Kondisi 1

Berikut adalah capturing kondisi 1 metode Simple Queue yang sedang berjalan yaitu dengan memberikan pembagian bandwith kepada user secara penuh 20 Mb untuk Download sesuai pendistribusian bandwith pada skenario topologi pada setiap user.

aueue u	JSL						
Simple	Queues Interface Queu	es Queue Tree	Queue Types				
+ -	• • • • • •	00 Reset Counter	s 00 Reset All Coun	iters			
#	Name	A Target		Download Max Limit	Download Limit At	D Down	Iload Avg /
2	Einance1	192.168.50.2	54	20M	3500k	8	2.2 Mbps
1	Marketing1	192.168.40.2	54	20M	3500k	8	2.6 Mbps
0	Manager	192.168.30.2	54	20M	6M	7	3.4 Mbps
3	Finance2	192.168.50.2	53	20M	350k	8	5.8 Mbps
4	Marketing2	192.168.40.2	53	20M	3500k	8	6.1 Mbps

Gbr 18 Simple Queue Kondisi 1-1

Simple	e Queues Interface Queues	Queue Tree Queue Types				
•	- 🖉 🖾 🏹 [00 Reset Counters 00 Reset All Co	unters			
#	Name	/ Target	Download Max Limit	Download Limit At	D Downloa	ad Avg 🕗
0	Manager	192.168.30.254	20M	6M	7	3.0 Mbps
3	E Finance2	192.168.50.253	20M	350k	8	3.8 Mbps
2	Finance1	192.168.50.254	20M	3500k	8	3.8 Mbps
1	Marketing1	192.168.40.254	20M	3500k	8	4.5 Mbps
4	Marketing2	192.168.40.253	20M	3500k	8	5.1 Mbps

Gbr 19 Simple Queue Kondisi 1-2

Pada pendistribusian Simple Queue kondisi 1 terlihat bahwa pembagian bandwith berhasil dilakukan dan setiap user akan saling berebut bandwith dan konsep priority pun tidak berjalan sebagaimana mestinya.

b. Kondisi 2

Berikut adalah capturing kondisi 2 dari konfigurasi Simple Queue, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 2, dimana Grup Marketing "ON", Grup Finance "OFF" dan Grup Manager "OFF":

imple (Queues Interface Queues	Queue Tree Queue Types				
-	/ × 🖆 🍸 [BB Reset Counters BB Reset All Cou	nters			
#	Name	 Target 	Download Max Limit	Download Limit At	D Download Avg /	
2	Enance1	192.168.50.254	20M	3500k	8	
3	Finance2	192.168.50.253	20M	350k	8	
0	Manager	192.168.30.254	20M	6M	7	
1	Marketing1	192.168.40.254	20M	3500k	8 10.0 Mbps	
4	Marketing2	192.168.40.253	20M	3500k	8 10.3 Mbps	

Gbr 20 Simple Queue Kondisi 2-1

lueue	List			
Simple	e Queues Interface G	lueues Queue Tree Queue Types		
+	- / × 8	00 Reset Counters 00 Reset /	All Counters	
#	Name	/ Target	Download Max Limit Downloa	ad Limit At D Download Avg /
2	Finance1	192.168.50.254	20M 3500k	8
3	Finance2	192.168.50.253	20M 350k	8
0	Manager	192.168.30.254	20M 6M	7
4	Marketing2	192.168.40.253	20M 3500k	8 8.8 Mbps
1	Marketing1	192.168.40.254	20M 3500k	8 11.5 Mbps

Gbr 21 Simple Queue Kondisi 2-2

Pada pendistribusian Simple Queue kondisi 2 terlihat

bahwa pembagian bandwith berhasil dilakukan dan dapat dilihat jika pada kondisi dimana user pada grup manager dan finance tidak sedang memanfaatkan porsi bandwith maka bandwith seluruhnya dibagikan kepada masingmasing user pada Grup Marketing, dan terlihat juga jika pada kebutuhan jaringan yang kecil yang dimana disini menggunakan 2 user saja, maka bandwith akan terbagi relatif secara merata.

