ISSN: 2686-2220

Pengembangan dan Pengujian Aplikasi Pendataan Rumah Tidak Layak Huni (Studi Kasus Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan)

Nanda Ade Handaya¹, Yuni Yamasari²

1,2 Jurusan Teknik Informatika Fakultas Teknik Universitas Negeri Surabaya

1nanda.23397@mhs.unesa.ac.id

2yuniyamasari@unesa.ac.id

Abstrak— Rumah Tidak Layak Huni (RTLH) menjadi salah satu indikator yang digunakan dalam menetapkan prioritas bantuan perumahan oleh pemerintah daerah. Proses pendataan RTLH biasanya dilakukan secara manual oleh Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan. Proses ini tentu saja menimbulkan berbagai permasalahan, seperti duplikasi data, kesalahan input, serta keterlambatan dalam proses rekapitulasi. Oleh karena itu, penelitian ini memfokuskan untuk mengembangkan dan menguji aplikasi pendataan RTLH. Metode pengembangan sistem menggunakan pendekatan waterfall, mulai dari analisis kebutuhan hingga pengujian sistem. Fitur utama aplikasi meliputi input kondisi atap, dinding, dan lantai rumah, penghitungan skor otomatis, klasifikasi tingkat kerusakan, unggah bukti foto verifikasi, pembuatan laporan PDF, serta visualisasi statistik. Hasil pengujian oleh kepada staf teknis, admin bidang dan Tenaga Fasilitator Lapangan (TFL) dengan metode black-box menunjukkan seluruh fungsi berjalan dengan baik dan pengguna menyatakan kepuasan sebesar 98% terhadap sistem yang dikembangkan. Lebih dari itu, aplikasi ini terbukti mempercepat proses pendataan dari 1-2 hari menjadi beberapa jam dan meminimalisasi kesalahan input data

Kata Kunci — Rumah Tidak Layak Huni, AppSheet, Pendataan, Google Spreadsheet, RTLH, Kabupaten Magetan.

I. PENDAHULUAN

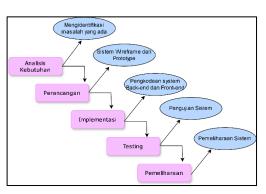
Dokumen Pendataan rumah tidak layak huni merupakan proses penting untuk memastikan data yang akurat dalam perencanaan dan pelaksanaan program peningkatan kualitas tempat tinggal di suatu daerah. Proses tersebut di Kabupaten Magetan menjadi krusial karena jumlah rumah tidak layak huni yang masih cukup signifikan dan membutuhkan perhatian khusus agar penyaluran bantuan dapat tepat sasaran. [1]. Sahrin dan Oktariyanda juga mencatat bahwa inovasi sistem informasi dalam pendataan rumah tidak layak huni dapat meningkatkan akurasi dan efisiensi dari informasi yang dikumpulkan [2]. Oleh karena itu, komunikasi dan koordinasi yang baik antara berbagai instansi terkait sangat penting agar proses pendataan berjalan mulus dan hasil yang diharapkan dapat tercapai. Data yang akurat dan terpercaya adalah fondasi dalam membuat kebijakan yang efektif dan efisien.

Penerapan teknologi dalam pendataan rumah tidak layak huni, seperti penggunaan Google Appsheet, menjadi inovasi terbaru yang menawarkan solusi untuk meningkatkan kualitas data. Teknologi ini memungkinkan integrasi data yang lebih mudah dan akses real-time yang dapat dimanfaatkan oleh Dinas

Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan. Menurut penelitian Wibawa dan Hardiyana, penggunaan sistem informasi geografis dapat membantu dalam penyusunan kebijakan yang lebih baik di tingkat desa [3]. Meliana et al. juga menekankan manfaat dari penggunaan Appsheet untuk meningkatkan efisiensi pendataan di bidang lainnya [4]. Kesimpulannya, implementasi aplikasi pendataan berbasis teknologi adalah langkah strategis yang dapat mendukung pengambilan keputusan yang lebih baik dan mempercepat penanganan rumah tidak layak huni di Kabupaten Magetan.

Pendataan rumah tidak layak huni di Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan adalah tantangan yang memerlukan perhatian khusus untuk meningkatkan akurasi dan efisiensi data yang diperoleh. Dalam konteks ini, implementasi teknologi modern seperti Google AppSheet menawarkan solusi yang signifikan. Menurut [1], penggunaan sistem pendukung keputusan berbasis web dalam pendataan rumah tidak layak huni dapat meningkatkan efektivitas pengambilan keputusan. Selain itu, [2] mencatat bahwa inovasi sistem informasi pendataan di Kabupaten Gresik telah membantu dalam perencanaan dan eksekusi program rehabilitasi rumah. Data yang akurat dan real-time sangat penting untuk memastikan bantuan sampai kepada mereka yang paling membutuhkan, dan teknologi dapat membantu mencapai tujuan ini. Dengan demikian, pendataan rumah tidak layak huni yang efektif dan efisien akan memperbaiki distribusi bantuan berdasarkan prioritas yang lebih tepat sasaran.

Memanfaatkan aplikasi pendataan yang canggih seperti Google AppSheet dapat meningkatkan kualitas dan keandalan data yang digunakan oleh Dinas terkait. [5] mengungkapkan bahwa aplikasi berbasis web mampu mempercepat proses pendataan dan menyederhanakan alur kerja administratif. Selain itu, penelitian [6] menekankan pentingnya pemanfaatan teknologi dalam meningkatkan transparansi dan akuntabilitas pengelolaan data rumah tidak layak huni. Aplikasi seperti ini memastikan bahwa data yang dikumpulkan konsisten dan dapat diakses oleh pejabat terkait di setiap tahap proses kebijakan, dari perencanaan hingga implementasi. Berdasarkan seluruh paparan tersebut, jelaslah bahwa integrasi teknologi dalam sistem pendataan rumah tidak layak huni merupakan langkah penting untuk mencapai keadilan sosial dan keterpaduan program bantuan perumahan di Kabupaten Magetan.


