IDENTIFIKASI BAHAYA DENGAN METODE *HAZARD IDENTIFICATION, RISK*ASSESSMENT AND RISK CONTROL (HIRARC) DALAM UPAYA MEMPERKECIL RISIKO KECELAKAAN KERJA DI PT. PAL INDONESIA

Desy Syfa Urrohmah

S1 Pendidikan Teknik Mesin, Fakultas Teknik, Universitas Negeri Surabaya e-mail: desyurrohmah@mhs.unesa.ac.id

Dyah Riandadari

Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Surabaya e-mail: dyahriandadari@unesa.ac.id

Abstrak

PT. PAL Indonesia adalah perusahaan yang bergerak di bidang konstruksi perkapalan. Kegiatan utamanya adalah memproduksi kapal perang dan kapal niaga, memberikan jasa perbaikan dan pemiliharaan kapal, serta rekayasa umum dengan spesifikasi tertentu berdasarkan pesanan. Hazard Identification, Risk Assessment And Risk Control (HIRARC) merupakan salah satu cara mengidentifikasi potensi bahaya yang terdapat pada setiap jenis pekerjaan. Tujuan penelitian ini adalah untuk mengetahui identifikasi bahaya, penilaian risiko, dan pengendalian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) di PT. PAL Indonesia. Metode penelitian yang digunakan adalah deskriptif pendekatan kualitatif. Objek penelitian adalah pekerjaan yang berpotensi bahaya di Divisi Kapal Niaga. Teknik pengumpulan data yaitu observasi lapangan, wawancara, dan dokumentasi. Analisis data secara deskriptif menggunakan model Miles dan Huberman. Hasil penelitian dapat diketahui bahwa pada pekerjaan sistem instalasi pipa bahan bakar terdapat 7 aspek dengan 10 potensi bahaya, 4 kategori risiko tinggi, 2 kategori risiko sedang, 4 kategori risiko rendah. Pada pekerjaan sistem diesel generator terdapat 4 aspek dengan 7 potensi bahaya, 2 kategori risiko tinggi, 2 kategori risiko sedang, 3 kategori risiko rendah. Pada pekerjaan sistem tambat kapal terdapat 4 aspek dengan 7 potensi bahaya, 4 kategori risiko tinggi, 2 kategori risiko sedang, 1 kategori risiko rendah. Pengendalian bahaya yang diusulkan adalah melakukan sosialisasi secara rutin mengenai K3 terutama mengenai potensi bahaya dan risiko untuk mengurangi unsafe action dan unsafe condition. Untuk perlengkapan APD seharusnya disesuaikan dengan jenis pekerjaan yang dilakukan karena masih ada ketidaksesuaian dalam memakai APD.

Kata Kunci: Identifikasi Bahaya, Penilaian Risiko, Pengendalian Risiko, HIRARC

Abstract

PT PAL Indonesia is a company engaged in the construction of shipping. Its main activity is the manufacture of warships and commercial ships, providing the service of repair and the ship, as well as engineering junghuhn common with certain specifications based on the order. Hazard Identification, Risk Assessment And Risk Control (HIRARC) is one of the ways to identify potential dangers in any kind of job. The purpose of this research is to know the hazard identification, risk assessment, and risk control with the method of Hazard Identification, Risk Assessment And Risk Control (HIRARC) in PT. PAL Indonesia. The research method used is descriptive qualitative approach. The object of research is the work that is potentially a hazard division Ship Commerce. Data collection techniques are field observation, interviews, and documentation. Descriptive data analysis using models, Miles and Huberman. Research results can be known that work on fuel pipeline installation system there are 7 aspects with 10 potential hazards, 4 high risk category, 2 medium risk category, 4 low risk category. On the work of the system there are 4 generator diesel with 7 aspects of the potential dangers, 2 high risk category, 2 medium risk category, 3 low risk category. On the docking system of the ship there are 4 to 7 aspects of the potential dangers, 4 high risk category, 2 medium risk category, 1 low risk category. The proposed hazard control is doing a routine about the socialization of K3 is mainly about the potential dangers and risks to reduce unsafe action and unsafe condition. For Personal Protection equipment should be tailored to the type of work being done because there is still discrepancy in wearing Personal Protection.

Keywords: Identification Of Hazards, Risk Assessment, Risk Control, HIRARC

PENDAHULUAN

Peran sumber daya manusia merupakan modal dasar dalam penentuan tujuan perusahaan. Tanpa peran sumber daya manusia, kegiatan dalam perusahaan tidak akan berjalan dengan baik. Manusia selalu berperan aktif dan dominan dalam setiap kegiatan organisasi, karena manusia menjadi perencana, pelaku, dan penentu terwujudnya tujuan organisasi (Hasibuan, 2012).