c. Kondisi 3

Berikut adalah capturing kondisi 3 dari konfigurasi Simple Queue, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 3, dimana Grup Marketing "ON", Grup Finance "ON" dan Grup Manager "OFF":

Quer	ie List								
Sim	ple Queues	Interface Queues	Queue Tree	Queue Types					
÷	- /	8 🖾 🍸 0	D Reset Counte	ers 00 Reset All Cou	inters				
#	Name		Target		Download Max Limit	Download Limit At	D	Download Avg /	
0	🔒 Mar	ager	192.168.30.	254	20M	6M	7		
1	🔒 Mar	keting1	192.168.40.3	254	20M	3500k	8	4.1 Mbps	
4	🔒 Mar	keting2	192.168.40.	253	20M	3500k	8	5.2 Mbps	
3	🔒 Fina	nce2	192.168.50.	253	20M	350k	8	5.0 Mbps	
2	🚊 Fina	nce1	192.168.50.	254	20M	3500k	8	5.9 Mbps	

Gbr 22 Simple Queue Kondisi 3-1

imple	Queues Interface Queues	Queue Tree Queue Types				
- 4	• 🖉 🖾 🍸 •	00 Reset Counters 00 Reset AI Co	ounters			
#	Name	 Target 	Download Max Limit	Download Limit At	D Dow	nload Avg /
0	Manager	192.168.30.254	20M	6M	7	
4	Marketing2	192.168.40.253	20M	3500k	8	4.3 Mbps
1	Marketing 1	192.168.40.254	20M	3500k	8	5.1 Mbps
2	Enance1	192.168.50.254	20M	3500k	8	5.1 Mbps
3	Finance2	192.168.50.253	20M	350k	8	5.8 Mbps

Gbr 23 Simple Queue Kondisi 3-2

Pada pendistribusian Simple Queue kondisi 3 terlihat bahwa pembagian bandwith berhasil dilakukan dan dapat dilihat jika pada kondisi dimana user pada grup manager tidak sedang memanfaatkan porsi bandwith maka masingmasing user yang menggunakan bandwith akan saling berebut bandwith.

d. Kondisi 4

Berikut adalah capturing kondisi 4 dari konfigurasi Simple Queue, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 4, dimana Grup Marketing "ON", Grup Manager "ON" dan Grup Finance "OFF":

Queue Lis	l .				
Simple Q	ueues Interface Queues	Queue Tree Queue Types			
+ -	⊘ ☆ 🖆 🍸 00	Reset Counters 00 Reset All Counter	rs		
#	Name /	Target	Download Max Limit	Download Limit At	D Download Avg /
2	Finance1	192.168.50.254	20M	3500k	8
3	Finance2	192.168.50.253	20M	350k	8
0	Manager	192.168.30.254	20M	6M	7 5.7 Mbps
4	Marketing2	192.168.40.253	20M	3500k	8 7.0 Mbps
1	Marketing 1	192.168.40.254	20M	3500k	8 7.5 Mbps

Gbr 24 Simple Queue Kondisi 4-1

impl	le Queues Interface Queues	Queue Tree Queue Types				
•	- / × 6 7 (00 Reset Counters 00 Reset All Count	ers			
#	Name	Z Target	Download Max Limit	Download Limit At	D Downlo	ad Avg /
2	Finance1	192.168.50.254	20M	3500k	8	
3	Finance2	192.168.50.253	20M	350k	8	
4	Marketing2	192.168.40.253	20M	3500k	8	7.1 Mbps
0	Anager	192.168.30.254	20M	6M	7	6.5 Mbps
1	Marketing1	192.168.40.254	20M	3500k	8	6.6 Mbps