Dalam konteks penyusunan sistem pendataan yang efektif dan efisien, peneliti telah memeriksa sejumlah studi terdahulu terkait pendataan rumah tidak layak huni. Sebagai contoh, penelitian yang dilakukan oleh [1] mengembangkan sistem pendukung keputusan yang berbasis web untuk menyeleksi penerima bantuan rumah tidak layak huni, dan hal ini sejalan dengan upaya untuk memastikan ketepatan sasaran dalam distribusi bantuan. Selanjutnya, studi oleh [2] menyoroti informasi berbasis sistem digital mengoptimalkan pengelolaan data rumah tidak layak huni, yang menunjukkan bahwa penerapan teknologi informasi dapat meningkatkan efisiensi operasional dan manajemen data. Sementara itu, penelitian lain oleh [5] mengenai aplikasi pendataan berbasis digital di Dinas Sosial Kabupaten Tapin telah mendemonstrasikan efisiensi dalam menyederhanakan proses administrasi. Berdasarkan tinjauan tersebut, jelaslah bahwa meskipun setiap studi memiliki pendekatan yang sedikit berbeda, tujuan utamanya tetap sama, yaitu meningkatkan transparansi dan efisiensi dalam pengelolaan data rumah tidak lavak huni.

Namun demikian, terdapat beberapa perbedaan dan kesenjangan antara studi-studi terdahulu dengan penelitian yang diajukan saat ini. Sebagai contoh, meskipun studi oleh [6] menekankan pengolahan data rumah layak dan tidak layak huni menggunakan teknologi terkini, penelitian ini belum memanfaatkan potensi penuh dari aplikasi Google AppSheet yang dapat meningkatkan aksesibilitas dan ketersediaan data secara real-time. Penelitian oleh [7] yang menggunakan Google AppSheet untuk transaksi penjualan menunjukkan bahwa teknologi ini memiliki potensi yang belum sepenuhnya dieksplorasi dalam konteks pendataan rumah tidak layak huni. Demikian pula, [8] mendemonstrasikan penggunaan peta berbasis web dalam pemetaan rumah tidak layak huni, namun kurang memasukkan aspek interoperabilitas antara sistem informasi yang ada dengan platform berbasis mobile. Penelitian ini akan mencoba mengatasi keterbatasan tersebut dengan memberikan solusi integratif melalui implementasi aplikasi pendataan berbasis Google AppSheet, yang tidak hanya dapat meningkatkan efisiensi dan akurasi pendataan tetapi juga dapat memperluas aksesibilitas data bagi para pemangku kepentingan di Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan. Dengan demikian, penelitian ini diharapkan mampu memberikan kontribusi signifikan dalam konteks penyediaan data yang lebih handal dan berkelanjutan.

Dengan mempertimbangkan keterbatasan yang telah dijelaskan sebelumnya, tujuan dari penelitian ini adalah untuk mengimplementasikan aplikasi pendataan rumah tidak layak huni menggunakan Google AppSheet di Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan. Implementasi ini diharapkan dapat meningkatkan kualitas data dengan menyediakan akses real-time dan memperluas keterjangkauan data bagi para pemangku kepentingan terkait. Signifikansi penelitian ini terletak pada penggunaan teknologi modern yang dapat meningkatkan efisiensi pendataan dan akurasi informasi yang digunakan dalam pengambilan keputusan strategis, terutama dalam konteks pembangunan dan perencanaan perumahan daerah. Dalam hal urgensitas,

penelitian ini penting karena menyadari adanya kekurangan data yang dapat diakses secara tepat waktu dan dapat diandalkan, yang seringkali menjadi penghambat dalam merumuskan kebijakan yang efektif di bidang perumahan. Sebagai tambahan, dengan memanfaatkan potensi Google AppSheet, penelitian ini berupaya untuk menawarkan solusi teknologi yang belum sepenuhnya dieksplorasi dalam konteks pendataan perumahan, sekaligus mengisi celah dalam studi sebelumnya yang meskipun telah menggunakan teknologi ini dalam konteks berbeda, belum sepenuhnya memanfaatkan interoperability dan aksesibilitas data mobile. Dengan demikian, realisasi dari implementasi ini tidak hanya diharapkan memberi manfaat langsung dalam peningkatan kualitas data, tetapi juga mendorong pengembangan lebih lanjut dari solusi serupa yang dapat diadaptasi di daerah lain dengan tantangan yang serupa. Kombinasi dari aspek tujuan, signifikansi, dan urgensitas penelitian ini memberikan harapan baru bagi keberlanjutan dan perbaikan sistem pendataan rumah tidak layak huni untuk mendukung kebijakan perumahan yang lebih tepat sasaran di Kabupaten Magetan

II. METODE PENELITIAN

Gbr 1. Waterfall Model

Tahapan penelitian ini menggunakan model *waterfall* gambar.1 yang terbagi menjadi beberapa proses yang akan di jelaskan selanjutnya.

A. Analisa Kebutuhan

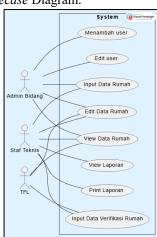
Penelitian ini menggunakan pendekatan rekayasa perangkat lunak model Waterfall yang terdiri dari tahapan analisis kebutuhan, perancangan, implementasi, pengujian, dan pemeliharaan. Fokus utama pada tahap awal adalah identifikasi dan perumusan kebutuhan sistem untuk pendataan Rumah Tidak Layak Huni (RTLH) di Kabupaten Magetan.

Hasil observasi menunjukkan bahwa pendataan RTLH masih dilakukan secara manual menggunakan formulir dan Excel, sehingga rentan terhadap kesalahan input, duplikasi data, dan keterlambatan pelaporan. Tidak adanya dokumentasi visual serta pencatatan aktivitas verifikasi menyebabkan lemahnya akurasi dan transparansi data.

Untuk menjawab permasalahan tersebut, dikembangkan sistem pendataan berbasis digital yang memungkinkan pencatatan kondisi rumah (atap, dinding, lantai), penghitungan skor otomatis, klasifikasi tingkat kerusakan, serta unggah dokumentasi visual. Penilaian menggunakan metode skoring

berbobot: atap dan dinding masing-masing 40%, dan lantai 20%, dengan klasifikasi skor akhir sebagai berikut: \le 1,5 (rusak berat), \le 2,5 (rusak sedang), dan \ge 2,5 (rusak ringan).

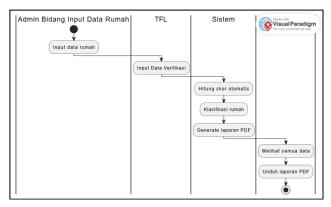
Adapun permasalahan yang berhasil diidentifikasi meliputi: pendataan manual, tidak adanya bukti visual, verifikasi yang tidak terpantau, dan rekapitulasi yang tidak otomatis. Sistem ini dirancang untuk melibatkan tiga aktor utama yaitu admin bidang, staf teknis, dan petugas lapangan.