Setiap perusahaan selalu mempunyai risiko terjadinya kecelakaan. Besarnya risiko yang terjadi

tergantung dari jenis industri, teknologi serta upaya pengendalian risiko yang dilakukan. Kecelakaan akibat kerja adalah kecelakaan yang terjadi dikarenakan oleh pekerjaan atau pada waktu melaksanaan pekerjaan pada perusahaan. Secara garis besar kejadian kecelakaan kerja disebabkan oleh dua faktor, yaitu tindakan manusia yang tidak memenuhi keselamatan kerja (unsafe act) dan keadaan-keadaan lingkungan vang tidak aman (unsafe condition). Salah satu sistem manajemen K3 yang berlaku global atau Internasional adalah OHSAS 18001:2007. Biasanya dikenal dengan singkatan HIRARC. Identification Risk Assessment & Risk Control (HIRARC) merupakan proses mengidentifikasi bahaya yang dapat terjadi dalam aktifitas rutin ataupun non rutin dalam perusahaan, untuk selanjutnya dilakukan penilaian risiko dari bahaya tersebut. Hasil dari penilaian risiko tersebut berguna untuk membuat program pengendalian bahaya agar perusahaan dapat meminimalisir tingkat risiko yang mungkin terjadi sehingga dapat mencegah terjadinya kecelakaan kerja.

PT. PAL Indonesia merupakan salah satu perusahaan yang bergerak di bidang konstruksi perkapalan. PT. PAL Indonesia (Persero) sendiri masih terjadi kecelakaan kerja mulai dari risiko rendah hingga risiko tinggi. Dalam kasus kecelakaan kerja, bagian Divisi Kapal Niaga yang sering mengalami kasus kecelakaan kerja. Tercatat dari data yang kami peroleh dari Divisi Kapal Niaga PT. PAL Indonesia (Persero), pada tahun 2015 terjadi kecelakaan kerja sebesar 44%. Pada tahun 2016 sebesar 31%. Sedangkan, pada tahun 2017 terjadi kecelakaan kerja sebesar 25%. Data kecelakaan kerja diatas menunjukkan semakin menurunnya presentase kecelakaan kerja, akan tetapi masih tetap terjadi kecelakaan kerja.

Alasan peneliti sendiri mengambil metode *Hazard Identification, Risk Assessment And Risk Control* (HIRARC) ialah karena tingkat kecelakaan kerja dan berbagai ancaman keselamatan dan kesehatan kerja (K3) masih cukup tinggi pada sektor industri. Keselamatan kerja dimaksudkan untuk mencegah, mengurangi, melindungi bahkan menghilangkan resiko kecelalakaan kerja (*zero accident*) pada tenaga kerja melalui pencegahan timbulnya kecelakaan kerja yang diakibatkan selama melakukan kegiatan. Oleh karena itu setiap perusahaan yang memiliki resiko kecelakaan kerja dapat melakukan identifikasi bahaya salah satunya dengan metode *Hazard Identification*, *Risk Assessment And Risk Control* (HIRARC).

Rumusan Masalah

Rumusan masalah yang akan dibahas dalam penelitian ini adalah sebagai berikut:

- Bagaimana identifikasi bahaya dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada Divisi Kapal Niaga di PT. PAL Indonesia?
- Bagaimana penilaian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada Divisi Kapal Niaga di PT. PAL Indonesia?
- Bagaimana pengendalian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada Divisi Kapal Niaga di PT. PAL Indonesia?

Tujuan Penelitian

Adapun tujuan yang ingin dicapai dari penelitian ini adalah:

- Untuk mengetahui identifikasi bahaya dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada Divisi Kapal Niaga di PT. PAL Indonesia.
- Untuk mengetahui penilaian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada Divisi Kapal Niaga di PT. PAL Indonesia.
- Untuk mengetahui pengendalian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada Divisi Kapal Niaga di PT. PAL Indonesia.

Keselamatan dan Kesehatan Kerja (K3)

i Julana

Menurut ILO/Word Health Organization (WHO) (1998) "Keselamatan dan Kesehatan Kerja (K3) adalah suatu promosi, perlindungan dan peningkatan derajat kesehatan yang setinggi tingginya mencakup aspek fisik, mental, dan sosial untuk kesejahteraan seluruh pekerja di semua tempat kerja."

Sistem Manajemen Keselamatan dan Kesehatan Kerja (SMK3)

Menurut Kepmenaker 05 Tahun (1996) "Sistem Manajemen K3 adalah bagian dari sistem manajemen secara keseluruhan yang meliputi struktur organisasi, perencanaan, tanggung jawab, pelaksanaan, prosedur, proses, dan sumber daya yang dibutuhkan bagi pengembangan, penerapan, pencapaian, pengkajian, dan pemeliharaan kebijakan keselamatan dan kesehatan kerja dalam pengendalian risiko yang berkaitan dengan kegiatan kerja guna terciptanya tempat kerja yang aman, efisien dan produktif".

Bahaya (Hazard)

Menurut OHSAS 18001:2007 "Bahaya adalah sumber, situsasi atau tindakan yang berpotensi menimbulkan kerugian dalam hal luka-luka atau penyakit terhadap manusia".