Gbr 25 Simple Queue Kondisi 4-2

Pada pendistribusian Simple Queue kondisi 4 terlihat bahwa pembagian bandwith berhasil dilakukan dan dapat dilihat jika pada kondisi dimana user pada grup finance tidak sedang memanfaatkan porsi bandwith maka masingmasing user yang menggunakan bandwith akan saling berebut bandwith.

e. Kondisi 5

Berikut adalah capturing kondisi 5 dari konfigurasi Simple Queue, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 5, dimana Grup Manager "ON", Grup Marketing "OFF" dan Grup Finance "OFF":

Queue List					
Simple Qu	leues Interface Queues	Queue Tree Queue Types			
+	× × • 7 00	Reset Counters 00 Reset	All Counters		
#	Name /	Target	Download Max Limit	Download Limit At	D Download Avg /-
2	E Finance1	192.168.50.254	20M	3500k	8
3	E Finance2	192.168.50.253	20M	350k	8
1	Marketing1	192.168.40.254	20M	3500k	8
4	Arketing2	192.168.40.253	20M	3500k	8
0	Manager	192.168.30.254	20M	6M	7 20.0 Mbps

Gbr 26 Simple Queue Kondisi 5

2. Hasil Pengujian Metode Queue Tree HTB

a. Berikut adalah capturing kondisi 1 metode *Queue Tree HTB* yang sedang berjalan yaitu dengan memberikan pembagian bandwith kepada user secara penuh 20 Mb.

Simple Queues Interface	Queues Queue	е Тлее — Орнана Турая							
• - « 🛛 🗗	🍸 🛛 🛛 Reset	Counters 00 Reset	All Counters						
Nano /	Parent	Packet Natio	Ploty	Linit At (b.,	Max Linit	Avg. Rate	Gueued By / B	Bytes	Packets
ALL .	global		1	1	20M	20.1 Mbpa	0 B	1821.4	13275
E Finance	ALL		1	3 7N	20M	7.0 Mbpa	0 B	39.0 MiB	30 369
Enance1	Finance	Down-User4	1	3500k	20M	3.5 Mbpa	1452 B	17.0 MB	13 510
Enance2	Finance	Down-User5	1	3500k	20M	3.5 Mbpa	8.5 KB	22.0 MB	16 865
Marketing	ALL		1	3 7N	20M	7.0 Mbpa	0 B 8	8 808	583 908
Marketing1	Marketing	Down-User2	1	3500k	20M	3.5 Mbpa	7.1 KB 5	529.6	384 219
Marketing2	Marketing	Down-User3	1	3500k	20M	3.5 Mbpa	12.8 KB 2	273.7	199 252
Manager	ALL	Down-User1	1	7 6N	20M	6.0 Mbpa	7.1 KB 5	977.7	712 647

Gbr 27 Queue Tree HTB Kondisi 1

Pada pendistribusian *Queue Tree HTB* kondisi 1 terlihat bahwa pembagian bandwith berhasil dilakukan dan setiap user mendapatkan limit-at nya, dan priority pada manager tidak sedang bekerja karena pembagian bandwith sudah maksimal dan tidak ada bandwith tersisa.

b. Berikut adalah capturing kondisi 2 dari konfigurasi *Queue Tree HTB*, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 2, dimana Grup Marketing "ON", Grup Finance "OFF" dan Grup Manager "OFF":

- / x 2	T 00 Rese	t Counters 00 Reset	All Counters						
Name /	Parent	Packet Marks	Priority	Limit At (b	Max Limit	Avg. Rate	Queued By /	Bytes	Packets
ALL 🔒	global		8		20M	20.1 Mbps	08	965.7	1 431 9
Finance	ALL		8	7M	20M	0 bps	08	71.1 MiB	53 667
Finance1	Finance	Down-User4	8	3500k	20M	0 bps	0 B	33.0 MiB	25 133
Finance2	Finance	Down-User5	8	3500k	20M	0 bps	0 B	38.1 MiB	28 548
Anager Manager	ALL	Down-User1	7	6M	20M	0 bps	08	1005.0	732 406
Marketing	ALL		8	7M	20M	20.1 Mbps	08.0	388.8	645 321
Marketing2	Marketing	Down-User3	8	3500k	20M	10.1 Mbps	083	316.3	230 058
A Marketing 1	Marketing	Down-User2	8	3500k	20M	9.9 Mbps	8.5 KB 5	572.0	414 835

