

MATHEdunesa

p-ISSN: 2301-9085; e-ISSN: 2685-7855
Homepage: https://ejournal.unesa.ac.id/index.php/mathedunesa/index
Email: mathedunesa@unesa.ac.id Vol . 14 No. 3 Tahun 2025

Halaman 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 780

Computational Thinking Abilities of Vocational School Students
in Solving Quadratic Function Problems
Using Python Programming Language

Misel Rajasyah Hadi Putra1*, Tatag Yuli Eko Siswono1 , Novita Vindri Harini1

1Department of Mathematics, State University of Surabaya, Surabaya, Indonesia

DOI: https://doi.org/10.26740/mathedunesa.v14n3.p780-804

Article History:
Received: 14 May 2025
Revised: 25 August 2025

Accepted: 5 September
2025

Published: 7 November

2025

 Abstract: The Indonesian Minister of Education and Culture implemented the
Merdeka Belajar Kampus Merdeka Curriculum in 2019, emphasizing

computational thinking (CT) as a crucial 21st-century skill. Despite its
importance in mathematics education, most Indonesian mathematics learning

has not been oriented toward developing computational thinking abilities.
Vocational school students majoring in Software Engineering possess

programming knowledge that could potentially enhance their mathematical

problem-solving through computational approaches. However, the extent of
their CT abilities when applied to mathematical contexts remains unclear. This

study aims to describe and analyze the computational thinking abilities of
10th-grade vocational school students majoring in Software Engineering when

solving quadratic function problems using Python programming language.
This qualitative research employed a case study approach with three

purposively selected students representing different proficiency levels (high,

moderate, and low) based on standardized programming and mathematics
assessment criteria. Data were collected through written tests, structured

observations, and semi-structured interviews. The assessment focused on four
CT components: decomposition, pattern recognition, abstraction, and

algorithmic thinking. The analysis revealed distinct patterns in CT abilities
across proficiency levels. High-proficiency students (S1) demonstrated

systematic problem decomposition, optimal pattern utilization, effective

information filtering, and efficient algorithm development, achieving an
average CT score of 91.25. Moderate-proficiency students (S2) showed

adequate CT abilities with some limitations in systematic organization and
strategic thinking, scoring 78.75 on average. Low-proficiency students (S3)

exhibited significant difficulties across all CT components, particularly in
problem decomposition and algorithmic thinking, with an average score of

64.25. The findings indicate that students' mathematical foundations

significantly influence their CT development when integrated with
programming tools. The computational thinking abilities of 10th-grade

Software Engineering students vary considerably when solving quadratic
function problems with Python assistance. Students with stronger

mathematical foundations demonstrate superior CT performance across all
components, while those with weaker foundations require substantial

scaffolding. These findings highlight the need for differentiated instructional

approaches that consider students' varying CT development levels in
mathematics education.

Keywords:
computational thinking

ability, problem solving,

quadratic function,
python programming

language, mathematics
education

*Corresponding author:

misel.23002@mhs.unesa.

ac.id

https://ejournal.unesa.ac.id/index.php/mathedunesa/index
mailto:mathedunesa@unesa.ac.id

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 781

INTRODUCTION

Computational thinking represents a fundamental problem-solving approach that involves

formulating problems in computational terms and developing systematic solutions , as

defined by (Wing, 2006). This cognitive skill extends beyond computer science applications,

serving as a critical competency for systematic problem-solving across various disciplines,

including mathematics education. According to (Simanjuntak, Armanto, & Dewi, 2023), the

integration of computational thinking into mathematics learning supports students in

developing structured, logical approaches to complex problem-solving scenarios.

Contemporary educational frameworks emphasize computational thinking as an

essential 21st-century skill that enables students to approach problems recursively,

establishing pattern regularities and logical calculations that facilitate deeper analysis

according to research by (Irawan, Rosjanuardi, & Prabawanto, 2024). This capability aligns

closely with mathematics education objectives that prioritize the development of critical

thinking and systematic problem-solving abilities, as advocated by the National Council of

Teachers of Mathematics and the National Science Teachers Association (Minarni, 2021).

However, according to (Syari, Fatra, & Diwidian, 2024), mathematics education

practices in Indonesia remain largely disconnected from computational thinking

development. Many educational approaches continue to employ conventional pedagogical

methods that inadequately address the four core computational thinking indicators:

decomposition, pattern recognition, abstraction, and algorithmic thinking, as identified by

researchers such as (Gadanidis, Hughes, Minniti, & White, 2017), (Marcelino, M. J., Pessoa,

T., Vieira, C., Salvador, T., & Mendes, 2018), and (Yadav, Gretter, Hambrusch, & Sands,

2017). Traditional teaching methods that emphasize formula memorization and procedural

execution , as noted by (Azmi & Yunita, 2022), fail to cultivate the deeper cognitive skills

associated with computational thinking development.

Quadratic functions present a particularly suitable mathematical context for

computational thinking development due to their conceptual complexity and practical

applications. This topic encompasses fundamental mathematical concepts including

function relationships, algebraic operations, and graphical representations that connect to

real-world problem scenarios , as discussed by (Fadillah, 2019). Nevertheless, research by

(Azmi & Yunita, 2022) shows that students frequently encounter difficulties in

understanding quadratic function concepts, performing accurate calculations, and

connecting prerequisite knowledge to new learning contexts.

