THE PROFILE OF JUNIOR HIGH SCHOOL STUDENTS ABOUT PISA PROBLEM SOLVING BASED ON PERSONALITY TYPE

Siti Mar'atus Solichah

Mathematics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya e-mail: <u>sitisolichah@mhs.unesa.ac.id</u>

Raden Sulaiman

Mathematics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya e-mail: <u>radensulaiman@unesa.ac.id</u>

Abstract

One of the goals of learning mathematics is students can solve the problems. PISA problems can be used to bring up the problem solving activities. Keirsey's personality type is chosen because it offers possibility on differences in each personality type. It is based on the characteristics in taking and processing information, making decisions, and patterning the implementation of their tasks. The aim of this research is describing the profile of junior high school students about PISA problem solving based on personality type. This research is a qualitative descriptive research using test and interview methods. The subjects consist of four students, which are guardian, artisan, rational, and idealist. The results showed that on the understanding the problem stage, all students read the questions and were capable in identifying the information in the question. Then represented what is known and unknown. At the devising a plan stage, the four subjects were able to link the information that was known with prior knowledge to make a plan. At the carrying out the plan stage, the four subjects used the appropriate knowledge to implement the settlement plan that has been made. At the looking back stage, all the students examine their solutions.

Keywords: problem solving, PISA questions, personality type

INTRODUCTION

Education is an activity to improve and develop capabilities in various aspects including knowledge and skills. Education in Indonesian teaches several scientific disciplines that can improve and develop students' abilities, one of them is mathematics. Although taught starting from the basic level of education, mathematics is still considered a difficult subject for students.

Based on the Ministry of Education and Culture report in several newspapers stated that there was a decline in the average National Examination (UN) of junior and senior high school level academic year 2017/2018 on mathematics subjects. As in the May 8, 2018 edition of Tribunnews.com, it was explained by the Head of Research and Development Totok Supravitno that vocational high school mathematics national examination dropped 3 points, while the senior high school 4.6 points. In line with that statement, in TEMPO.CO May 25 2018 edition, Muhadjir Effendy stated that there was a decline in scores at the junior high school level due to the problem of HOTS (High Order Thinking Skills). Meanwhile, based on the Organization for Economic Co-operation and Development (OECD) report on the PISA results,

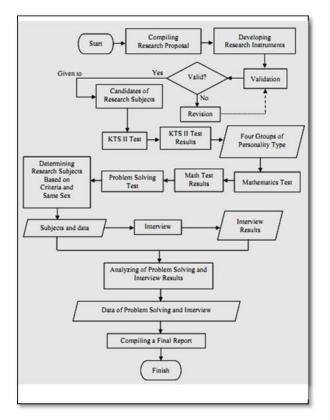
international studies every three years about reading, mathematics, science, problem solving, and financial literacy for students aged 15 years, in 2012 stated that mathematics scores of Indonesian students was ranked 64th out of 65 countries. Whereas in 2015 the mathematics scores of Indonesian students was ranked 63th out of 70 countries.

Based on the results of the National Examination and PISA, a better mathematical ability is needed in solving problems. Shadiq (2004) states that problem solving will be the thing that really determines the success of mathematics education, so integration of problem solving during the learning process takes place should be a necessity. NCTM (2000) also states that problem solving is one of the standard processes in learning mathematics besides communication, reasoning and proof, representation and connections. Siswono (2008) defines problem solving as a process or effort of an individual to respond or overcome obstacles or constraints when an answer or method of answer is not yet clear.

Wardhani & Rumiati (2011) stated that PISA questions demand and measure reasoning and problem solving abilities, although not all questions. Space and shape content is suitable for knowing student problem solving. Space and shape content is related to the field of geometry (OECD, 2016). Walle (2001) states that there are five reasons why geometry needs to be studied. One of them is exploration in geometry can help students to develop problem solving abilities. In line with Walle, Murtafi'ah & Masfingatin (2015) states that from a mathematical point of view, geometry provides approaches to problem solving, for example images, diagrams, coordinate systems, vectors, and transformations.

To be able to solve the problem properly, the right stages are needed. Polya through his book How to Solve It (1973) provides four stages of problem solving called Polya heuristic stages. The four stages consist of: (1) understanding the problem; (2) devising plan; (3) carrying out the plan; and (4) looking back.