Gbr 28 Queue Tree HTB Kondisi 2

Pada pendistribusian *Queue Tree HTB* kondisi 2 terlihat bahwa pembagian bandwith berhasil dilakukan dan dapat dilihat jika pada kondisi grup finance "OFF" dan manager "OFF" maka bandwith yang tersisa dialokasikan semua pada grup yang sedang "ON" yang disini adalah grup marketing, dan pembagian bandwith terbagi rata pada masing-masing user.

c. Berikut adalah capturing kondisi 3 dari konfigurasi *Queue Tree HTB*, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 3, dimana Grup Marketing "ON", Grup Finance "ON" dan Grup Manager "OFF":

Queua	e List									
Simp	ale Queues Interface (Queues Queue	Tree Queue Types							
÷	- / × 6	00 Reset	Counters 00 Reset /	All Counters						
	Name /	Parent	Packet Marks	Priority	Limit At (p	Max Limit	Avg. Rate	Queued By /	Bytes	Packets
	🚊 ALL	global		8		20M	20.1 Mbps	0 B	2116.9	1 541 4
	Finance	ALL		8	7M	20M	9.9 Mbps	0 B	94.0 MiB	70 287
	Finance1	Finance	Down-User4	8	3500k	20M	4.9 Mbps	2904 B	45.1 MB	33 881
	Finance2	Finance	Down-User5	8	3500k	20M	5.0 Mbps	12.8 KiB	48.9 MB	36 431
	Manager	ALL	Down-User1	7	6M	20M	0 bps	0 B	1005.0	732 419
	Marketing	ALL		8	7M	20M	10.1 Mbps	0 B	1017.1	738 126
	Marketing1	Marketing	Down-User2	8	3500k	20M	4.8 Mbps	5.7 KIB	634.8	460 276
	Marketing2	Marketing	Down-User3	8	3500k	20M	5.3 Mbps	7.1 KiB	381.7	277 425

Gbr 29 Queue Tree HTB Kondisi 3

Pada pendistribusian *Queue Tree HTB* kondisi 3 terlihat bahwa pembagian bandwith berhasil dilakukan dan dapat dilihat jika pada kondisi grup finance "ON" dan marketing "ON" dan grup finance "OFF" maka bandwith yang tersisa dialokasikan merata pada grup yang sedang "ON" yang disini adalah grup marketing dan finance sehingga tidak ada bandwith tersisa.

d. Berikut adalah capturing kondisi 4 dari konfigurasi *Queue Tree HTB*, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 4, dimana Grup Marketing "ON", Grup Manager "ON" dan Grup Finance "OFF":

Quer	e List										
Sim	ple Queues Interface	Queues Que	ue Tree Queue Types								
÷	- / × 6	00 Res	et Counters 00 Reset	All Counters							
	Name /	Parent	Packet Marks	Priority	Limit At (b	Max Limit	Avg. Rate	Queued By /	Bytes	Packets	
	🛢 ALL	global		8		20M	20.1 Mbps	08	2268.2	1 650 8	
	Finance	ALL		8	7M	20M	0 bps	0 B	144.8	107 057	
	Finance1	Finance	Down-User4	8	3500k	20M	0 bps	0 8	69.7 MiB	51 743	
	Finance2	Finance	Down-User5	8	3500k	20M	0 bps	0 B	75.0 MiB	55 328	
	Marketing	ALL		8	7M	20M	7.6 Mbps	08	1088.1	789 495	
	Marketing1	Marketing	Down-User2	8	3500k	20M	3.8 Mbps	11.3 KB	669.5	485 346	
	Marketing2	Marketing	Down-User3	8	3500k	20M	3.7 Mbps	14.2 KB	418.1	303 733	
	Anager 8	ALL	Down-User1	7	6M	20M	12.4 Mbps	11.3 KB	1034.5	753 747	