Risiko (Risk)

Menurut OHSAS 18001:2007 "Risiko adalah kombinasi dari kemungkinan terjadinya kejadian berbahaya atau paparan dengan keparahan dari cidera atau gangguan kesehatan yang disebabkan oleh kejadian atau paparan tersebut".

HIRARC (Hazard Identification, Risk Assessment and Risk Control)

Menurut Ramli (2010) "HIRARC adalah serangkaian proses mengidentifikasi bahaya yang dapat terjadi dalam aktifitas rutin ataupun non rutin di perusahaan kemudian melakukan penilaian risiko dari bahaya tersebut lalu membuat program pengendalian bahaya tersebut agar dapat diminimalisir tingkat risikonya ke yang lebih rendah dengan tujuan mencegah terjadi kecelakaan".

Identifikasi Bahaya (Hazard Identification)

Menurut Ramli (2010) "Identifikasi bahaya adalah upaya sistematis untuk mengetahui adanya bahaya dalam aktivitas organisasi". Setiap tempat kerja yang melaksanakan identifikasi risiko dari setiap persitiwa lalu dilakukan petimbangan kondisi dalam menentukan risiko adalah sebagai berikut:

- Kondisi operasi normal (N): Pekerjaan sehari-hari dan sesuai prosedur
- Kondisi operasi abnormal (A): Pekerjaan diluar prosedur
- Kondisi darurat (E) : Keadaan yang sulit dikendalikan

Penilaian Risiko (Risk Assessment)

Menurut Ramli (2010) Penilaian risiko adalah upaya untuk menghitung besarnya suatu risiko dan menetapkan apakah risiko tersebut dapat diterima atau tidak. Penilaian risiko digunakan untuk menentukan tingkat risiko ditinjau dari kemungkinan terjadinya (likelihood) dan keparahan yang dapat ditimbulkan (severity). Metode kualitatif menurut standar AS/NZS 4360, kemungkinan atau likelihood diberi rentang antara suatu risiko yang jarang terjadi sampai dengan risiko yang dapat terjadi setiap saat. Untuk keparahan atau severity dikategorikan antara kejadian yang tidak menimbulkan cedera atau hanya kerugian kecil yang paling parah jika dapat menimbulkan kejadian fatal

(meninggal dunia) atau kerusakan besar terhadap aset perusahaan.

Tabel 1. Ukuran Kualitatif *Likelihood* pada Standar AS/NZS 4360-2004

ì	Tingkat	Deskripsi	Keterangan
	A	Almost	Dapat terjadi setiap saat
		Certain	
	В	Likely	Sering terjadi
	С	Possible	Dapat terjadi sekali-sekali
	D	Unlikely	Jarang terjadi

Tabel 2. Ukuran Kualitatif *Severity* pada Standar AS/NZS 4360-2004

	Tingkat	Deskripsi	Keterangan				
	1	Insignificant	Tidak terjadi cidera,				
			kerugian financial sedikit				
	2	Minor	Cidera Ringan, kerugian				
			financial sedang				
	3	Moderate	Cidera sedang, perlu				
			penanganan medis, kerugian				
П			financial besar				
H	4	Major	Cidera berat ≥ 1 orang,				
Ш			kerugian besar, gangguan				
П			produksi				
li	5	Catastrophic	Fatal ≥ 1 orang, kerugian				
П			sangat besar dan dampak				
			sangat luas, terhentinya				
			seluruh kegiatan				

Tabel 3. Skala Ukur Kemungkinan (Likelihood)

Level	Tingkat Kemungkinan	Definisi			
1	Jarang Sekali	Kecelakaan Terjadi dalam 5 tahun sekali.			
2	Kadang-Kadang	Kecelakaan terjadi dengan rentan waktu 2-5 tahun sekali.			
3	Dapat Terjadi	Kecelakaan dengan rentan waktu 1-2 tahun.			
4	Sering Terjadi	Kecelakaan terjadi dalam waktu 2-10 bulan sekali.			
5	Hampir Pasti Terjadi	Kecelakaan terjadi dalam waktu sebulan sekali.			

Tabel 4. Skala Ukur Tingkat Keparahan (Severity)

Lev	/el	Tingkat Keparahan	Definisi						
1		Tidak Signifikan	Jika Tidak ada dampak yang diakibatkan sangat kecil bagi manusia, proses produksi, property atau menyababkan perawatan fisik setidaknya dalam 15 menit.						
2		Kecil	Jika terjadi luka kecil tetapi cukup hanya dirawat oleh tim P3K dan/menyebabkan satu hari kerja hilang atau kurang.						
3		Sedang	Jika terjadi cedera sedang, perlu penanganan medis, menyebabkan sedikitnya dua hari kerja hilang atau kurang.						
4		Berat	Jika terjadi luka berat dan membutuhkan perawatan dirumah sakit dan atau menyebabkan hari kerja hilang lebih dari dua hari						
5		Honcana	Jika dampak yang terjadi mengakibatkan kecacatan permanen atau parsial atau bahkan kematian.						