Based on Piaget's cognitive development theory, students at the junior high school level, aged 11 years and above, have entered the formal operational stage. At this stage, students can develop their ability to solve problems in a better way, can provide reasons in decision making, and can see abstract relationships (Nursalim, et al, 2007).


Research conducted by Dewiyani (2010) states that the Keirsey personality type known as Keirsey Temperament Sorter (KTS) can influence an individual's thinking process in problem solving. Things that are done or decided in solving problems by students one another are different due to differences in personality. In his book Please Understand Me II, Keirsey (1998) classifies personality into four personality types namely guardian (sensing & judging), artisan (sensing & perceiving), rational (intuitive & thinking) and idealist (intuitive & feeling). Keirsey's personality type is based on the characteristics of each individual in taking and processing information, making decisions, and patterning the implementation of their tasks.

The problems raised in this research about "How students' problem solving with their personality type in solving PISA problems". And the aim of the research is describing the profile of junior high school students about PISA problem solving based on personality type.

METHODS

The research is a qualitative descriptive research that was conducted in two class at SMPN 4 Sidoarjo, exactly at grade eight academic year 2018/2019. Four students from class VIII-A and VIII-H were chosen to be the research subjects.

The procedure of research are described in the Figure 1, from beginning until getting the students' problem solving results.

Figure 1. Procedure of Research

This research were used four instruments:

- 1. Keirsey Temperament Sorter (KTS) II Test that was checked its validity and reliability. This test was adapted from Keirsey (1998) with the title "*Please Understand Me II*".
- Mathematics Test with essay type. This test is validated by two mathematics lecturer and a mathematics teacher of SMPN 4 Sidoarjo.
- Problem Solving Test that contains a PISA question of space and shape content with the title "*Continent Area*". This test is validated by two mathematics lecturer and a mathematics teacher of SMPN 4 Sidoarjo.
- 4. Interview guide that was consulted by mathematics lecturer.

This research was done four times. For the first, the researchers gave KTS II Test to students VIII-A and VIII-H. Second, the researchers gave Mathematics Test to measure students' mathematical abilities. Third, data were collected with Problem Solving Test to uncover the students' problem solving. Fourth or last, the interview process to verify and uncover the students' problem solving.

The analysis of scoring the KTS II Test with scoring orientation. There are 70 questions to classify, it was clasified by category of sensing & judging for guardian, sensing & perceiving for artisan, intuitive & thinking for rational and intuitive & feeling for idealist. After that, the analyze of Mathematics Test. Students with score greater than or equal to 75 are chosen to be candidates of research subject. The analysis for Problem Solving Test based on indicators with Polya'stages. Then four research subjects were selected with correct answer and fulfilling many indicators. They are one guardian's students, artisan's students, rational's students and idealist's students.

The analysis of data of research subjects included Problem Solving Test and Interview were analyzed based on indicators that refer to Polya's stages (understanding the problem, devising a plan, carrying out the plan, and looking back).

RESULTS AND DISCUSSIONS

First day at SMPN 4 Sidoarjo, the researchers gave KTS II Test to 73 students in class VIII A and VIII H. Based on the students' result, students grouped into five categories.

Table 1	۱.	Distribution	of	Students'	Personality	у Туре
---------	----	--------------	----	-----------	-------------	--------

Personality Type					Total
GU	AR	RA	ID	Negligible	Total
32	14	10	10	7	73

From Table 1, there are 32 students with guardian type, 14 students with artisan type, 10 students with rational type and 10 students with idealist type. Based on Mathematics Test scores, Problem Solving Test and teacher recommendation, four research subjects were obtained as in the Table 2.

Table 1	2. Resear	ch Sub	jects
---------	-----------	--------	-------

No	Name	Code	Gender	Math Test	Personality Type
1	ASP	GU	F	85	Guardian
2	AKT	AR	F	84	Artisan
3	NZA	RA	F	83	Rational
4	ANY	ID	F	81	Idealist

Notes:

GU = students with guardian type

AR = students with artisan type

RA = students with rational type

ID = students with idealist type

The students' answer of Problem Solving Test is encoded by researchers and presented in Table 3.

Table 3. The Code of Problem Solving Test Results

	5		
Code	Explanation		
	J in the first states as subject's answer		
	xx in the second and third states as		
T	students' personality type		
Jxxxxx	x in the fourth states as question number		
	xx in the fifth and sixth states as order of		
	students' answer		

1. Data Analysis about Students' PISA Problem Solving

a. Data Analysis of GU

The description of GU is presented in the following figure and table.