Gbr 30 Queue Tree HTB Kondisi 4

Pada pendistribusian *Queue Tree HTB* kondisi 4 terlihat bahwa pembagian bandwith berhasil dilakukan dan dapat

dilihat jika pada kondisi grup marketing "ON" dan manager "ON" dan grup finance "OFF" maka bandwith yang tersisa dialokasikan merata pada grup yang sedang "ON" yang disini adalah grup marketing dan manager , dan dapat dilihat bahwa dalam pembagian bandwith yang tersisa, grup manager mendapatkan bandwith lebih besar yaitu 12.4 Mb dan grup marketing hanya 7.6 Mb, ini diakibatkan sistem pembagian bandwith adalah memenuhi limit-at masingmasing grup terlebih dahulu dan jika limit-at masingmasing grup telah terpenuhi maka sisa dari itu akan dialokasikan pada priority yang lebih tinggi yang disini adalah grup manager, sehingga mengakibatkan tidak adanya bandwith yang tersisa dan tidak saling berebut.

e. Berikut adalah capturing kondisi 5 dari konfigurasi *Queue Tree HTB*, yang sedang berjalan dengan menggunakan pendistribusian sesuai skenario kondisi 5, dimana Grup Manager "ON", Grup Marketing "OFF" dan Grup Finance "OFF":

ueue List												
Simple Queues Interface	Queues Queue	e Tree Queue Types										
•- / × 8	00 Reset	Counters 00 Reset	All Counters									
Name /	Parent	Packet Marks	Priority		Limit At (b	Max Limit	Avg. Rate	Queued By /	Bytes	Packets		
all 🔮	global			8		20M	20.0 Mbps	0 8	2459.5	1 789 1		
Enance	ALL			8	7M	20M	0 bps	0 B	144.8	107 093		
Finance1	Finance	Down-User4		8	3500k	20M	0 bps	0 B	69.8 MiB	51 760		
Finance2	Finance	Down-User5		8	3500k	20M	0 bps	0 B	75.1 MiB	55 347		
Manager	ALL	Down-User1		7	6M	20M	20.0 Mbps	0 B	1193.7	868 788		
Marketing	ALL			8	7M	20M	0 bps	0 B	1120.2	812 710		
Marketing1	Marketing	Down-User2		8	3500k	20M	0 bps	0 B	685.3	496 850		
Marketing2	Marketing	Down-User3		8	3500k	20M	0 bps	0 B	434.3	315 426		

Gbr 31 Queue Tree HTB Kondisi 5

3. Perbandingan Hasil Pengujian Manejemen Bandwith Metode Simple Queue Dan Queue Tree HTB

Setelah dilakukan proses download dan capturing pada aturan queue untuk mengetahui dan melakukan analisis terhadap 2 metode manajemen bandwith, maka untuk memudahkan dalam pembacaan data, berikut adalah tabel yang berisikan jumlah besaran bandwith dari capturing *Download Average Rate* yang disajikan dalam satuan kilobyte:

Tabel 2 Hasil Perbandingan Hasil PengujianManajemen Bandwith

Note: Priority lebih kecil lebih utama

Berikut adalah grafik perbandingan antara metode *Simple Queue* dengan *Queue Tree HTB* dari 5 skenario berdasarkan table 4.2:

a. Grafik Skenario 1

Pada skenario 1 semua Departemen/Grup (*Manager*, *Marketing*, *Finance*) dan PC (*PC1*, *PC2*, *PC3*, *PC4*, *PC5*) aktif.