Vocational schools offering Software Engineering programs provide a unique

educational context where students acquire programming skills alongside traditional

academic subjects. These students develop proficiency in programming languages,

including Python, which offers significant potential for mathematical problem-solving

applications. Python's accessible syntax and robust visualization capabilities make it

particularly suitable for exploring mathematical concepts such as quadratic functions

through computational approaches. The integration of programming skills with

mathematical learning creates opportunities for enhanced conceptual understanding

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 782

through interactive exploration and visual representation of abstract mathematical

relationships.

The Indonesian Merdeka Belajar curriculum initiative specifically identifies

computational thinking as a crucial competency for preparing students to meet future

challenges in an increasingly digital society, as outlined by (Nau & Sulistyani, 2023). This

educational framework recognizes that traditional mathematics instruction must evolve to

incorporate computational approaches that reflect contemporary problem-solving

methodologies. However, the effectiveness of this integration depends significantly on

understanding how students with existing programming knowledge apply computational

thinking skills to mathematical contexts.

Given the unique position of Software Engineering students who possess both

mathematical knowledge and programming skills, investigating their computational

thinking abilities in mathematical problem-solving contexts becomes particularly relevant.

These students represent an important demographic for understanding how programming

knowledge can enhance mathematical learning and whether existing computational skills

transfer effectively to mathematical applications. Understanding their CT abilities can

inform educational strategies for integrating programming into mathematics curricula more

broadly.

Therefore, this study aims to describe and analyze the computational thinking abilities

of 10th-grade vocational school students majoring in Software Engineering when solving

quadratic function problems using Python programming language. This investigation

addresses the need for empirical evidence regarding how students apply computational

thinking skills in mathematics contexts and provides insights for developing more effective

integration strategies between programming and mathematics education.

Computational Thinking Framework

Computational thinking has evolved from its origins in computer science to become a

fundamental cognitive framework applicable across multiple disciplines. According to

(Wing, 2006) initially defined computational thinking as a problem-solving process that

involves formulating problems in computational terms and developing effective solutions

through systematic approaches. This definition has been expanded by subsequent

researchers who recognize computational thinking as a transferable skill set essential for

navigating complex problem-solving scenarios in various academic and professional

contexts.

Research by (Angeli & Giannakos, 2020) conceptualize computational thinking as a

thinking process that originates from computer science principles but extends its

applicability across diverse disciplinary boundaries. Similarly, (Syari et al., 2024) describes

computational thinking as a comprehensive problem-solving methodology that begins with

problem formulation and proceeds through systematic decomposition into manageable

components.

The theoretical framework for computational thinking encompasses four fundamental

components that work synergistically to support effective problem-solving. Decomposition

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 783

involves breaking complex problems into smaller, more manageable parts that can be

addressed systematically. Pattern recognition requires identifying similarities, regularities,

or recurring elements within problems or solution approaches. Abstraction focuses on

identifying and extracting relevant information while filtering out unnecessary details that

may complicate the solution process. Algorithmic thinking involves developing clear,

sequential steps that lead to systematic problem resolution, as outlined by (Syari et al., 2024)

and (Barr & Stephenson, 2011).

Figure 1. Computational Thinking Components Framework

Source: Made with Figma

Research conducted by (Irawan et al., 2024) expand this framework by emphasizing that

computational thinking enables recursive problem-solving approaches, where students can

address complex challenges by establishing pattern regularities and implementing logical

calculations that facilitate systematic analysis. This recursive capability proves particularly

valuable in mathematics education, where students must process and transform

information to solve increasingly complex problems.

Mathematical Problem-Solving Theory

Mathematical problem-solving has emerged as a central focus in mathematics education

worldwide, reflecting its importance for developing students' analytical and reasoning

capabilities. The seminal work by (polya, 1957) seminal work established a four-stage

framework for mathematical problem-solving that continues to influence contemporary

educational approaches: understanding the problem, devising solution plans, executing the

plan, and reviewing results for accuracy and reasonableness.

According to the National Council of Teachers of Mathematics, they emphasize that

problem-solving serves dual purposes in mathematics education, functioning both as a

learning objective and as a pedagogical method for developing mathematical

understanding. Through systematic problem-solving experiences, students develop deeper

conceptual comprehension of mathematical ideas while strengthening connections between

different mathematical concepts and real-world applications.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 784

Research by (Schoenfeld, 2016) identifies four critical components that contribute to

successful mathematical problem-solving: foundational mathematical knowledge, strategic

problem-solving approaches, metacognitive regulation and self-monitoring, and positive

beliefs and dispositions toward mathematics. These components interact dynamically to

influence students' overall problem-solving effectiveness and their willingness to persist

through challenging mathematical scenarios.

Studies conducted by (Killpatrick, Swafford, & Findell, 2010) propose five mathematical

proficiency strands essential for successful problem-solving: conceptual understanding,

procedural fluency, strategic competence, adaptive reasoning, and productive disposition.

Strategic competence, which involves the ability to formulate, represent, and solve

mathematical problems effectively, shows particular alignment with computational

thinking principles.