Peringkat Risiko

Matrik risiko dimana peringkat kemungkinan dan keparahan diberi nilai 1-4. Dengan demikian, nilai risiko dapat diperoleh dengan mengalihkan antara kemungkinan dan keparahannya yaitu antara 1-16. (Ramli, 2010).

Tabel 5. Skala *Risk Rating* pada Standar AS/NZS 4360-2004

Kemungkinan		Keparahan (Severity)				
(Likelihood)	1	2	3	4		
1	1	2	3	4		
2	2	4	6	8		
3	3	6	9	12		
4	4	8	12	16		

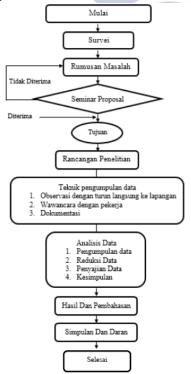
Pengendalian Risiko (Risk Control)

pengendalian risiko dilakukan terhadap seluruh bahaya yang ditemukan dalam proses identifikasi bahaya dan mempertimbangkan peringkat risiko untuk menemukan prioritas dan cara pengendaliannya. Selanjutnya, dalam menentukan pengendalian harus mempertimbangkan hirarki pengendalian mulai dari eliminasi, substitusi, pengendalian teknis, administratif dan APD.

METODE

Jenis Penelitian

Jenis penelitian yang digunakan adalah penelitian deskriptif. Penelitian bertujuan menjelaskan nilai dari risiko yang terdapat di setiap area kerja dengan menggambarkan proses analisa keselamatan kerja dengan menentukan tingkat *likehood* dan *severity* dari setiap risiko.


Tempat dan Waktu Penelitian

Penelitian ini bertempat di Divisi Kapal Niaga PT. PAL Indonesia (Persero) Jalan Ujung Surabaya pada Tahun Ajaran 2018/2019.

Objek Penelitian

Objek penelitian yang diambil adalah pekerjaan di Divisi Kapal Niaga PT. PAL Indonesia (Persero) yaitu segala bentuk kegitatan yang berpotensi bahaya dan berisiko.

Rancangan Penelitian

Gambar 1. Rancangan Penelitian

Teknik Pengumpulan Data

- Observasi
- Wawancara
- Dokumentasi

Analisis Data

Analisis data penelitian kualitatif ini dilakukan dengan menggunakan Model Miles dan Huberman (Sugiyono, 2007). Analisis Model Miles dan Huberman terdiri atas:

- Reduksi Data (Data Reduction)
 - Data yang diperoleh di lapangan jumlahnya cukup banyak, untuk itu maka perlu dicatat secara teliti dan rinci. Mereduksi data berarti merangkum, memilih hal-hal pokok, memfokuskan pada hal-hal yang penting, dicari tema dan polanya dan membuang yang tidak perlu.
- Penyajian Data (Data Display)
 Setelah data direduksi, maka langkah selanjutnya adalah mendisplaykan data. Dalam penelitian kuantitatif penyajian data dapat dilakukan dalam bentuk tabel, grafik, phie chart, picyogram, dan sejenisnya. Melalui penyajian data tersebut maka data terorganisasikan, tersusun dalam pola hubungan sehingga akan semakin mudah dipahami.
- Kesimpulan dan Verifikasi (Conclusion and Vervifying)

Langkah ketiga adalah penarikan kesimpulan. Kesimpulan awal yang dikemukakan masih bersifat sementara, dan akan berubah bila tidak ditemukan bukti-bukti yang kuat yang mendukung pada tahap pengumpulan data berikutnya. Tetapi apabila kesimpulan yang dikemukakan pada tahap awal, didukung oleh bukti yang valid dan konsisten saat peneliti kembali ke lapangan mengumpulkan data, maka kesimpulan yang dikemukakan merupakan kesimpulan yang kredibel.

HASIL DAN PEMBAHASAN

Pada penerapan *Hazard Identification, Risk Assessment, and Risk Control* (HIRARC) pada kegiatan produksi Kapal Landing Platform Dock (LPD) di Divisi Kapal Niaga PT. PAL Indonesia (Persero). Ada 3 jenis pekerjaan yang menjadi fokus analisis penelitian adalah pekerjaan sistem instalasi pipa bahan bakar, sistem diesel generator, dan sistem tambat kapal.

Hasil Identifikasi Aspek Bahaya

Identifikasi aspek pekerjaan mana yang berpotensi menimbulkan bahaya dan kecelakaan kerja yang berasal dari tempat kerja, peralatan kerja, mesinmesin, dan bahan yang berhubungan dengan proses kegiatan dan kondisi untuk menghindari *unsafe action* dan menghilangkan *unsafe condition*. Data diperoleh dari hasil pengamatan langsung dan wawancara dengan pekerja terkait.