Kebutuhan sistem diklasifikasikan menjadi kebutuhan fungsional, seperti input data kondisi rumah, kalkulasi skor otomatis, klasifikasi kondisi, unggah foto, pencatatan metadata verifikasi, serta ekspor laporan ke PDF. Sementara kebutuhan non-fungsional mencakup kemudahan penggunaan, kompatibilitas lintas perangkat, integrasi penyimpanan cloud, serta ketersediaan sistem 24/7.

B. Perancangan

Perancangan sistem merupakan tahap kritis dalam pengembangan aplikasi untuk memvisualisasikan alur kerja, interaksi antara pengguna dengan sistem, serta mekanisme teknis yang mendukung operasional sistem secara menyeluruh. Proses ini dilakukan guna memvalidasi kesesuaian sistem dengan kebutuhan pengguna sekaligus memastikan kelayakan implementasinya. Pada tahap perancangan, terdapat tiga komponen utama yang digunakan untuk memodelkan system yaitu *usecase* diagram, *activity* diagram dan *class* diagram.

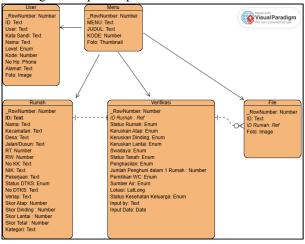
a) Usecase Diagram


Diagram use case sistem pendataan RTLH menunjukkan interaksi antara tiga peran utama: Admin Bidang, Staf Teknis, dan Petugas Lapangan (TFL). Admin bertugas mengelola pengguna dan mencetak laporan, Staf Teknis menangani input serta pembaruan data rumah, sementara TFL melakukan verifikasi langsung di lapangan. Diagram ini menggambarkan dengan jelas pembagian hak akses, alur kerja antar peran, dan cakupan fitur utama seperti manajemen data, verifikasi, dan pelaporan. Visualisasi ini memudahkan pengembang dalam merancang sistem yang terstruktur dan sesuai kebutuhan pengguna yang bisa di lihat pada Gbr.2 Usecase Diagram.

Gbr 2. Usecase Diagram RTLH

b) Activity Diagram

Activity diagram ini menggambarkan alur kerja sistem pendataan RTLH secara berurutan, dimulai dari proses input data rumah oleh Admin Bidang Perumahan. Diagram ini menjelaskan bagaimana Petugas Lapangan (TFL) melakukan pengisian detail kondisi rumah meliputi atap, dinding, dan lantai, serta melengkapi data lokasi disertai upload foto bukti lapangan. Sistem kemudian secara otomatis melakukan perhitungan skor, mengklasifikasikan tingkat kerusakan rumah, dan menghasilkan laporan dalam format PDF. Tahap akhir memungkinkan pengguna untuk melihat seluruh data yang telah terinput serta mengunduh laporan yang telah dibuat. Activity diagram ini secara visual memetakan alur proses bisnis secara lengkap, menunjukkan titik awal dan akhir aktivitas, keputusan logis yang mungkin terjadi, serta paralelisasi tugas jika ada, sehingga memudahkan pengembang dalam memahami keseluruhan operasional sistem seperti pada Gbr.3 Activity Diagram.



Gbr 3. Activity Diagram

c) Class Diagram

Class diagram ini menggambarkan struktur data dan hubungan antar entitas utama dalam sistem pendataan Rumah Tidak Layak Huni (RTLH). Diagram terdiri dari lima kelas utama, yaitu User, Menu, Rumah, Verifikasi, dan File. Setiap kelas memiliki atribut yang mendeskripsikan data yang dikelola dalam sistem. Kelas User menyimpan informasi pengguna, seperti nama, kata sandi, dan level akses, yang berhubungan dengan entitas Menu sebagai antarmuka navigasi aplikasi. Kelas Rumah merepresentasikan data identitas yang menjadi objek pendataan. Data ini kemudian divalidasi dan diverifikasi melalui kelas Verifikasi, yang mencatat kondisi fisik rumah seperti kerusakan atap, dinding, lantai dan lokasi, serta informasi sosial ekonomi lainnya. Hasil verifikasi dilengkapi dengan dokumentasi visual yang disimpan pada kelas File, yang menghubungkan data rumah dengan bukti foto lapangan. Diagram ini menunjukkan relasi antar entitas melalui referensi data dan menjelaskan bagaimana struktur database dibentuk secara logis. Dengan representasi ini, pengembang dapat lebih mudah memahami dan merancang arsitektur

sistem yang konsisten, terstruktur, dan sesuai kebutuhan fungsional aplikasi pendataan RTLH.

Gbr 4. Class Diagram

C. Implementasi

Implementasi sistem pendataan RTLH dilakukan menggunakan platform Google AppSheet, yang pengembangan aplikasi tanpa memungkinkan perlu menulis kode secara langsung (no-code platform). AppSheet dipilih karena kemampuannya membangun aplikasi mobile dan web secara cepat, integrasi otomatis dengan Google Spreadsheet sebagai basis data, kemudahan dalam menyesuaikan antarmuka pengguna. Dalam pengembangan ini, pengguna aplikasi dibagi menjadi tiga peran utama, yaitu Admin Bidang, Staf Teknis, dan Petugas Lapangan (TFL), yang masing-masing memiliki hak akses dan fungsi berbeda. Aplikasi dirancang untuk memungkinkan input data kondisi rumah (atap, dinding, lantai), verifikasi lapangan disertai foto dokumentasi, serta otomatisasi penghitungan skor dan klasifikasi tingkat kerusakan. Fitur-fitur tambahan seperti pembuatan laporan dalam format PDF dan grafik statistik juga diintegrasikan untuk mendukung proses pelaporan. Proses sinkronisasi data dilakukan secara real-time sehingga setiap perubahan dapat langsung tercermin dalam spreadsheet pusat.Pengujian aplikasi dilakukan menggunakan laptop dengan spesifikasi AMD Ryzen 7, RAM 16 GB, penyimpanan 512 GB, dan sistem operasi 64bit, serta smartphone Google Pixel 7a dengan sistem operasi Android 16, RAM 8 GB dan penyimpanan internal 128 GB. Kombinasi perangkat ini memastikan aplikasi dapat berjalan secara optimal baik dalam versi web maupun mobile, serta memberikan pengalaman penggunaan yang lancar bagi petugas lapangan di berbagai kondisi jaringan dan perangkat.