In the context of quadratic function learning, mathematical problem-solving involves

applying quadratic relationships to diverse situations, including optimization problems,

equation solving, and graphical analysis, as discussed by (Fadillah, 2019). The integration

of computational thinking approaches into quadratic function problem-solving can enhance

students' systematic solution strategies while providing opportunities for deeper

conceptual exploration through technological tools.

Quadratic Function Theory in Mathematics

Quadratic functions represent an important topic in secondary school mathematics

curricula. A quadratic function is defined as a function with the general form 𝑓(𝑥) = 𝑎𝑥² +

 𝑏𝑥 + 𝑐, where 𝑎, 𝑏, dan 𝑐 are constants and 𝑎 ≠ 0, as explained by (Fadillah, 2019). This

function has a parabolic graph that can open upward (if 𝑎 > 0) or downward (if 𝑎 < 0).

According to (Fadillah, 2019) state that quadratic function material encompasses several

basic concepts and prerequisite materials such as function concepts, algebraic operations in

functions, and function graphs. Students need to understand the properties of quadratic

functions, including: (1) The vertex of the parabola, (2) The axis of symmetry, (3) The roots

of the quadratic equation, (4) The discriminant and its types, and (5) The relationship

between coefficients and roots of quadratic equations.

Research by (Azmi & Yunita, 2022) identifies several difficulties faced by students in

learning quadratic functions, including: (1) Inability to understand and apply quadratic

function concepts to problems, (2) Difficulties in calculating or operating on quadratic

function problems, and (3) Inability to recall previously learned material .

These difficulties are often caused by conventional teaching approaches, where students

tend to learn procedurally without deep conceptual understanding.

Integration of Programming in Mathematics Education

The integration of programming languages into mathematics education represents an

emerging pedagogical approach designed to enhance conceptual understanding and

problem-solving capabilities. Python, with its intuitive syntax and powerful mathematical

libraries, has gained recognition as an effective tool for mathematics education integration,

as noted by (Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, 2018).

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 785

Research conducted by (Yadav et al., 2017) demonstrates that programming language

integration in mathematics education can significantly enhance students' computational

thinking development. Programming environments allow students to apply mathematical

concepts in authentic contexts while providing opportunities to visualize abstract

mathematical relationships through interactive exploration and graphical representation.

For quadratic function learning specifically, Python programming offers several

educational advantages. Students can utilize programming to calculate function values for

specific inputs, determine equation roots through numerical methods, create dynamic

visualizations of function behavior, and analyze function properties through both numerical

and graphical approaches. These capabilities provide students with multiple representation

systems for understanding quadratic relationships while developing computational skills

simultaneously.

According to (Gadanidis et al., 2017) emphasize that programming integration in

mathematics education should focus not only on developing technical programming skills

but also on deepening mathematical understanding and cultivating higher-order thinking

capabilities. This dual focus ensures that programming tools serve mathematical learning

objectives rather than becoming isolated technical skills.

Previous Research on Computational Thinking in Mathematics Education

The intersection of computational thinking and mathematics education has emerged as

a critical area of investigation, particularly as educational systems worldwide grapple with

integrating 21st-century digital competencies into traditional academic subjects. Research

in this domain reveals both promising opportunities and significant implementation

challenges that warrant careful examination.

The current state of computational thinking integration in mathematics education

presents a complex landscape. Indonesian educational contexts, in particular, face

substantial hurdles in developing students' computational thinking capabilities within

mathematical learning environments. Research consistently demonstrates that traditional

mathematics pedagogical approaches inadequately support the development of

computational thinking skills, creating a significant gap between educational goals and

classroom realities, as found by (Syari et al., 2024) and (Maifi, Anwar, & Ahmad, 2021). This

disconnect is particularly concerning given the Indonesian government's emphasis on

computational thinking as a crucial 21st-century competency through the Merdeka Belajar

curriculum initiative.

Empirical investigations into students' computational thinking abilities reveal troubling

patterns in skill development. Studies examining Indonesian students' performance across

various mathematical contexts consistently identify weaknesses in fundamental

computational thinking components, including problem decomposition, pattern

recognition, abstraction, and algorithmic reasoning, as reported by (Kamil, Imami, & Abadi,

2021). These deficiencies appear to stem from educational approaches that prioritize

procedural knowledge acquisition over the development of systematic thinking processes

that characterize effective computational problem-solving.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 786

However, emerging research suggests that strategic integration of programming

activities within mathematics education can significantly enhance students' computational

thinking development. According to (Harangus & Kátai, 2020) demonstrated that students

who engage in programming-integrated mathematics instruction show measurable

improvements in computational thinking capabilities compared to peers receiving

traditional instruction. This finding supports the theoretical proposition that programming

tools can serve as cognitive amplifiers for mathematical thinking when properly integrated

into pedagogical frameworks.

The relationship between computational thinking and broader cognitive abilities

presents another crucial dimension of this research domain. Educational researchers have

established meaningful connections between computational thinking skills and critical

thinking, problem-solving, and mathematical reasoning capabilities that extend beyond

specific technological applications, as demonstrated by (Cahdriyana & Richardo, 2020).

These connections suggest that computational thinking development may have cascading

effects on students' overall mathematical proficiency and analytical capabilities.