Tabel 6. *Hazard Identification* Sistem Instalasi Pipa Bahan Bakar

No	Proses (Processes)	Bahaya (Hazard)	Risiko (<i>Risk</i>)	Kondisi (Condition) N/A/E			
1.	Tanki Penyimpanan Bahan Bakar	Kebocoran Tanki	Kebakaran	Е			
2.	Tanki Penyimpanan Oli	Tanki Penyimpanan Kebocoran Tanki		E			
3.	Aliran gas pada jaringan pipa	Kebocoran Gas	Terbakar/Meledak, Kekurangan Oksigen/Beracun	Е			
4.	Aliran udara tekan pada	Kebocoran Udara Tekan	Terbakar/Meledak, Terhembus Udara Tekan	E			
	jaringan pipa	Bising akibat Bocor	Gangguan Pendengaran	N			
5.	Central Air	Ceceran Oli	Terpeleset, Kebakaran	A			
٥.	Compressor	Kebisingan	Gangguan Pendengaran	N			
6.	Bekerja di Ruang Terbatas	Akses keluar masuk ruang terbatas	Jatuh	N			
		Kandungan gas yang ada di dalam ruangan terbatas	Kekurangan Oksigen, Lemas, Mata Pedih, Mudah Lelah	N			
7.	Pembersihan Ruangan Kapal	Limbah Sampah	Tergores, Terluka, Kebakaran	Α			

Tabel 7. *Hazard Identification* Sistem Diesel Generator

		Generato	•	
No	No Proses Bahaya (Processes) (Hazard)		Risiko (<i>Risk</i>)	Kondisi (Condition) N/A/E
1.	Pemeliharaan dan Perbaikan	Ceceran Barang/Oli/Bahan Bakar	Terpeleset, Kebakaran	Е
1.	Mesin	Arus Listrik, Kabel Lecet	Tersetrum, Kebakaran	Е
		Benda Keras dan Berat	Tertimpa, Terpukul	A
2.	Bekerja di Ruang Terbatas	Kandungan gas yang ada di dalam ruangan terbatas	Kekurangan Oksigen, Lemas, Mata Pedih, Mudah Lelah	N
		Akses keluar masuk ruang terbatas	Jatuh	N
3.	Bekerja pada Ketinggian	Naik Turun Tangga	Terpeleset, Tergelincir	N
4.	Pembersihan Ruangan Kapal	Limbah Sampah	Tergores, Terluka, Kebakaran	A

Tabel 8. Hazard Identification Sistem Tambat Kapal

No	Proses (Processes)	Bahaya (Hazard)	Risiko (Risk)	Kondisi (Condition) N/A/E
	Docking / Undocking	Tali Temali Terjerat Tali Kapal, Tertimpa		N
1.	Kapal	Kesalahan Operator	Terpukul	A
	Караі	Kapal Sandar / Keluar Dock	Tergencet / Tertabrak	N
2.	Pemeliharaan dan	Benda Berat	Tertimpa, Terpukul	N
۷.	Perbaikan	Ceceran Barang	Terpeleset, Terjatuh	N
3.	Bekerja pada Ketinggian	Naik Turun Tangga	Terpeleset, Tergelincir	N
4.	Pembersihan Ruangan Kapal /Penataan Lingkungan Darat Kapal	Limbah Sampah	Terluka, Terpeleset, Kebakaran	A

Hasil Penilaian Risiko

Penilaian risiko digunakan untuk menentukan tingkat risiko ditinjau dari kemungkinan terjadinya (likelihood) dan keparahan yang dapat ditimbulkan (severity). (Ramli, 2010). Risk rating adalah nilai yang menunjukkan resiko yang ada berada pada tingkat rendah, sedang, tinggi. Penentuan besar nilai likelihood dan severity berdasarkan standar AS/NZS 4360, masing-masing risiko bahaya dilakukan dengan wawancara kepada pekerja. Dari hasil tingkat risiko (risk rating) kemudian dievaluasi untuk menentukan kriteria risiko. Indikator kriteria risiko terdapat kategori merah, kuning atau hijau mengacu pada peraturan menteri tenaga kerja nomor: PER.05/MEN/1996 tentang Indicator *Traffic Light System* (Sistem Lampu Merah).