Figure 2. GU's Answer

Polya's	Indicators	Description
Stages		•
Understanding	Read PISA	GU reads the problem
the Problem	question	5 times to understand
		the problem.
	Identify the	GU identify all the
	data,	data (map and scale),
	condition,	unknown (the area of
	and	map), and condition.
	unknown.	
	Identify	Doubtfully, GU states
	adequacy of	that all information is
	information	sufficient to be used
		to solve the problem.
	Represent	GU represents data in
	the data and	symbol (JGU102) and
	unknown	unknown in verbal
		(JGU103).
Devising a	Associate	GU closes the area of
Plan	the data with	Antarctica with some
	prior	two dimentional
	knowledge	figure, such as:
		triangle, trapezoid and
		rectangle. After that,
		GU moves the area of
		Antarctica which is
		not covered to two
		dimentional figure
		that has been made
		and still has an empty
		area. Then, GU
		determines the size of
		length, width, etc and
		changes into real size.
		GU determines each
		area of two
		dimentional figure
		and adds them.
Carrying Out	Use	GU uses the
the Plan	appropriate	appropriate

Polya's	Indicators	Description
Stages		
	knowledge	knowledge such as:
	to	the formula to
	implement	determine the area of
	the plan	two dimentional
		figure, number
		counting operation.
	Check the	GU examines all the
	plan	steps and formula that
		are used in solving the
		problem.
Looking Back	Check all	GU does not examine
	the solution	solutions in detail, but
		only check on
		calculations that are
		considered important.

In solving the problem, GU returns to the stage of understanding the problem after carrying out the plan. It is possible due to their own sensing. Someone with this nature relies more on the five senses and only focuses on facts when taking and processing information (Russo & Kaynama, 2012). The sequences of stages that performed by GU is understanding the problem, devising a plan, carrying out the plan, understanding the problem, carrying out the plan, and looking back. The sequences of GU is presented in Figure 3.

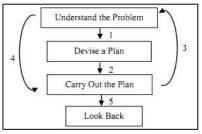


Figure 3. The Sequences of GU

b. Data Analysis of AR

The description of AR is presented in the following figure and table.

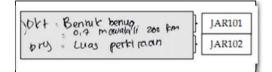


Figure 4. AR's Answer

Polya's	Indicators	Description
Stages		
Understanding	Read PISA	AR reads the problem
the Problem	question	3 times to understand
		the problem.
	Identify the	AR identify all the
	data,	data (map and scale),
	condition,	unknown (the area of
	and	map), and condition.
	unknown.	
	Identify	Doubtfully, AR states
	adequacy of	that all information is
	information	insufficient to be used
		to solve the problem.
	Represent	AR represents data in
	the data and	verbal & symbol
	unknown	(JAR101) and
		unknown in verbal
		(JAR102).
Devising a	Associate	AR makes two
Plan	the data with	dimentional figure.
	prior	AR transforms the
	knowledge	area of Antarctica into
		triangle and rectangle.
		After that, AR moves
		the area of Antarctica
		which is not covered
		to two dimentional
		figure that has been
		made and still has an
		empty area. Then, AR
		determines the size of
		length, width, etc and
		changes into real size.
		AR determines each
		area of two
		dimentional figure and adds them.
Comming Out	Use	AR uses the
Carrying Out the Plan	0.50	
the Plan	appropriate knowledge	appropriate knowledge such as:
	to	the formula to
	implement	determine the area of
	the plan	two dimentional
	and plan	figure, number
		counting operation.
	Check the	AR does not examine
	plan	all the steps that are
	P.m.	used in solving the
		problem.
		Problem.

Polya's Stages	Indicators	Description
Looking Back	Check all the solution	AR check the suitability of the answer to what the questions are asked for.

In solving the problem, AR returns to the stage of understanding the problem after AR carrying out the plan. It is possible due to their own sensing. Someone with this nature relies more on the five senses and only focuses on facts when taking and processing information (Russo & Kaynama, 2012). The sequences of stages that performed by AR is understanding the problem, devising a plan, carrying out the plan, understanding the problem, carrying out the plan, and looking back. The sequences of AR is presented in Figure 5.

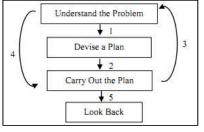


Figure 5. The Sequences of AR

c. Data Analysis of RA

The description RA is presented in the following figure and table.