Gbr 32 Grafik perbandingan Simple Queue dan HTB Skenario 1

Dari grafik diatas diperoleh informasi bahwa pada metode *Simple Queue* bandwith yang diperoleh setiap PC saling berebut dan tidak ada kepastian, sedangkan pada *metode Queue Tree HTB*, PC 1(manager) yang mendapatkan bandwith yang lebih besar karena departemen Manager memiliki priority lebih tinggi dari pada departemen Marketing dan Finance.

b. Grafik Skenario 2

Pada skenario 2 semua *Departemen*/Grup yang aktif hanya marketing (*PC1*, *PC2*)

Gbr 33 Grafik perbandingan Simple Queue dan HTB Skenario 2

Dari grafik diatas diperoleh informasi bahwa pada metode *Simple Queue* bandwith yang diperoleh setiap PC hampir sama dengan bandwith yang diperoleh dengan metode *Queue Tree HTB*. Hal ini terjadi karena PC2 dan PC3 (marketing) memiliki

priority yang sama dan berada di parent yang sama yaitu Marketing.

c. Grafik Skenario 3

Pada skenario 3 semua Departemen/Grup yang aktif adalah Marketing (PC2, PC3) dan Finance (PC4, PC5)

Gbr 34 Grafik perbandingan Simple Queue dan HTB Skenario 3

Dari grafik diatas diperoleh informasi bahwa pada metode *Simple Queue* bandwith total yang diperoleh Departemen Marketing berebut dengan bandwth total yang yang diperoleh Departemen Finance dan tidak ada kepastian atau saling berebut, sedangkan pada metode *Queue Tree HTB* bandwith total yang diperoleh Departemen/Grup Marketing dan Finance hampir sama karena memiliki priority yang sama.

d. Grafik Skenario 4

Pada skenario 4 semua Departemen/Grup yang aktif adalah Manager (PC1) dan Marketing (PC2, PC3)

Gbr 35 Grafik perbandingan Simple Queue dan HTB Skenario 4

Dari grafik diatas diperoleh informasi bahwa pada metode *Simple Queue* bandwith yang diperoleh setiap PC saling berebut dan tidak ada kepastian, sedangkan pada metode *Queue Tree HTB*, PC 1 yang mendapatkan bandwith yang lebih besar karena Departemen/grup Manager memiliki priority lebih tinggi dari pada Departemenen Marketing.

e. Grafik Skenario 5

Pada skenario 5 hanya Departemen/grup Manager (PC1)

Gbr 36 Grafik perbandingan Simple Queue dan HTB Skenario 5

Dari grafik diatas diperoleh informasi bahwa pada metode PC PC 1 (manager) baik metode *Simple Queue* dan *Queue Tree HTB* memperoleh bandwith yang hampir sama.

Berdasarkan penyajian data dan implementasi diatas maka pada penelitian ini terdapat beberapa poin pembahasan yang bisa didapat, yaitu:

- 1. Metode *Queue Tree HTB* menunjukkan hasil yang lebih baik dalam pengelolaan bandwith dibandingkan dengan Simple Queue. Hal ini menunjukkan lebih baik dalam distribusi dan pengaturan aliran data
- 2. Dalam hal konfigurasi queue, *Simple Queue* memberikan sedikit tahapan untuk diterapkan dibandingkan dengan *Queue Tree HTB*
- 3. Dalam skala jaringan yang kecil, konfigurasi Simple Queue cocok untuk digunakan karena selain konfigurasi yang relatif lebih mudah dibanding *Queue Tree HTB*, dalam pembagian bandwith nya pun akan merata
- 4. Dalam hal pemantauan *Queue Tree HTB* memberikan kemudahan konfigurasi dan pemantauan jaringan dengan menyediakan struktur hierarki yang jelas. Ini memudahkan dalam mengelola aturan-aturan dan memahami sejauh mana penggunaan bandwith pada setiap tingkatan.
- 5. *Queue Tree HTB* dapat dioptimalkan untuk mengatur prioritas dan pembagian bandwith sesuai dengan kebutuhan spesifik dari berbagai grup pengguna. Hal ini membantu dalam fleksibilitas jaringan.
- 6. Dalam menerapkan manajemen bandwith menggunakan metode simple queue dan queue tree HTB pada mikrotik