Tabel 9. *Risk Assessment* Sistem Instalasi Pipa Bahan Bakar

	Proses	Bahaya	Risiko	Kondisi	Kemungkinan	Keparahan	Risk
No	(Processes)	(Hazard)	(Risk)	(Condition) N/A/E	(Likelihood)	(Severity)	Rating
1.	Tanki Penyimpanan Bahan Bakar	Kebocoran Tanki	Kebakaran	Е	4	4	16
2.	Tanki Penyimpanan Oli	Kebocoran Tanki	Terpeleset, Kebakaran	Е	4	3	12
3.	Aliran gas pada jaringan pipa	Kebocoran Gas	Terbakar/Meledak , Kekurangan Oksigen/Beracun	Е	4	3	12
4.	Aliran udara tekan pada	Kebocoran Udara Tekan	Terbakar/Meledak , Terhembus Udara Tekan	Е	4	3	12
	jaringan pipa	Bising akibat Bocor	Gangguan Pendengaran	N	3	2	6
5	Central Air	Ceceran Oli	Terpeleset, Kebakaran	A	3	2	6
Ľ	Compressor	Kebisingan	Gangguan Pendengaran	N	2	2	4
	Bekeria di	Akses keluar masuk ruang terbatas	Jatuh	N	2	2	4
6.	Ruang Terbatas	Kandungan gas yang ada di dalam ruangan terbatas	Kekurangan Oksigen, Lemas, Mata Pedih, Mudah Lelah	N	2	1	2
7.	Pembersihan Ruangan Kapal	Limbah Sampah	Tergores, Terluka, Kebakaran	А	3	1	3

Tabel 10. Risk Assessment Sistem Diesel Generator

No	Proses (Processes)	Bahaya (Hazard)	(Hazard) (Risk) (Condition) N/A/E		Kemungkinan (Likelihood)	Keparahan (Severity)	Risk Rating
	Pemeliharaan	Ceceran Barang/Oli/ Bahan Bakar	Terpeleset, Kebakaran	E	4	4	16
1.	dan Perbaikan Mesin	Arus Listrik, Kabel Lecet	Tersetrum, Kebakaran	E	3	4	12
		Benda Keras dan Berat	Tertimpa, Terpukul	A	3	2	6
2.	Bekerja pada Ketinggian	Naik Turun Tangga	Terpeleset, Tergelincir	3	2	6	
	Bekerja di Ruang Terbatas	Akses keluar masuk ruang terbatas	Jatuh	N	2	2	4
3.		Kandungan gas yang ada di dalam ruangan terbatas	Kekurangan Oksigen, Lemas, Mata Pedih, Mudah Lelah	N	2	1	2
4.	Pembersihan Ruangan Kapal	rsihan Limbah Tergores, Terluka,		A	3	1	3

Tabel 11. Risk Assessment Sistem Tambat Kapal

	No	Proses (Processes)	Bahaya (Hazard)	Risiko (Risk)	Kondisi (Condition) N/A/E	Kemungkinan (Likelihood)	Keparahan (Severity)	Risk Rating	
			Tali Temali	Terjerat Tali Kapal, Tertimpa Tali, Jatuh ke Laut	N	4	3	12	
	1.	Docking / Undocking Kapal	Kesalahan Operator	Terpukul	A	4	3	12	
			Kapal Sandar / Keluar Dock	Tergencet / Tertabrak	N	3	3	9	
	2.	Pemeliharaan dan Perbaikan	Benda Berat	Tertimpa, Terpukul	N	4	3	12	
			Ceceran Barang	Terpeleset, Terjatuh	N	3	2	6	
C	3.	Bekerja pada Ketinggian	Naik Turun Tangga	Terpeleset, Tergelincir	N	3	2	6	
t	4.	Pembersihan ruangan kapal /Penataan Lingkungan Darat Kapal	Limbah Sampah	Terluka, Terpeleset, Kebakaran	A	3	1	3	

Hasil Pengendalian Aspek Bahaya

Pencegahan atau pengendalian bahaya untuk menghindari *unsafe action* dan menghilangkan *unsafe condition*.

Tabel 12. *Risk Control* Sistem Instalasi Pipa Bahan Bakar

No	Proses (Processes)	Bahaya (Hazard)	Risiko (Risk)	Kondisi (Condition) N/A/E	Risk Rating	Pengendalian (Controlling)
1.	Tanki Penyimpanan Bahan Bakar	Kebocoran Tanki	Kebakaran	E	16	pengecekan dan perawatan secara berkala terhadap seluruh bagian tanki termasuk bagian valve tangki
2.	Tanki Penyimpanan Oli	Kebocoran Tanki	Terpeleset Kebakaran	E	12	pengecekan dan perawatan secara berkala terhadap seluruh bagian tanki termasuk bagian valve tangki
3.	Aliran gas pada jaringan pipa	Kebocoran Gas	Terbakar/Meledak , Kekurangan Oksigen/Beracun	E	12	perbaikan pipa instalasi gas, melakukan inspeksi berkala, pemasangan rambu-rambu larangan merokok dan menyediakan APAR dekat terminal distribusi gas
4.	Aliran udara tekan pada jaringan pipa	Kebocoran Udara Tekan Bising akibat	Terbakar/Meledak , Terhembus Udara Tekan Gangguan	E	12	perbaikan instalasi pipa, pemasangan valve pengendali tekanan udara penggunaan alat pelindung
	,	Bocor	Pendengaran	N	6	telinga
5.	Central Air Compressor	Ceceran Oli	Terpeleset, Kebakaran	A	6	pembersihan lokasi secara rutin, penyediaan bak sampah, penyediaan APAR, pemasangan rambu-rambu dilarang menyalakan api
		Kebisingan	Gangguan Pendengaran	N	4	penggunaan alat pelindung telinga
	Bekeria di	Akses keluar masuk ruang terbatas	Jatuh	N	4	dilakukan inspeksi rutin untuk memastikan kondisi akses keluar masuk ruang terbatas dalam kondisi aman
6.	Ruang Terbatas	Ruang Kandungan	N	2	dilaksanakan pengecekan kandungan gas di dalam ruangan terbatas menggunakan gas detector	
7.	Pembersihan Ruangan Kapal	Limbah Sampah	Tergores, Terluka, Kebakaran	А	3	memakai APD sesuai kondisi kerja, disediakan APAR, sampah ditampung dan dibuang keluar area ketempat penampungan limbah