Specific mathematical topics, such as quadratic functions, have proven particularly

suitable for computational thinking integration research. According to (Mubarokah,

Pambudi, Lestari, Kurniati, & Jatmiko, 2023) found that students who developed stronger

computational thinking skills through programming-enhanced instruction demonstrated

superior performance in understanding and applying quadratic function concepts. Their

research revealed that computational approaches help students overcome traditional

conceptual barriers associated with quadratic function learning while building stronger

connections between abstract mathematical relationships and practical problem-solving

applications.

Despite these promising findings, significant research gaps remain in understanding

how computational thinking manifests across different student populations and

mathematical contexts. Most existing studies focus on general student populations without

considering how prior programming experience might influence computational thinking

development in mathematical contexts. Additionally, limited research examines how

computational thinking abilities vary among students with different mathematical

proficiency levels, particularly in specialized educational contexts such as vocational

programs where students possess existing technical skills.

The research landscape also reveals insufficient attention to the specific mechanisms

through which programming tools enhance mathematical understanding. While studies

demonstrate positive correlations between programming integration and computational

thinking development, fewer investigations examine the detailed cognitive processes

through which students translate mathematical concepts into computational solutions. This

gap is particularly significant for educators seeking evidence-based strategies for

implementing computational thinking instruction in mathematics curricula.

Furthermore, most existing research employs broad assessment approaches that may

not capture the nuanced ways computational thinking manifests in specific mathematical

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 787

problem-solving contexts. There remains a need for more detailed, qualitative

investigations that examine how students apply computational thinking components in

real-time problem-solving scenarios, particularly when using programming tools to explore

mathematical concepts.

These research limitations highlight the importance of investigating computational

thinking abilities among specific student populations, such as vocational students with

existing programming knowledge, who represent unique cases for understanding how

technical skills transfer to mathematical contexts. Such investigations can provide crucial

insights for developing more effective integration strategies that leverage students' existing

capabilities while addressing identified weaknesses in computational thinking

development.

Research Framework

Based on the literature review, this research operates within a framework that views

computational thinking as a bridge between programming knowledge and mathematical

problem-solving. The study examines how Software Engineering students apply their

existing programming skills to mathematical contexts, specifically focusing on how the four

computational thinking components manifest in quadratic function problem-solving

scenarios using Python programming tools.

Figure 2. Conceptual Research Framework

Source: Made with Figma

METHOD

Research Design and Approach

This research employs a qualitative case study approach to provide in-depth understanding

of computational thinking abilities among vocational school students. According to

Creswell that described by (Mackiewicz, 2018), qualitative research focuses on detailed

exploration and comprehensive understanding of specific phenomena within their natural

contexts. The case study method allows for intensive examination of computational

thinking manifestation in mathematical problem-solving scenarios while maintaining the

complexity and richness of real educational settings.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 788

Participant Selection and Characteristics

Three 10th-grade vocational high school students majoring in Software Engineering

were selected through purposive sampling based on standardized assessment of their

programming and mathematics proficiency levels. The selection process involved

administering comprehensive assessments in both domains to ensure representation across

different ability levels.

Programming Proficiency Assessment Criteria.

Students were evaluated on Python programming fundamentals including variable

manipulation, control structures implementation, function development, and basic data

processing capabilities. Assessment items required students to demonstrate understanding

of programming logic, syntax accuracy, and problem-solving approaches using Python.

Mathematics Proficiency Assessment Criteria

Students completed assessments covering quadratic function concepts, including

function properties identification, equation solving techniques, graphical interpretation

skills, and application of quadratic relationships to contextual problems.

Proficiency categories were established using the Merdeka Curriculum assessment

framework, as outlined by Directorate General of Higher Education in year of 2022 as in

Table 1.

Table 1. Proficiency Level Classification

No. Score Range Proficiency Category
1. 85 < score ≤ 100 High

2. 65 < score ≤ 85 Moderate

3. 0 < score ≤ 65 Low

From the assessment results, three students were selected representing each proficiency

category: one high-proficiency student (S1), one moderate-proficiency student (S2), and one

low-proficiency student (S3). This selection strategy ensures comprehensive representation

of computational thinking abilities across different competency levels.

Research Instruments and Procedures

This research utilized five primary instruments to collect comprehensive data regarding

students' computational thinking capabilities. Instrument development incorporated

indicators of CT capabilities and quadratic function conceptual material. Prior to

implementation, all instruments were validated by two experts in mathematics education

and informatics to ensure content validity.

The research procedure commenced with a preparation phase encompassing

instrument development, validation, and subject selection. Subsequently, during the

implementation phase, students completed written tests while being observed by

researchers, followed by in-depth interviews. The acquired data were then analyzed

through data reduction, data presentation, and conclusion drawing. The following are

details and examples of each instrument used.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 789

Python Programming Proficiency Assessment (pre-test)

This pre-assessment evaluated students' foundational programming knowledge

through practical coding tasks. This assessment consisted of one basic programming

question covering concepts of variables, control structures, functions, and simple data

manipulation.

"Create a Python function named 'calculate_average' that accepts a list of numbers as a parameter

and returns the average value of the list. Then, test the function with the list [10, 15, 20, 25, 30]."

Assessment criteria included syntax accuracy, algorithm efficiency, and program output

correctness.

Mathematics Proficiency Test (pre- test)

This pre-assessment examined students' understanding of quadratic function concepts

through analytical and graphical problems This assessment contained one question on

quadratic function concepts and applications.