D. Testing

Pengujian sistem dilakukan menggunakan metode black-box untuk memastikan bahwa seluruh fitur pada aplikasi pendataan Rumah Tidak Layak Huni (RTLH) berfungsi sesuai dengan kebutuhan pengguna. Metode ini difokuskan pada pengujian aspek fungsionalitas tanpa

melihat struktur internal aplikasi. Skenario pengujian disusun berdasarkan peran pengguna, yaitu Admin Bidang, Staf Teknis, dan Petugas Lapangan (TFL), dengan masingmasing peran menjalankan fitur sesuai alur yang telah dirancang. Beberapa fitur yang diuji antara lain pengisian data rumah, verifikasi kondisi fisik rumah (atap, dinding, lantai), unggah foto lapangan, serta perhitungan skor dan klasifikasi kelayakan rumah. Selain itu, dilakukan pengujian terhadap fitur pelaporan berupa PDF dan visualisasi data dalam bentuk grafik.

Selain pengujian fungsional, dilakukan juga pengujian non-fungsional yang mencakup aspek performa, kompatibilitas, kemudahan penggunaan, dan keandalan sistem. Pengujian performa dilakukan dengan mengamati waktu sinkronisasi data antar perangkat dan keterlambatan saat pemrosesan laporan. Aplikasi menunjukkan waktu respons yang cepat dan dapat diakses dengan baik di berbagai jaringan internet.

E. Pemeliharaan

Tahap akhir adalah pemeliharaan, yang meliputi perbaikan jika terjadi kesalahan sistem, penyesuaian jika ada perubahan kebijakan, serta pengembangan lebih lanjut seperti integrasi laporan dashboard atau fitur notifikasi otomatis. Pemeliharaan juga mencakup pembaruan data penerima bantuan dan backup data berkala untuk menjamin keberlanjutan penggunaan sistem.

III. HASIL DAN PEMBAHASAN

A. Hasil

Pengembangan sistema berbasis *Appsheet* dalam penelitian ini bertujuan untuk mendukung proses pendataan Rumah Tidak Layak Huni Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan.Hasil akhir dari proses pengembangan dapat diakses melalui paltform *website* dan *mobile* yang nantinya dapat diakses oleh Admin Bidang Perumahan,Staff Teknis Bidang dan TFL.

1. Halaman Awal

Halaman Awal yang ditampilkan pada Gbr.5 berfungsi sebagai gerbang utama akses sistem pendataan RTLH. Antarmuka ini dirancang secara minimalis namun fungsional

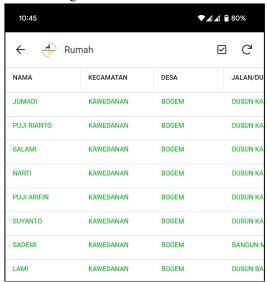
Gbr 5. Halaman Awal

2. Halaman *Login*

Halaman login berfungsi sebagai pintu masuk utama ke dalam sistem, di mana setiap pengguna diwajibkan untuk memilih atau memasukkan identitas login sebelum dapat mengakses fitur-fitur yang tersedia sesuai dengan perannya. Proses login ini bertujuan untuk memastikan keamanan dan pembatasan akses berdasarkan hak pengguna, seperti Admin Bidang, Staf Teknis, atau Petugas Lapangan. Dengan mekanisme autentikasi yang terintegrasi, sistem hanya memberikan izin akses kepada pengguna yang telah terdaftar dan memiliki otorisasi, sehingga dapat meminimalkan risiko kesalahan data dan menjaga kerahasiaan informasi. Desain halaman login dibuat sederhana dan intuitif, agar mudah digunakan oleh seluruh pengguna, baik melalui perangkat desktop maupun mobile.Tampilan halaman ini dapat dilihat pada Gbr.6.

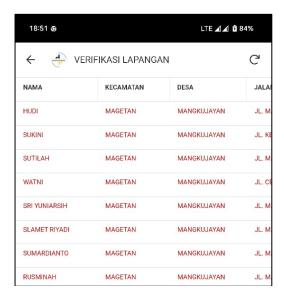
Gbr 6. Halaman Login

3. Halaman Menu


Setelah user berhasil masuk , sistem akan menampilkan halaman menu sebagai pusat navigasi aplikasi. Namun, tampilan menu ini bersifat dinamis, artinya akan berbeda untuk setiap pengguna, tergantung pada level akses yang telah ditentukan. Tampilan halaman menu dapat dilihat pada Gbr. 7.

Gbr 7. Halaman Menu

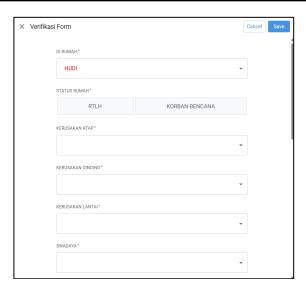
4. Halaman Rumah


Halaman rumah yang di tampilkan pada Gbr.8 merupakan salah satu fitur utama dalam aplikasi pendataan Rumah Tidak Layak Huni yang digunakan untuk menampilkan data calon penerima bantuan rumah tidak layak huni. Tampilan halaman ini disusun dalam bentuk tabel dinamis yang memuat informasi penting mengenai identitas rumah tangga yang telah diinput oleh admin bidang.

Gbr 8. Halaman Rumah

5. Halaman Verifikasi Lapangan

Halaman Verifikasi Lapangan merupakan fitur penting dalam aplikasi pendataan RTLH yang digunakan secara langsung oleh Petugas Lapangan (TFL) untuk melakukan input hasil kunjungan dan survei kondisi rumah. Menu ini hanya tersedia bagi pengguna dengan level akses tertentu, khususnya petugas lapangan dan staf teknis yang bertanggung jawab dalam proses pengumpulan data lapangan. Tampilan halaman verifikasi dapat dilihat pada Gbr.9.


Gbr 9. Halaman Verifikasi

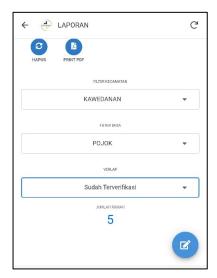
Untuk melakukan verifikasi dengan pilih salah satu data yang akan diverifikasi dan akan muncul detail data. Seperti yang di tampilkan pada Gbr. 10.

Gbr 10. Halaman Detail Data Verifikasi

Dan ketika tombol verifikasi di klik akan muncul form verifikasi seperti pada Gbr.11.