routherboard jika router 1 dan router 2 max-limit nya sama maka yang terjadi adalah konsep HTB dan priority tidak berjalan dengan baik, dan agar konsep tersebut bisa berjalan dengan baik perlu diberikan max-limit lebih tinggi pada router 1 dibanding router 2 minimal 300 Kb atau 0,3 Mb.

IV. KESIMPULAN

Berikut adalah kesimpulan yang diperoleh sesuai dengan hasil yang diperoleh pada bab 4, yaitu:

- 1. Telah berhasil diimplementasikan manajemen bandwith dengan hierarical menggunakan metode *Queue Tree HTB* pada router mikrotik
- 2. Dari hasil analisis perbandingan metode bandwith manajemen *Simple Queue* dan *Queue Tree HTB* diperoleh kesimpulan bahwa metode *Queue Tree HTB* memberikan pembagian bandwith sesuai dengan skenario administrator jaringan jika dibandingkan dengan metode *Simple Queue*, karena pada metode *Queue Tree HTB* dapat menggunakan priority sehingga bandwith tidak berebut dan dapat disesuaikan dengan skenario Administrator Jaringan.

Referensi

- Fitriastuti, F., & Prasetyo Utomo, D. (2014). Implementasi Bandwdith Management Dan Firewall System Menggunakan Mikrotik Os 2.9.27. Jurnal Teknik, 4(1), 1–9.
- [2] I Dewa Made Widia dan Pramudy Atma Pradipta. 2017. Manajemen Bandwith Dengan Router Mikrotik Di PT. Laser Jaya Sakti. 1:28-41.
- [3] Melwin Syafrizal. 2005. Pengantar Jaringan Komputer. Yogyakarta: Penerbit Andi
- [4] Micro, A. 2012. Dasar-Dasar Jaringan Komputer. Banjar Baru: Clear OS Indonesia
- [5] Pagala, M.S. (2017). Optimalisasi Manajemen Bandwith Jaringan Komputer Menggunakan Metode Queue Tree Dan Pcq (Peer Connection Queue). Skripsi. Fakultas Teknik. Universitas Halu Uleo. Kendari
- [6] Pamungkas, C. A. (2016). Manajemen Bandwith Menggunakan Mikrotik Routerboard di Politeknik Indonusa Surakarta. Jurnal INFORMA Politeknik Indonusa Surakarta ISSN: 2442-7942 Tahun 2016, Vol. 1 Nomor 3.
- [7] Wilmadi, Kadek Agustia and , Muhammad Kusban, ST, MT and , Fatah Yasin Al Irsyadi, ST, MT (2013) Analisis Management Bandwith Dengan Metode PCQ (Per Connection Queue) Dan HTB (Hierarchical Token Bucket) Dengan Menggunakan Router Mikrotik. Skripsi skripsi, Universitas Muhammadiyah Surakarta.
- [8] Singgih, Restu (2019) Simulasi perbandingan Metode Queue Tree Dengan Simple Queue Untuk Optimalisasi Manajemen Bandwith Menggunakan Mikrotik Routerboard Di Jaringan Kantor BRS-AMPK Rumbai Pekanbaru Riau. Tesis lainnya, Universitas Islam Riau.
- [9] Nasution, M. I., Rahim, F., & Alfarizzi, H. (2022). Analysis And Implementation of Simple Queue and Queue Tree Methods For Optimizing Bandwitdh Management. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 488–498