“Determine the vertex point, axis of symmetry, and maximum or minimum value of the quadratic

function 𝑓(𝑥) = −2𝑥² + 8𝑥 − 3. Draw the graph of this function.”

Assessment was based on conceptual accuracy, calculation precision, and answer

completeness.

Computational Thinking Test in Quadratic Function Problem-Solving (core)

This core assessment presented contextual problems requiring integration of

mathematical understanding with programming implementation. The assessment was

specifically designed to evaluate all four computational thinking components within

authentic problem-solving contexts.

“A manufacturing company discovered that their daily profit (in thousands of rupiah) can be

modeled with the function P(x) = -2x² + 120x - 300, where x is the number of products (in

hundreds of units) produced per day.

a) Create a Python program to determine how many products should be produced for maximum

profit.

b) Modify the program to calculate the maximum profit obtainable.

c) Create a visualization of the profit function graph using matplotlib.

d) If production costs increase such that the x² coefficient changes to -3 how does this affect the

optimal production quantity and maximum profit? Modify your program to answer this

question.”

Assessment encompassed students' capabilities in decomposing problems, identifying

patterns, performing abstraction, and developing solution algorithms.

Observation Guidelines

The observation guidelines contained indicators of CT capabilities observed while

students completed the problem-solving test. Observation was conducted using structured

observation sheets of CT indicator with source from developed based on computational

thinking literature and validated by expert review.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 790

Table 2. Computational Thinking Indicators Observation

Decomposition Pattern Recognition Abstraction Algorithm

Unable to break down the

problem into smaller parts

Unable to identify

patterns in the
problem

Unable to identify

relevant information

Unable to develop

solution steps

Breaks down a small

portion of the problem into

smaller parts but not
systematically

Identifies patterns in
a limited way and

cannot utilize them

Identifies a small portion

of relevant information

but remains focused on
unnecessary details

Develops solution

steps but not

systematically and
sequentially

Breaks down most of the
problem into smaller parts

but less systematically

Identifies patterns

well but sub-
optimally utilizes

them

Identifies most relevant

information but still
considers some

unnecessary details

Develops systematic
solution steps but less

efficiently

Breaks down the problem

into smaller parts
systematically and

comprehensively

Identifies patterns

accurately and
optimally utilizes

them for solutions

Identifies all relevant
information and ignores

unnecessary details

Develops systematic,
sequential, and

efficient solution steps

Interview Guidelines

Semi-structured interviews were conducted after students completed the test to explore

their thinking processes and strategies more deeply. The interview guidelines contained

questions covering all four CT indicators. Interview questions:

Table 3. Interview Questions

Decomposition Pattern Recognition Abstraction Algorithm

How did you begin

solving this
problem?

Did you see any similarities

or specific patterns in this
problem with problems

you've solved previously?

What information did

you ignore because it
was considered

irrelevant?

Why did you choose
that approach?

What parts did you

identify from this
problem?

How did you use those

patterns to assist in the
solution?

Explain the steps you

used to solve this
problem.

How did you
implement the

mathematical solution

into Python code?

What information did you
consider important in this

problem?

Data Collection Techniques

Data in this research were collected through three techniques: observation, written tests,

and interviews. Observation was conducted to monitor students' processes in solving

quadratic function problems using Python, focusing on the application of four CT capability

indicators. Written tests were used to assess students' capabilities in solving quadratic

function problems with Python assistance, and interviews were conducted to obtain deeper

information about students' thinking processes and strategies.

Data Analysis Techniques

Data analysis was performed following Miles and Huberman's model, as described by

(Dull & Reinhardt, 2014), which includes three stages: data reduction, data presentation,

and conclusion drawing. To ensure data validity, researchers conducted method

triangulation by comparing data obtained from problem-solving test results with interview

results. Additionally, researchers also performed member checking by confirming analysis

results with research subjects.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 791

RESULTS AND DISCUSSION

Results

This research aimed to describe the computational thinking capabilities of tenth-grade

vocational high school students majoring in Software Engineering in solving quadratic

function problems with Python programming language assistance. Data collection was

conducted through written tests, observation, and interviews with three research subjects

selected based on programming and mathematics proficiency criteria.

Research Subject Profiles

Based on Python programming proficiency and mathematics proficiency test results,

three research subjects coded S1, S2, and S3 were selected, representing high, moderate, and

low proficiency categories. The profiles of the three research subjects are presented in Table

4.

Table 4. Research Subject Background and Proficiency Levels
Subject

Code
Programming

Proficiency Score
Mathematics

Proficiency Score
Proficiency

Category
Key Characteristics

S1 92 88 High
Strong algorithmic thinking, solid

mathematical reasoning

S2 78 72 Moderate
Good basic skills with some

conceptual gaps

S3 63 58 Low
Limited programming experience,

struggles with mathematical
abstractions

Computational Thinking Assessment Results

The core assessment revealed significant variations in computational thinking abilities

across the four key components. Each student's performance was evaluated using the

structured rubric, yielding comprehensive profiles of their computational thinking

development.

Table 5. Computational Thinking Capability Assessment Results

Subject Decomposition Pattern Recognition Abstraction Algorithm Average Category

S1 93 90 87 95 91.25 High

S2 82 75 78 80 78.75 Moderate

S3 65 60 70 62 64.25 Low

These results demonstrate clear differentiation in computational thinking abilities that align

with students' foundational proficiency levels while revealing specific patterns within each

component.