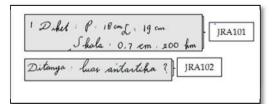


Figure 6. RA's Answer

Polya's	Indicators	Description
Stages		
Understanding	Read PISA	RA reads the problem
the Problem	question	2 times to understand
		the problem.
	Identify the	RA identify all the
	data,	data (map and scale),
	condition,	unknown (the area of
	and	map), and condition.
	unknown.	

Polya's	Indicators	Description
Stages	Identify	RA states that all
	adequacy of	information is
	information	sufficient to be used
		to solve the problem.
	Represent	RA represenst data in
	the data and	verbal & symbol
	unknown	(JRA101) and
		unknown in verbal
		(JRA102).
Devising a	Associate	RA makes a rectangle
Plan	the data with	outside the area of
	prior	Antarctica. After that,
	knowledge	RA makes some two
		dimentional figure in
		empty part of
		rectangle. Then, RA
		determines the size of
		length, width, etc and
		changes into real size. RA determines each
		area of two
		dimentional figure. At
		the last, RA reduces
		the area of rectangle
		with the area of some
		two dimentional
		figure inside.
Carrying Out	Use	AR uses the
the Plan	appropriate	appropriate
	knowledge	knowledge such as:
	to	the formula to
	implement	determine the area of
	the plan	two dimentional
		figure, number
		counting operation.
	Check the	RA examines all the
	plan	steps and formula that
		are used in solving the
Looking Back	Check all	problem. RA does not examine
LOOKING DACK	the solution	solutions in detail, but
	the solution	only check on
		calculations that are
		considered important.
		considered important.

In solving the problem, RA resolves the problem so confidently and sequentially. It is possible due to their own intuitive. Someone with this nature when taking and processing information tends to see patterns and their relevance (Russo & Kaynama, 2012). In addition, it is possible due to their own thinking. Someone with this nature tends to decide something logically and according to the provisions given (Russo & Kaynama, 2012). The sequences of stages that performed by RA is understanding the problem, devising a plan, carrying out the plan and looking back. The sequences of RA is presented in Figure 7.

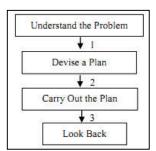


Figure 7. The Sequences of RA

d. Data Analysis of ID

The description of ID is presented in the following figure and table.

Diker: skala 0.7 cm i 200 km	JID101
Ditanya : luas benua antartika	JID102

Figure 8. ID's Answer

Table 7. The Description of ID's Answer

Polya's	Indicators	Description
Stages		
Understanding	Read PISA	ID reads the problem
the Problem	question	2 times to understand
		the problem.
	Identify the	ID identify all the
	data,	data (map and scale),
	condition,	unknown (the area of
	and	map), and condition.
	unknown.	
	Identify	ID states that all
	adequacy of	information is
	information	insufficient to be used
		to solve the problem.
	Represent	ID represents data in
	the data and	verbal & symbol
	unknown	(JID101) and
		unknown in verbal
		(JID102).
Devising a	Associate	ID transforms the area
Plan	the data with	of Antarctica into a
	prior	rectangle. After that,
	knowledge	ID moves the area of

Polya's	Indicators	Description
Stages		
		Antarctica which is
		not covered by
		rectangle that has
		been made and still
		has an empty area.
		Then, ID determines
		the size of length,
		width, etc and
		changes into real size.
		And the last, ID
		determines the area of
		rectangle.
Carrying Out	Use	ID uses the
the Plan	appropriate	appropriate
	knowledge	knowledge such as:
	to	the formula to
	implement	determine the area of
	the plan	rectangle, number
		counting operation.
	Check the	ID does not examine
	plan	all the steps that are
		used in solving the
		problem.
Looking Back	Check all	ID examines solutions
	the solution	in detail and check all
		the calculations that
		were used.

In solving the problem, ID repeats to re-plan because there is an error in the first plan. It is possible due to their own feeling. Someone with this nature tends to decide something subjectively and adapts to the situation (Russo & Kaynama, 2012). The sequences of stages that performed by ID is understanding the problem, devising a plan, carrying out the plan, devising a plan, carrying out the plan, and looking back. The sequences of ID is presented in Figure 9.

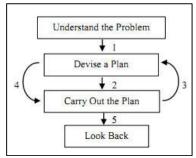


Figure 9. The Sequences of ID

2. Discussions

- a. The researchers do not pay attention to the strong or weak personality type of each research subjects.
- b. The researches lack of information in identifying the strategies that used by students in solving problem at the step of devising a plan.

