Model Klasifikasi Serangan DoS pada Jaringan Blockchain Menggunakan Algoritma Proximal Policy Optimization
Abstract
Abstrak— Teknologi blockchain menghadirkan pendekatan baru dalam pengelolaan sistem informasi terdesentralisasi yang mampu menjaga keamanan, transparansi, dan integritas data. Namun, karakteristik tersebut menjadikan teknologi blockchain rentan terhadap ancaman siber, terutama serangan Denial of Service (DoS) yang berfokus pada gangguan ketersediaan layanan melalui pembanjiran lalu lintas pada node blockchain. Penelitian ini bertujuan untuk merancang dan mengembangkan model klasifikasi serangan DoS pada jaringan blockchain dengan menggunakan algoritma Proximal Policy Optimization (PPO). Algoritma PPO merupakan salah satu metode dari reinforcement learning yang dikenal memiliki kestabilan tinggi dan efisiensi dalam proses pembaruan kebijakan. Dataset yang di gunakan dalam penelitian ini ada Blockchain Network Attack Traffic (BNaT), yang mencakup lalu lintas normal dan serangan DoS pada jaringan Ethereum privat. Proses penelitian meliputi tahap pengumpulan data, pre-pemrosesan (preprocessing), pelatihan model, dan evaluasi kinerja menggunakan metrik accuracy, precision, recall, F1-Score, dan Area Under the Curve (AUC). Hasil pengujian menunjukkan bahwa model PPO berhasil mencapai akurasi 99,65% dan F1-Score sebesar 99,65%, dengan nilai AUC mencapai 99,99%. Nilai-nilai tersebut menunjukkan bahwa PPO mampu mengenali pola serangan DoS secara adaptif dan stabil. Oleh karena itu, pendekatan reinforcement learning berbasis PPO dapat menjadi alternatif yang menjanjikan untuk pengembangan sistem deteksi ancaman pada jaringan blockchain yang bersifat dinamis dan kompleks.
Kata Kunci— Blockchain, Denial of Service, Proximal Policy Optimization, Reinforcement Learning, Keamanan Siber
Downloads
Abstract views: 0
,
PDF Downloads: 0


View My Stats