Gbr 11. Halaman Form Verifikasi

6. Halaman View


Menu View merupakan salah satu fitur pendukung dalam aplikasi pendataan rumah tidak layak huni yang berfungsi untuk menampilkan data hasil verifikasi dalam bentuk visualisasi grafik (chart). Menu ini dirancang agar pengguna, terutama pihak pengambil keputusan seperti staf teknis, dapat dengan mudah memahami dan menganalisis tren data secara visual dan interaktif. Menu view dapat dilihat pada Gbr.12.

Gbr 12. Halaman Menu View

7. Halaman Laporan

Menu laporan pada Gbr.13 dirancang untuk memfasilitasi pencetakan data rumah dalam bentuk dokumen PDF, baik yang telah diverifikasi maupun yang belum. Fitur ini dilengkapi dengan fungsi penyaringan data (filtering) berdasarkan wilayah administratif (kecamatan dan desa) serta status verifikasi dari masing-masing rumah. Melalui mekanisme ini, pengguna dapat menghasilkan laporan yang spesifik dan sesuai dengan kebutuhan monitoring maupun pelaporan resmi.

Gbr 13. Halaman Laporan

Proses pembuatan file PDF dilakukan secara otomatis dengan bantuan bot atau automation task yang telah dikonfigurasi dalam sistem. Setelah pengguna memilih kriteria filter yang diinginkan, sistem akan menjalankan perintah otomatis untuk menggabungkan data yang relevan ke dalam template laporan, lalu mengubahnya ke format PDF secara langsung. Hasil dokumen seperti pada Gbr.14 kemudian dapat diunduh untuk keperluan distribusi atau arsip. Dengan adanya fitur ini, proses pelaporan menjadi lebih efisien, konsisten, dan minim kesalahan manual.

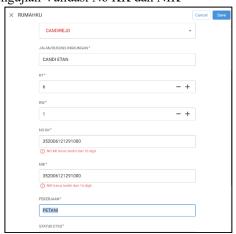
Gbr 14. Halaman Laporan

B. Pembahasan

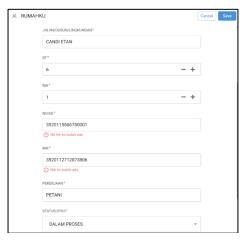
Pada pembahasan terdapat pemaparan dari hasil implementasi dan evaluasi terhadap sistem. Pembahasan meliputi pengujian fungsional dan non fungsional sistem.

Pembahasan fungsionalitas sistem dilakukan untuk menilai sejauh mana sistem telah memenuhi kebutuhan fungsional yang telah dirancang pada tahap analisis. Penilaian ini menggunakan pendekatan black-box testing, di mana setiap fungsi diuji berdasarkan input dan output-nya. Berikut skenario pengujian sistem:

1. Pengujian Input Data Rumah


Gbr 15. Input Data Rumah

A	В	C	D	E	F	G
ID	NAMA	KECAMATAN	DESA	JALAN/DUSUN/LINGKUNGAN	RT	RW
w61cybed	SULASTRI	MAOSPATI	NGUJUNG	DUSUNT	- 1	- 1
uvb46f1b	EKO SUWANDI	MAOSPATI	NGUJUNG	DUSUN I	5	2
7y92ahjc	SLAMET	MAOSPATI	NGUJUNG	DUSUN II	10	4
5vmrwebr	BIBIT	MAOSPATI	NGUJUNG	DUSUN II	10	4
kz85bdmn	RIJO	MAOSPATI	NGUJUNG	DUSUN I	4	- 1
3r4fk90i	KADIYEM	MAOSPATI	NGUJUNG	DUSUN I	2	2
hddkg5pd	RUDI SANTOSO	MAOSPATI	NGUJUNG	DUSUN III	18	6
o29wga2m	DIDIK PURWANTO	MAOSPATI	NGUJUNG	DUSUN III	20	6
gl65yxcj	JARWO	MAOSPATI	NGUJUNG	DUSUN III	20	6
53avn43a	DAMINI	MAOSPATI	NGUJUNG	DUSUN I	4	1
yvxhz2ha	SULIADI	MAOSPATI	NGUJUNG	DUSUN I	4	- 1
2d0a0ba7	NANDA	MAGETAN	CANDIREJO	CANDI ETAN	6	- 1


Gbr 16. Database Rumah

Pengujian fungsi input data rumah dilakukan untuk memastikan bahwa sistem mampu menerima, mencatat, dan menampilkan data hunian secara utuh dan terintegrasi. Fitur ini merupakan komponen penting dalam proses pendataan penerima bantuan Rumah Tidak Layak Huni (RTLH), karena setiap entri mewakili unit rumah tangga dengan informasi administratif yang harus akurat. Setelah data disimpan, sistem berhasil mencatat entri tersebut dalam database yang ditampilkan melalui lembar kerja *Google Spreadsheet* dengan ID rumah "20d0a0ba7".

2. Pengujian Validasi No KK dan NIK

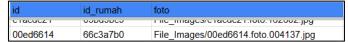
Gbr 17. Pengujian Validasi Jumlah Karakter NIK dan KK

Gbr 18. Pengujian Validasi NIK dan KK Sudah Ada

Pengujian terhadap fungsi validasi Nomor Induk Kependudukan (NIK) dan Nomor Kartu Keluarga (KK) dilakukan untuk memastikan sistem mampu mengenali input yang tidak valid maupun duplikat. Validasi ini sangat penting agar tidak terjadi entri data ganda yang dapat merusak integritas informasi dalam sistem. Pengujian dilakukan dengan cara mengisi formulir verifikasi rumah yang telah disediakan, di mana pengguna diminta untuk memasukkan NIK dan No KK. Hasil pengujian menunjukkan bahwa sistem secara otomatis menampilkan peringatan seperti "NIK ini sudah ada" atau "No KK ini sudah ada" jika data tersebut telah tersimpan sebelumnya di basis data. Ini membuktikan bahwa fitur validasi duplikasi berjalan dengan baik. Selain itu, ketika pengguna memasukkan NIK atau KK yang tidak berjumlah 16 digit, sistem juga memberikan peringatan berupa pesan "NIK harus terdiri dari 16 digit" atau "No KK harus terdiri dari 16 digit". Hal ini menunjukkan bahwa sistem telah menerapkan pengecekan format angka sesuai standar administrasi kependudukan nasional. Secara keseluruhan, fitur validasi ini berjalan efektif dalam menjaga akurasi dan keunikan data yang dimasukkan ke dalam sistem.

