STUDI EKSPERIMENTAL PENGARUH RASIO PANJANG UJUNG SUDU PADA PLAT L DENGAN DIAMETER TURBIN TERHADAP DAYA DAN EFISIENSI PADA TURBIN PELTON

  • Kharisma Ramadhan
  • Priyo Adiwibowo

Abstract

The increasing need for energy from electricity also creates problems, namely the availability of energy from fossils which is already in short supply. By utilizing renewable energy sources such as PLTMH, it is hoped that it will be able to replace energy that is not environmentally friendly. The Pelton turbine is a type of water turbine that utilizes the potential water height (head) and uses a small water discharge as a source of power to drive the turbine. In this research, the aim is to find the best ratio of the blade tip length on the L plate to the turbine diameter which is capable of producing the largest turbine power and the best efficiency. The method used in this research is the experimental method which varies the ratio 0, ratio 0.0295, ratio 0.0887 and ratio 0.1479. The turbine used has a specification of 8 blades which are then tested on varying water flow capacities, namely 0.001854, 0.002005, 0.002434, and 0.003114 in m3/s units. This turbine has a nozzle diameter of 25.4 mm and a spray distance from the turbine of 50 mm diameter. Then also use loading variations to obtain turbine power and turbine efficiency. Among the variation of ratios in this study, the one that obtained the largest turbine power was a ratio of 0.0887 at 0.003114 m3/s flow load capacity with a load given of 40 kg and 45.87 Watts of power. The most optimal efficiency is also obtained at a ratio of 0.0887 when 0.002005 m3/s of water flow capacity and given a load of 15 kg has an efficiency of 53.70%. It can also be concluded that the ratio of 0.0887 shows the most optimal results by obtaining the highest power and efficiency for each variation of water flow capacity. Meanwhile, the 0 ratio turbine contains the lowest power and turbine efficiency compared to other ratio turbines.

Keywords: Turbine, Pelton, Ratio of L Plate Blade Tip Length to Turbine Diameter, Pelton Turbine Performance.

Published
2024-03-08
Abstract Views: 12
PDF Downloads: 15