CLOSURE

Conclusions

Based on the description and analysis results, it can be concluded that all of students with their personality type (guardian, artisan, rational, and idealist) solve the problem by their way and use all of Polya's stages. All the students satisfy all the indicators that has been made by the researchers. Each personality type shows their characteristics to solve the problem, especially sequences in solving the problem. Guardian, artisan and idealist students solve the problem not sequentially and back in the previous stage. But rational student solve the problem systematically.

Suggestions

- 1. For the next research, it is need to control the weaknesses that have been done by researches, such as: pay attention to strength or weakness of the personality type of the research subject.
- 2. Uncover deeper about identifying strategies used by students in solving problems at the step of devising a plan.
- 3. Using subjects who have different levels of mathematical abilities, so that differences in problem solving for PISA problem can be seen in guardian, artisan, rational and idealist students who have low, medium and high mathematical abilities.

REFERENCES

- Antara. 25 Mei 2018. TEMPO.CO: Mendikbud Jelaskan Kenapa Nilai Rata-Rata UN SMP 2018 Turun, (Online), (https://nasional.tempo.co/read/1092395/mendikbudjelaskan-kenapa-nilai-rata-rata-hasil-un-smp-2018turun, accessed at 10 November 2018).
- Dewiyani, S. M. J., 2010. Profil Proses Berpikir Mahasiswa Ditinjau Dari Tipe Kepribadian dan Gender. Disertasi tidak diterbitkan. Surabaya: PPs Universitas Negeri Surabaya.
- Indonesia PISA Center Mathematics website for CBAM, (Online), (<u>http://www.indonesiapisacenter.com/</u>, accessed at 25 November 2018)
- Keirsey, David. 1998. *Please Understand Me II Temperament, Character, and Intelligence.* California: Promotheus Nemesis Book Company.

- Murtafi'ah, W & Masfingatin, T. 2015. "Proses Berpikir Mahasiswa dengan Kemampuan *Spatial Intelligent* Tinggi dalam Memecahkan Masalah Geometri". *Kadikma*, Vol 6 (1), hal: 133-148.
- NCTM. 2000. *Principles and Standards for School Mathematics*. United States of America: The National Council of Teachers of Mathematics, Inc.
- Nursalim, Mochamad, dkk. 2007. *Psikologi Pendidikan*. Surabaya: Unesa University Press.
- OECD. 2006. PISA Released Items-Mathematics,
 - (Online), (http://www.oecd.org/pisa/38709418.pdf, accessed at 1 December 2018).
- OECD. 2014. PISA 2012 Result in Focus: What 15-Years-Old Know and what They Can Do with They Know. Paris: PISA OECD Publishing.
- OECD. 2016. PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy. Paris: PISA OECD Publishing.
- Polya, George. 1973. *How to Solve It: A New Aspect of Mathematical Method.* New Jearsey: Princeton University Press.
- Russo, C. J. and Kaynama, S. 2012. "The Impact of Personality Type and Gender on Student' Performance in a Business Capstone Course". *Academy of Educational Leadership Journal*, Vol. 16 (1).
- Shadiq, Fajar. 2004. *Pemecahan Masalah, Penalaran dan Komunikasi*. Makalah disajikan dalam Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar, Yogyakarta, 6-19 Juli.
- Siswono, T. Y. E. 2008. Model Pembelajaran Matematika Berbasis Pengajuan dan Pemecahan Masalah Untuk Meningkatkan Kemampuan Berpikir Kreatif. Surabaya: Unesa University Press.
- Tribunnews.com. 8 Mei 2018. Kemendikbud: Secara Umum Terjadi Penurunan Rata-Rata Nilai UN SMU dan SMK 2018, (Online), (http://www.tribunnews.com/nasional/2018/05/08/ke mendikbud-secara-umum-terjadi-penurunan-rata-ratanilai-un-smu-dan-smk-2018, accessed at 12 November 2018).
- Walle, J.A. 2001. Geometric Thinking and Geometric Concepts: In Elementary and Middle School Mathematics: Teaching Developmentally, 4th ed. Boston: Allyn and Bacon.
- Wardhani, S & Rumiati. 2011. Instrumen Penilaian Hasil Belajar Matematika SMP: Belajar dari PISA dan TIMSS. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidikan dan Tenaga Kependidikan (PPPPTK) Matematika.