Analysis of Subject S1's Computational Thinking Capabilities

Subject S1 demonstrated high computational thinking capabilities in solving quadratic

function problems with Python assistance. The following is an analysis of subject S1's

capabilities based on four indicators.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 792

Decomposition Capability

Subject S1 was able to break down quadratic function problems into smaller parts

systematically and comprehensively. This was evident from S1's work on the manufacturing

company profit model question shown in Figure 3.

Figure 3. Problem Decomposition by Subject S1

Source: VSCode Text Editor

During the interview, subject S1 explained their decomposition process:

“I broke the problem down into several steps. First, defining the profit function. Second, using calculus to find the
optimal 𝑥 value from the first derivative equals zero. Third, calculating the maximum profit by inputting the optimal

𝑥 value into the profit function. Finally, visualizing the graph to verify the results.”

Pattern Recognition Capability

Subject S1 was able to identify patterns accurately and utilize them optimally for

solutions. In the profit function modification question, S1 quickly recognized the pattern of

changes occurring and adapted their solution as shown in Figure 4.

Figure 4. Pattern Recognition by Subject S1

Source: VSCode Text Editor

Based on interview results, subject S1 explained:

"I saw the pattern that if the 𝑥² coefficient changes from −2 to −3, then the optimal point calculation will change. I

used the same pattern as before, finding the first derivative and setting it equal to zero. If the 𝑥² coefficient is −3, then
its derivative is −6𝑥 + 120, so the optimal 𝑥 = 20. This shows a pattern that the more negative the 𝑥² coefficient,
the smaller the optimal 𝑥 value, which logically means the company must reduce production when production costs

increase."

Abstraction Capability

Subject S1 was able to identify and extract relevant information and ignore unnecessary

details well. This was evident from how S1 modeled the quadratic function problem in

computational form as shown in Figure 5.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 793

Figure 5. Abstraction by Subject S1

Source: VSCode Text Editor

From the interview results, subject S1 explained their abstraction process:

“In this problem, what's relevant are the quadratic function coefficients and the formula for finding the optimal 𝑥
value. I ignored details about how the company produces goods or its marketing process because that's irrelevant to
the mathematical solution. I also ignored other values on the graph and only focused on the maximum point.”

Algorithm Capability

Subject S1 was able to develop ordered steps to solve problems very well. The algorithm

developed by S1 to visualize quadratic functions is shown in Figure 6.

Figure 6. Algorithm Development by Subject S1

Source: VSCode Text Editor

In the interview, subject S1 explained:

"I created a general function for visualizing quadratic functions that can be used for various coefficient values
𝑎, 𝑏, and 𝑐. This algorithm first defines the function, then calculates important values such as the vertex point and x -
axis intercepts, then visualizes them. I also added text output for important information to make it easier to
understand."

Analysis of Subject S2's Computational Thinking Capabilities

Subject S2 demonstrated computational thinking capabilities in the moderate category

when solving quadratic function problems with Python assistance.

Decomposition Capability

Subject S2 was able to break down most of the problem into smaller parts, but less

systematically compared to S1. S2's work on the manufacturing company profit model

question is shown in Figure 7.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 794

Figure 7. Problem Decomposition by Subject S2

Source: VSCode Text Editor

From the interview results, subject S2 explained:

"I divided this problem into several parts. First, defining the profit function. Then finding the optimal 𝑥 value using
the parabola vertex formula. After that, calculating the maximum profit by inputting the optimal 𝑥 value into the
function. Finally, I visualized the graph."

Pattern Recognition Capability

Subject S2 was able to identify patterns well but sub-optimally utilized them. In the

profit function modification question, S2 recognized the changes occurring but did not

analyze them as deeply as shown in Figure 8.

Figure 8. Pattern Recognition by Subject S2

Source: VSCode Text Editor

From the interview results, subject S2 explained:

"I saw that the x² coefficient changed from -2 to -3, so the optimal x value would also change. I used the same 𝑥 =

 −
𝑏

2𝑎
, where a is now 3, so the optimal 𝑥 becomes 20."

Abstraction Capability

Subject S2 was able to identify relevant information well but sometimes still included

some unnecessary details. This was evident from how S2 modeled the problem as shown in

Figure 9.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 795

Figure 9. Abstraction by Subject S2

Source: VSCode Text Editor

From the interview results, subject S2 explained:

"I focused on the profit function and formulas for finding the optimal point. I created a function that can accept
different a value to facilitate analysis of coefficient changes. But I still included 𝑏 and 𝑐 values within the function
even though their values don't change.

Algorithm Capability

Subject S2 was able to develop ordered steps to solve problems well, but less

comprehensively compared to S1. The algorithm developed by S2 to visualize quadratic

functions is shown in Figure 10.

Figure 10. Algorithm Development by Subject S2

Source: VSCode Text Editor

In the interview, subject S2 explained:

"I created a function to visualize quadratic functions with parameters 𝑎, 𝑏, and 𝑐. This algorithm draws the graph,
determines the vertex point, and displays important information. I didn't add calculation of 𝑥 − 𝑎𝑥𝑖𝑠 intercepts

because I didn't think they were very important for the profit problem."