Tabel 13. Risk Control Sistem Diesel Generator

No	Proses (Processes)	Bahaya (<i>Hazard</i>)	Risiko (Risk)	Kondisi (Condition) N/A/E	Risk Rating	Pengendalian (Controlling)
1.	Pemeliharaan dan Perbaikan Mesin	Ceceran Barang/Oli/ Bahan Bakar	Terpeleset, Kebakaran	Е	16	penyimpanan pada tong oli/minyak dikendalikan dan dibuang sesuai prosedur pengelolaan limbah
		Arus Listrik, Kabel Lecet	Tersetrum, Kebakaran	E	12	memakai APD sesuai kondisi, dilakukan isolasi, disediakan APAR, dibuat rambu-rambu sesuai standard kerja
		Benda Keras dan Berat	Tertimpa, Terpukul	A	6	dibuat petunjuk kerja
2.	Bekerja pada Ketinggian	Naik Turun Tangga	Terpeleset, Tergelincir	N	6	dilakukan inspeksi rutin untuk memastikan kondisi naik turun dalam kondisi aman
3.	Bekerja di Ruang Terbatas	Akses keluar masuk ruang terbatas	Jatuh	N	4	dilakukan inspeksi rutin untuk memastikan kondisi akses keluar masuk ruang terbatas dalam kondisi aman
		Kandungan gas yang ada di dalam ruangan terbatas	Kekurangan Oksigen, Lemas, Mata Pedih, Mudah Lelah	N	2	dilaksanakan pengecekan kandungan gas di dalam ruangan terbatas menggunakan gas detector
4.	Pembersihan Ruangan Kapal	Limbah Sampah	Tergores, Terluka, Kebakaran	А	3	memakai APD sesuai kondisi kerja, disediakan APAR, sampah ditampung dan dibuang keluar area ketempat penampungan limbah

Tabel 14. Risk Control Sistem Tambat Kapal

			and the same			_ L
No	Proses (Processes)	Bahaya (Hazard)	Risiko (<i>Risk</i>)	Kondisi (Condition) N/A/E	Risk Rating	Pengendalian (Controlling)
1.	Docking / Undocking Kapal	Tali Temali	Terjerat Tali Kapal, Tertimpa Tali, Jatuh ke Laut	N	12	pelatihan secara kontinyu, pencegahan dengan peringatan, pemasangan railing pada pinggir dock
		Kesalahan Operator	Terpukul	A	12	inspeksi selling secara berkala
		Kapal Sandar / Keluar Dock	Tergencet / Tertabrak	N	9	pencegahan dengan verbal dan lisan
2.	Pemeliharaan dan Perbaikan	Benda Berat	Tertimpa, Terpukul	N	12	dibuat petunjuk kerja
		Ceceran Barang	Terpeleset, Terjatuh	N	6	pembersihan rutin dan berkala
3.	Bekerja pada Ketinggian	Naik Turun Tangga	Terpeleset, Tergelincir	N	6	dilakukan inspeksi rutin untuk memastikan kondisi naik turun dalam kondisi aman
4.	Pembersihan ruangan kapal /Penataan Lingkungan Darat Kapal	Limbah Sampah	Terluka, Terpeleset, Kebakaran	A	3	memakai APD sesuai kondisi kerja, disediakan APAR, sampah ditampung dan dibuang keluar area ketempat penampungan limbah

PENUTUP

Simpulan

Berdasarkan hasil penelitian dan pembahasan, maka dapat disimpulkan sebagai berikut:

- Hasil identifikasi bahaya dengan metode Hazard Identification, Risk Assessment, and Risk Control (HIRARC) pada pekerjaan sistem instalasi pipa bahan bakar terdapat 7 aspek dengan 10 potensi bahaya, saat pekerjaan sistem diesel generator terdapat 4 aspek dengan 7 potensi bahaya, dan pekerjaan sistem tambat kapal terdapat 4 aspek dengan 7 potensi bahaya.
- Hasil penilaian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) pada kegiatan sistem instalasi pipa bahan bakar terhadap bahaya kebocoran tanki penyimpanan bahan bakar diperoleh nilai 16 dan kebocoran tanki penyimpanan oli, kebocoran gas pada jaringan, kebocoran udara tekan pada jaringan pipa diperoleh nilai 12. Saat kegiatan sistem diesel generator terhadap bahaya ceceran barang/oli/bahan bakar diperoleh nilai 16 dan bahaya arus listrik, kabel lecet diperoleh nilai 12. Serta, kegiatan sistem tambat kapal terhadap bahaya benda berat, tali temali, kesalahan operator diperoleh nilai 12 dan bahaya saat kapal sandar / keluar dock diperoleh nilai 9.
- Hasil pengendalian risiko dengan metode Hazard Identification, Risk Assessment And Risk Control (HIRARC) ditentukan berdasarkan kategori risiko, dimana zona merah (risiko tinggi) risiko yang ada tidak dapat diterima dan harus dilakukan tindakan pencegahan dengan menghilangkan risiko bahaya, zona kuning (risiko sedang) risiko dapat diterima apabila semua pengamanan sudah dijalankan, dan zona hijau (risiko rendah) tidak perlu dilakukan tindakan pengendalian bahaya karena risiko bahaya dapat ditoleransi namun para pekerja tetap wajib menggunakan APD.

Saran

Berdasarkan hasil penelitian dan pembahasan, maka dapat diperoleh saran sebagai berikut:

- Lebih meningkatkan pengawasan dalam bidang K3 khusunya agar perusahaan dapat mencapai zero accident.
- Perlu ada kajian tentang potensi bahaya dengan penerapan metode lain yang lebih berfokus pada peralatan dan mesin seperti metode Failure Mode and Effect Analysis karena bukan hanya pekerja yang dilindungi melainkan aset perusahaan juga perlu dilindungi.

- Penerapan metode Hazard Identification, Risk Assessment, and Risk Control (HIRARC) dapat digunakan untuk mengidentifikasi bahaya yang ada pada saat mahasiswa praktek di Universitas Negeri Surabaya.
- Untuk peneliti selanjutnya, penelitian ini masih membutuhkan kajian analisis pada perhitungan risiko pada sisi finansial yang berdampak pada perusahaan dalam menentukan rating risiko.
- Semoga kedepannya PT. PAL Indonesia (Persero) dapat bekerja sama dengan Universitas Negeri Surabaya.

DAFTAR PUSTAKA

- AS/NZS 4360:2004 Australian/New Zealand Standard Risk Management
- Arikunto, Suharsimi. 2006. Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Rineka Cipta.
- Hamali, A.Y. S.S.,M.M (2016). *Pemahaman Manajemen Sumber Daya Manusia*. Cetakan pertama. Penerbit: CAPS (Center for Academic Publishing Service), Yogyakarta. Halaman 162-181. ISBN: (10) 602-9324-77-2.
- Hasibuan, M. (2012). Manajemen Sumber Daya Manusia. Jakarta: PT. Bumi Aksara.
- Hati, S.W; Wahyuni S. (2016). "The Effect of The Application of Work Safety and Health to Awareness of SOP (Standard Operating Procedure) on Employee Bulk (Subcontractor) Contructrion in The Company XYZ Batam". Dipersentasikan pada seminar ICAMESS 2016, 30 April 2016.
- Lestari, T; Trisyulianti, E. (2009). "Hubungan Keselamatan dan Kesehatan Kerja (K3) dengan Produktivitas Kerja karyawan (Studi Kasus: Bagian Pengolahan PTPN VIII Gunung Mas, Bogos)". Jurnal Manajemen IPB. Vol. 1, No. 1, Tahun 2009, Halaman 73-79.
- Nazir, Mohammad. 1988. *Metode Penelitian*. Jakarta: Ghalia Indonesia
- OHSAS 18001:2007. Occupational Health And Safety Management System Requirements.
- Ramli, Soehatman. 2010. Pedoman Praktis Manajemen Risiko dalam Persepektif K3 OHS Risk Management, Seri Manajemen K3 002. Dian Rakyat. Jakarta.
- Ramli, Soehatman. 2010. Sistem Manajemen Keselamatan dan Kesehatan Kerja OHSAS 18001, Seri Manajemen K3 001. Dian Rakyat. Jakarta.
- Rudi Suardi, 2007. Manajemen Risiko Panduan Penerapan Berdasarkan OHSAS 18001 dan Permenaker 05/1996, Jakarta: PPM.

- Sugandi, Didi. 2003. Keselamatan Kerja Dan Pencegahan Kecelakaan Kerja Dalam Hieperkes Dan Keselamatan Kerja Bunga Rampai Hieperkes & KK, Edisi kedua, Semarang: Universitas Diponegoro.
- Sugiyono. 2015. *Metode Penelitian Pendidikan* (*Pendekatan Kuantitatif, Kualitatif dan R&D*). Penerbit CV. Alfabeta: Bandung.
- Suma'mur. 1981. *Keselamatan Kerja dan Pencegahan Kecelakaan*. Penerbit: CV. Haji Massagung, Jakarta.
- Tim. 2014. *Panduan Penulisan dan Penilaian Skripsi*. Surabaya: Unesa University Press.