3. Pengujian Skoring dan Kategori Rumah

Gbr 19. Pengujian Skoring

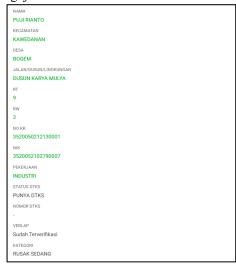

Pengujian sistem dilakukan untuk memverifikasi keakuratan fungsi perhitungan skor dan klasifikasi Rumah Tidak Layak Huni (RTLH) berdasarkan kondisi fisik bangunan. Pada pengujian ini, digunakan satu kasus uji dengan kondisi kerusakan sebagai berikut: atap mengalami kerusakan berat, dinding mengalami kerusakan ringan, dan lantai juga mengalami kerusakan ringan. Sistem menggunakan bobot penilaian sebesar 40% untuk komponen atap dan dinding, serta 20% untuk lantai. Dengan skor masing-masing komponen yang telah ditentukan — atap (1), dinding (3), dan lantai (3) — maka perhitungan skor total adalah: $(1 \times 40\%) + (3 \times 40\%) + (3 \times 20\%) = 0.4 + 1.2 + 0.6 = 2.2$.

Gbr 20. Kategori Rumah Berdasarkan Skoring

Hasil akhir dari skor total tersebut menghasilkan klasifikasi "Rusak Sedang", sesuai dengan kriteria kategorisasi RTLH yang telah dirancang. Pengujian ini menunjukkan bahwa sistem berhasil menghitung dan mengklasifikasikan data dengan benar sesuai formula dan bobot yang telah ditetapkan.

4. Pengujian Upload Foto

Gbr 21. Database File Foto



Gbr 22. Pengujian Upload Foto

Pengujian fungsi unggah foto dilakukan untuk memastikan bahwa sistem dapat menangani input berupa file gambar dengan baik, serta menyimpannya secara tepat dalam basis data dan struktur file yang telah ditentukan. Dalam pengujian ini, pengguna melakukan proses unggah foto melalui formulir verifikasi rumah, yang kemudian dihubungkan dengan entitas id rumah. Berdasarkan hasil verifikasi pada tabel penyimpanan

data, terlihat bahwa file gambar berhasil disimpan dengan format yang sesuai dan relasi antar data terjaga melalui pencatatan id rumah yang benar.

5. Pengujian Detail Rumah



Gbr 23. Pengujian Detail Rumah

Pengujian terhadap tampilan detail rumah dilakukan untuk memastikan bahwa sistem mampu menampilkan data yang telah diinput secara akurat dan utuh.

6. Pengujian Simpan Data Verifikasi

Pengujian fungsi penyimpanan data verifikasi dilakukan untuk memastikan bahwa sistem mampu menerima input dari pengguna dan menyimpannya secara konsisten ke dalam basis data. Proses pengujian dilakukan dengan mengisi formulir verifikasi, seperti penentuan status rumah, kondisi kerusakan atap, dinding, dan lantai, hingga informasi tambahan seperti swadaya, status tanah, serta lokasi.

Gbr 24. Pengujian Verifikasi

Α	В	С	D	E	F	G
ID	NAMA	KECAMATAN	DESA	JALAN/DUSUN/LINGKUNGAN	RT	RW
w61cybed	SULASTRI	MAOSPATI	NGUJUNG	DUSUNT	1	1
uvb46f1b	EKO SUWANDI	MAOSPATI	NGUJUNG	DUSUNI	5	2
7y92ahjc	SLAMET	MAOSPATI	NGUJUNG	DUSUN II	10	4
5vmrwebr	BIBIT	MAOSPATI	NGUJUNG	DUSUN II	10	4
kz85bdmn	RIJO	MAOSPATI	NGUJUNG	DUSUNI	4	1
3r4fk90i	KADIYEM	MAOSPATI	NGUJUNG	DUSUNI	2	2
hddkg5pd	RUDI SANTOSO	MAOSPATI	NGUJUNG	DUSUN III	18	6
o29wga2m	DIDIK PURWANTO	MAOSPATI	NGUJUNG	DUSUN III	20	6
gl65yxcj	JARWO	MAOSPATI	NGUJUNG	DUSUN III	20	6
53avn43a	DAMINI	MAOSPATI	NGUJUNG	DUSUNI	4	1
yvxhz2ha	SULIADI	MAOSPATI	NGUJUNG	DUSUNI	4	- 1
2d0a0ba7	NANDA	MAGETAN	CANDIREJO	CANDI ETAN	6	1

Gbr 25. Database Tabel Rumah

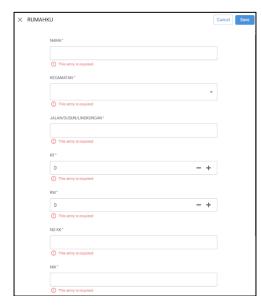
ID RUMAH	STATUS RUMAH	KERUSAKAN ATAP	KERUSAKAN DINDING	KERUSAKAN LANTAI	SWADAYA	STATUS TANAH	PENGHASILAN
968de4ea	RTLH	BERAT	BERAT	BERAT	BUKAN	MILIK SENDIRI	0-1.000.000
abc49700	RTLH	BERAT	BERAT	SEDANG	BUKAN	BUKAN MILIK SEN	0-1.000.000
3ce5cf67	RTLH	BERAT	BERAT	BERAT	BUKAN	MILIK SENDIRI	0-1.000.000
6c0d4b17	RTLH	BERAT	BERAT	RINGAN	BUKAN	MILIK SENDIRI	0-1.000.000
0d5ef6c3	RTLH	BERAT	BERAT	SEDANG	BUKAN	MILIK SENDIRI	0-1.000.000
4604e0e9	RTLH	BERAT	BERAT	SEDANG	BUKAN	MILIK SENDIRI	0-1.000.000
3a54fe17	RTLH	BERAT	BERAT	BERAT	BUKAN	MILIK SENDIRI	0-1.000.000
b24733e0	RTLH	BERAT	BERAT	BERAT	YA	MILIK SENDIRI	0-1.000.000
362dc0c2	RTLH	BERAT	BERAT	BERAT	YA	MILIK SENDIRI	0-1.000.000
3be15c58	RTLH	BERAT	BERAT	BERAT	BUKAN	MILIK SENDIRI	0-1.000.000
2d0a0ba7	RTLH	BERAT	RINGAN	RINGAN	YA	MILIK SENDIRI	0-1.000.000

Gbr 26. Database Tabel Verifikasi

Data tersebut juga berhasil tersinkronisasi dengan tabel utama rumah, menunjukkan bahwa sistem telah menjalankan proses write atau commit data ke database dengan benar.