Analysis of Subject S3's Computational Thinking Capabilities

Subject S3 demonstrated computational thinking capabilities in the low category when

solving quadratic function problems with Python assistance. The detailed analysis reveals

specific areas where S3 struggled, providing crucial insights for educators working with

students who have similar challenges.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 796

Decomposition Capability

Subject S3 showed significant difficulties in breaking down the quadratic function

problem into manageable components. Unlike S1 and S2 who could identify distinct steps,

S3 attempted to solve the entire problem as one unit without systematic breakdown. S3's

work on the manufacturing company profit model question is shown in Figure 11.

Figure 11. Problem Decomposition Attempt by Subject S3

Source: VSCode Text Editor

During the interview, subject S3 explained their struggle with decomposition:

"I knew I needed to find the maximum profit, but I wasn't sure how to break it down. I tried plugging in different x
values to see which gave the highest profit, but I realized there were too many possibilities to check. I got stuck because
I couldn't figure out what steps to take first."

This difficulty in decomposition appears to stem from S3's limited understanding of how

mathematical concepts translate into programming logic. The student could not identify the

intermediate steps needed (finding the derivative, setting it to zero, solving for x) and

instead resorted to a trial-and-error approach that quickly became overwhelming.

Pattern Recognition Capability

Subject S3 struggled significantly with pattern recognition, showing minimal ability to

identify mathematical relationships or programming patterns. When faced with the profit

function modification question (changing the coefficient from -2 to -3), S3 could not

recognize the underlying pattern or adapt their solution approach, as shown in Figure 12.

Figure 12. Pattern Recognition Struggle by Subject S3

Source: VSCode Text Editor

From the interview results, subject S3 explained:

"When the coefficient changed to -3, I saw that the answers were different, but I couldn't understand why or what it
meant. I tried the same way as before, testing different numbers, but I couldn't see any pattern in how the change
affected the optimal point. I didn't know how to connect the mathematical change to the programming solution."

This struggle with pattern recognition indicates that S3 has difficulty connecting

mathematical concepts across different contexts. The student could not recognize that the

same optimization principles apply regardless of coefficient values, nor could they identify

programming patterns that could be reused with modifications.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 797

Abstraction Capability

Subject S3 demonstrated particular difficulty with abstraction, showing an inability to

distinguish between relevant and irrelevant information in the problem context. This was

evident in how S3 approached the profit modelling task, as shown in Figure 13.

Figure 13. Abstraction Difficulties by Subject S3

Source: VSCode Text Editor

From the interview results, subject S3 explained their abstraction process:

"I thought I needed to include information about the company and the products because it was mentioned in the
problem. I spent time trying to make the program look realistic with company details. I wasn't sure which parts of the
problem were important for the math and which parts were just story context."

This difficulty with abstraction reveals that S3 cannot effectively filter information to focus

on the essential mathematical relationships. The student becomes overwhelmed by

contextual details rather than extracting the core computational problem that needs to be

solved.

Algorithm Capability

Subject S3 showed the most significant struggles with algorithmic thinking,

demonstrating an inability to develop systematic, sequential steps for problem-solving. The

student's attempt at creating a solution algorithm is shown in Figure 14.

Figure 14. Algorithm Development Struggle by Subject S3

Source: VSCode Text Editor

In the interview, subject S3 explained their algorithmic challenges:

"I knew I needed to make steps to solve the problem, but I couldn't figure out the right order. I tried to copy what I
saw in examples, like making a graph, but I didn't understand how to make the computer find the exact answer. I

could see the highest point on the graph, but I couldn't make the program tell me the exact numbers."

This algorithmic struggle demonstrates that S3 lacks the ability to translate mathematical

procedures into computational steps. The student cannot bridge the gap between

understanding that an optimization problem exists and implementing a systematic

approach to solve it.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 798

Key Areas Where S3 Struggled

The analysis reveals that S3's difficulties stemmed from several interconnected issues:

(1) Mathematical-Programming Translation Gap: S3 could not effectively translate

mathematical concepts (like finding derivatives or using vertex formulas) into

programming logic. This suggests a need for more scaffolded instruction that explicitly

connects mathematical procedures to coding implementations; (2) Procedural vs. Conceptual

Understanding: S3 appeared to rely heavily on memorized procedures without deep

conceptual understanding. When faced with variations in the problem, the student could

not adapt because they lacked understanding of underlying principles ; (3) Cognitive Load

Management: S3 became overwhelmed when trying to handle multiple aspects of the

problem simultaneously (mathematical concepts, Python syntax, problem context),

suggesting a need for more structured, step-by-step instruction; (4) Debugging and Iteration

Skills: Unlike S1 and S2 who could refine their approaches when initial attempts didn't work,

S3 lacked the metacognitive skills to evaluate and improve their solutions systematically.

These findings have important implications for educators working with students at

similar levels, highlighting the need for differentiated instruction that provides additional

support in connecting mathematical concepts to computational implementation.

Discussion

Based on the comprehensive research findings examining all three students (S1, S2, and

S3), there are significant variations in computational thinking (CT) abilities among tenth-

grade Software Engineering students at vocational high schools when solving quadratic

function problems using Python. The following discussion compares and contrasts these

findings while connecting them to relevant theories and previous research.