7. Pengujian Generate PDF

Pengujian terhadap fungsi generate laporan dalam format PDF dilakukan untuk memastikan bahwa sistem mampu mengubah data rumah tangga penerima bantuan RTLH yang tersimpan dalam basis data menjadi dokumen yang terstruktur dan siap dicetak secara formal. Fitur ini sangat penting dalam mendukung kebutuhan pelaporan dan dokumentasi administratif yang dibutuhkan oleh pihak instansi. Berdasarkan hasil pengujian, sistem berhasil menghasilkan dokumen PDF secara otomatis dengan isi yang sesuai dengan data input, termasuk identitas rumah tangga, klasifikasi kerusakan, dan hasil verifikasi lapangan. Dokumen ini dapat langsung diunduh atau dicetak melalui perangkat pengguna, baik dari tampilan web maupun aplikasi mobile. Proses konversi data ke dalam bentuk PDF juga berjalan cepat dan responsif, tanpa memerlukan aplikasi tambahan. Contoh hasil laporan PDF yang dihasilkan dapat dilihat pada Gbr.14.


8. Pengujian Filter Laporan

Pengujian fitur filter laporan bisa dilihat di Gbr.13.Pengujian ini dilakukan untuk memastikan bahwa sistem mampu menyaring data rumah tangga penerima bantuan Rumah Tidak Layak Huni (RTLH) berdasarkan kriteria administratif dan status verifikasi tertentu. Fitur ini berfungsi penting dalam membantu pengguna menampilkan data secara terfokus, efisien, dan sesuai kebutuhan pelaporan.

9. Pengujian Menu View

Pengujian menu View dilakukan untuk memastikan bahwa sistem mampu menyajikan data RTLH dalam bentuk visualisasi yang informatif, interaktif, dan mendukung analisis kebijakan secara real-time. Fitur ini dirancang untuk memudahkan staff teknis dalam memahami sebaran dan karakteristik data RTLH tanpa harus membaca laporan dalam bentuk tabel atau dokumen panjang.Pengujian ini bisa dilihat pada Gbr.12.

10. Pengujian Respon Input Kosong

Gbr 27. Pengujian Input Kosong

Pengujian ini dilakukan untuk memastikan bahwa sistem mampu memverifikasi kelengkapan data yang dimasukkan pengguna sebelum data disimpan ke dalam basis data.

Berdasarkan uji coba yang dilakukan tanpa kehadiran langsung pembuat aplikasi, pengguna tetap dapat mengoperasikan sistem dengan baik. Untuk mendapatkan gambaran objektif, dilakukan penyebaran kuesioner kepada staf teknis,admin bidang dan TFL menggunakan skala Likert (1–5) dengan 10 pernyataan. Berikut rumus perhitungan kuesioner berdasarkan skala Likert.

Hasil Kuesioner

$$= \frac{Total\ Jumlah\ Skor}{Pertanyaan *\ Responden *\ Skor\ Tertinggi} \times 100\% \ (1)$$

$$Hasil\ Kuesioner = \frac{147}{10*3*5} \times 100\%$$

$$Hasil\ Kuesioner = \frac{147}{150} \times 100\%$$

$$= 98\%$$

Tabel 1. Kuesioner

No	Pertanyaan	Ja	Jawaban Responden			Total	
		SS	S	N	TS	STS	
1	User mudah menginput data rumah	3					3
2	NIK dan No KK tervalidasi dengan benar	3					3
3	Perhitungan skor RTLH sesuai	3					3
4	User dapat upload foto Rumah lebih dari satu	3					3
5	Tampilan detail rumah sudah sesuai	2	1				3

6	Data Verifikasi lapangan dapat tersimpan	3			3
7	Laporan PDF berhasil didwonload	1	2		3
8	Hasil filter laporan sudah sesuai	3			3
9	Tampilan chart sudah sesuai	2	1		3
10	Respons ketika input kosong sudah sesuai	3			3

Tabel 2. Perhitungan Kuesioner

No	SS*5	S*4	N*3	TS*2	STS*1	Total Tiap Pertanyaan
1	15					15
2	15					15
3	15					15
4	15					15
5	10	4				14
6	15					15
7	10	4				14
8	15					15
9	10	4				14
10	15					15
Total	135	12	0	0	0	147

Tabel 3. Indeks Interval

Interval	Keterangan			
0-19,99%	Sangat Tidak Setuju			
20-39,99%	Tidak Setuju			
40-59,99%	Netral			
60-79,99%	Setuju			
80-100%	Sangat Setuju			

Hasil perhitungan menunjukkan tingkat kepuasan pengguna mencapai 98%, yang termasuk dalam kategori "Sangat Setuju", sebagaimana dirangkum pada Tabel 1 dan Tabel 2.

Sebagai bentuk validasi terhadap kualitas sistem secara keseluruhan, dilakukan pula pengujian terhadap aspek nonfungsional. Pengujian ini mencakup kemudahan penggunaan, kompatibilitas lintas perangkat, keandalan penyimpanan berbasis cloud, serta kemampuan sistem dalam menangani kondisi jaringan yang tidak stabil. Hasil dari pengujian nonfungsional tersebut disajikan pada Tabel berikut:

Tabel 4. Pengujian non Fungsional

No	Kebutuhan Non- Fungsional		Output yang Diharapkan	Has il Uji (√ /	Catatan / Bug yang Ditemukan
----	---------------------------------	--	---------------------------	----------------------------------	------------------------------------

		Diberikan		X)	
1	Antarmuka mudah digunakan (KNF-01)	Petugas lapangan dan staf teknis mengguna kan sistem tanpa pelatihan teknis	Pengguna dapat mengoper asikan sistem dengan lancar dan paham alur input	√	Tingkat kepuasan pengguna 98%
2	Sistem berjalan di Android/iO S dan desktop (KNF-02)	Akses aplikasi melalui Android, iOS, dan browser desktop	Semua versi perangkat dapat menampil kan dan menjalank an fitur tanpa error	√	Telah diuji di beberapa perangkat, tidak ada bug ditemukan
3	Penyimpana n cloud otomatis (KNF-03)	Input data rumah dan verifikasi lalu cek Google Sheet	Data langsung tersimpan ke spreadshe et tanpa perlu simpan manual	√	Sinkronisa si berjalan real-time

IV. KESIMPULAN

Berdasarkan hasil penelitian dan pengembangan sistem pendataan rumah tidak layak huni di Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Magetan, maka dapat disimpulkan beberapa hal berikut:

- 1. Penelitian ini berhasil memenuhi tujuannya dengan merancang dan membangun aplikasi pendataan Rumah Tidak Layak Huni (RTLH) yang membantu mempercepat dan menyederhanakan proses pendataan yang sebelumnya dilakukan secara manual. Aplikasi ini memungkinkan input data, verifikasi kondisi rumah, serta pelaporan dilakukan secara digital dan terintegrasi dalam satu sistem berbasis AppSheet. Dengan adanya aplikasi ini, proses kerja di lapangan menjadi lebih efisien.
- Berdasarkan kuesioner yang diisi oleh pengguna (staf teknis), diperoleh tingkat kepuasan sebesar 98%, yang menunjukkan bahwa aplikasi diterima dengan sangat baik di lapangan. Pengguna merasa aplikasi mudah digunakan dan membantu mempercepat proses kerja.

UCAPAN TERIMA KASIH

Penulis mengucapkan syukur kepada Tuhan Yang Maha Esa atas rahmat-Nya sehingga artikel ini dapat diselesaikan. Terima kasih kepada orang tua, dosen pembimbing, serta teman-teman atas dukungan dan bimbingannya. Penghargaan juga diberikan kepada semua pihak yang turut membantu, serta apresiasi untuk diri sendiri atas keteguhan dalam menjalani proses ini.

REFERENSI

- [1] Sugihartono, Tri. 2018. "Implementasi Sistem Pendukung Keputusan Penerima Bantuan Rumah Tidak Layak Huni Berbasis Web." *Jurnal Sisfokom (Sistem Informasi Dan Komputer)* 7 (1): 52–56. https://doi.org/10.32736/SISFOKOM.V7I1.299.
- [2] Sahrin, Liza Alvini, and Trenda Aktiva Oktariyanda. 2022. "Inovasi Sistem Informasi Pendataan Rumah Tidak Layak Huni (SIGAP-RTLH) Oleh Dinas Perumahan dan Kawasan Permukiman Kabupaten Gresik." Publika. https://doi.org/10.26740/publika.v10n3.p725-738.
- [3] Wibawa, Julian Chandra, and Bella Hardiyana. 2019. "Rancang Bangun Sistem Informasi Geografis Rumah Tidak Layak Huni Sebagai Pendukung Keputusan Kebijakan Di Tingkat Desa." Jurnal Teknik Informatika Dan Sistem Informasi 5 (1): 2443–2229. https://doi.org/10.28932/JUTISI.V511.1580.
- [4] Meliana, Selly, Bunyamin Bunyamin, and Fhira Nhita. 2024. "Pengembangan Aplikasi Berbasis Google AppSheet Untuk Pendataan Kegiatan Pembinaan Panti Yatim Dan Dhuafa Lazis Syamsul Ulum Kecamatan Dayeuhkolot." Charity: Jurnal Pengabdian Masyarakat 7 (1). https://doi.org/https://doi.org/10.25124/charity.v7i1.
- [5] Anggraini, Lilis. 2020. "Aplikasi Pendataan Bantuan Rumah Tidak Layak Huni Pada Dinas Sosial Kabupaten Tapin." Jurnal Teknik Informatika Dan Elektro 2 (2). https://doi.org/10.55542/jurtie.v2i2.444.
- [6] Zabillah, Myah. 2022. "Aplikasi Pengolahan Data Rumah Layak Huni dan Tidak Layak Huni Pada Dinas Perumahan Rakyat Kawasan Permukiman dan Pertanahan Kabupaten Lahat." Http://Eprints.Polsri.Ac.Id/12467/.
- [7] Lulu'atul Maqfiroh, Wilda. 2024. "Sekolah Tinggi Teknologi Terpadu Nurul Fikri Appsheet Dengan Metode Waterfall (Studi Kasus: Toko Zahar Frozen Food) Tugas Akhir." https://repository.nurulfikri.ac.id/id/eprint/686/1/2024-Wilda Lulu%27atul Maqfiroh-Sistem Informasi-Fulltext - Wilda Lulu%27atul Magfiroh.pdf.
- [8] Wicaksono, Riyanda Satriyo, Adam Hendra Brata, and Mahardeka Tri Ananta. 2023. "Sistem Pemetaan Dan Pelaporan Rumah Tidak Layak Huni Berbasis Web (Studi Kasus: Dinas Perkim Kabupaten Magetan)." Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer 7 (2): 613–22. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12261.
- [9] Purnamasari, Indah Suci, Uce Indahyanti, and Ika Ratna Indra Astutik. 2023. "Sistem Pakar Diagnosa Penyakit Influenza (Flu) Menggunakan Metode Forward Chaining." Journal of Computer System and Informatics (JoSYC) 4 (2). https://doi.org/10.47065/josyc.v4i2.3078.
- [10] Wijesekara, D. S., P. L.S. Peiris, D. S. Fernando, T. D.N. Palliyaguru, and W. A.D.N. Fonseka. 2020. "Developing an Electronic Record Keeping System at a Paediatric Clinic in Colombo South Teaching Hospital, Sri Lanka." Sri Lanka Journal of Child Health 49 (2). https://doi.org/10.4038/sljch.v49i2.8958.
- [11] Kurniawan, Aditya, Kholilatul Wardani, and Eki Ahmad Zaki Hamidi. 2023. "Cloud Based Daily Periodic Inspection Dozer Komatsu D31P Using Google Appsheet Development Platform." In Proceeding of 2023 9th International Conference on Wireless and Telematics, ICWT 2023. https://doi.org/10.1109/ICWT58823.2023.10335457.
- [12] Gisni, Gisni Ariyanti. 2021. "Perancangan Sistem Absensi Siswa Menggunakan Aplikasi Appsheet Pada MDTA Attawakkal." Jurnal Teknik Informatika UNIKA Santo Thomas. https://doi.org/10.54367/jtiust.v6i2.1553.
- [13] Hassan, Mohamad Khairi, Mohd Hazri Mohd Rusli, and Noor Azlina Mohd Salleh. 2023. "Development of an Order Processing System Using Google Sheets and Appsheet for a Malaysian Automotive SME Factory Warehouse." Journal of Mechanical Engineering 20 (3). https://doi.org/10.24191/jmeche.v20i3.23901.