Comparative Analysis of Computational Thinking Components

Decomposition Skills Across Proficiency Levels

The analysis reveals a clear progression in decomposition abilities across the three

proficiency levels. Subject S1 demonstrated systematic and comprehensive problem

breakdown, organizing the quadratic function optimization into distinct, logical steps:

function definition, derivative calculation, optimization point finding, and result

verification. This sophisticated approach aligns with (Wing's, 2006) assertion that strong

decomposition abilities enable more effective complex problem-solving by reducing

cognitive load through structured problem partitioning.

Subject S2 showed intermediate decomposition skills, successfully identifying major

problem components but with less systematic organization than S1. While S2 could

recognize the need to separate function definition from optimization calculations, their

approach lacked the comprehensive structure that made S1's solution more robust and

reusable.

In stark contrast, Subject S3 demonstrated significant decomposition difficulties,

attempting to solve the entire problem as a monolithic unit without recognizing the need

for systematic breakdown. This finding is particularly concerning as it suggests S3 lacks the

fundamental CT skill that underlies all other computational thinking components. S3's

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 799

struggle with decomposition appears to stem from an inability to recognize that complex

problems require systematic partitioning, which (Syari et al., 2024) identifies as a critical gap

in many Indonesian students' computational thinking abilities.

The progression from S3's holistic but ineffective approach to S1's systematic

decomposition illustrates how decomposition skills develop from novice pattern

recognition to expert systematic analysis. This gradient suggests that decomposition skills

can be scaffolded through explicit instruction in problem-breaking strategies.

Pattern Recognition: From Recognition to Strategic Application

Pattern recognition abilities showed equally dramatic variation across subjects,

revealing different levels of mathematical and computational pattern awareness. Subject S1

demonstrated advanced pattern recognition by not only identifying mathematical

relationships (how coefficient changes affect optimization) but also recognizing

programming patterns that could be generalized and reused. S1's ability to abstract the

optimization pattern into a reusable function demonstrates what (Chan et al., 2021) describe

as recursive thinking capability.

Subject S2 exhibited good pattern identification but struggled with optimal pattern

utilization. While S2 could recognize that coefficient changes would affect the optimal point,

they could not fully leverage this recognition to create more efficient or generalizable

solutions. This suggests an intermediate stage where students can perceive patterns but lack

the strategic thinking to fully exploit them.

Subject S3's pattern recognition difficulties were profound, showing minimal ability to

identify even basic mathematical relationships between coefficient changes and function

behavior. This finding aligns with (Maifi et al., 2021) observation that Indonesian students'

pattern recognition skills need significant improvement. S3's struggles suggest that pattern

recognition may require explicit instruction in both mathematical relationship identification

and computational pattern awareness.

The comparison reveals that pattern recognition in computational contexts requires

both mathematical understanding and programming fluency, creating a compound

learning challenge that may explain why this skill varies so dramatically among students.

Abstraction: Information Filtering and Focus Management

Abstraction abilities demonstrated perhaps the most educationally significant

variations among the three subjects. Subject S1 exhibited sophisticated abstraction skills,

effectively filtering relevant mathematical information while ignoring contextual details

that didn't contribute to the computational solution. This selective attention aligns with

(Lester & Cai's, 2016) emphasis on metacognitive awareness in mathematical problem-

solving.

Subject S2 showed intermediate abstraction abilities, generally identifying relevant

information but occasionally including unnecessary computational details. This suggests

developing but not fully mature abstraction skills, where students understand the need to

focus on relevant information but struggle with consistently applying this principle.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 800

Subject S3's abstraction difficulties were particularly revealing for educators. S3 became

overwhelmed by contextual problem details (company names, product types, currency)

rather than extracting the essential mathematical relationships. This suggests that S3 lacks

the metacognitive awareness to distinguish between story context and computational

requirements, a skill that (Killpatrick et al., 2010) identify as crucial for mathematical

proficiency.

The abstraction skill progression illuminates how students develop from being

overwhelmed by surface details to focusing on underlying mathematical structures,

suggesting that abstraction instruction should explicitly address information filtering

strategies.

Algorithmic Thinking: From Trial-and-Error to Systematic Solutions

Algorithmic thinking capabilities showed the most dramatic differences across subjects,

revealing fundamentally different approaches to systematic problem-solving. Subject S1

demonstrated sophisticated algorithmic development, creating well-structured, sequential,

and efficient solution pathways that could be easily modified and reused. This systematic

approach reflects what describe as mathematical modeling capability.

Subject S2 exhibited developing algorithmic skills, creating sequential solution steps but

with less comprehensive planning and efficiency than S1. S2's algorithms worked but lacked

the elegance and reusability that characterized S1's approach, suggesting intermediate

systematic thinking skills.

Subject S3's algorithmic difficulties were most pronounced, showing an inability to

move beyond trial-and-error approaches to systematic problem-solving strategies. S3's

reliance on random value testing rather than mathematical optimization procedures

suggests fundamental gaps in understanding how to translate mathematical procedures

into computational algorithms.

This algorithmic skill progression reveals how students develop from unsystematic

problem-solving attempts to sophisticated computational thinking, highlighting the

importance of explicit algorithm development instruction.

Cross-Component Interactions and Dependencies

The comparative analysis reveals important interactions between CT components that

have significant educational implications. Students with stronger mathematical foundations

(S1) demonstrated superior performance across all CT components, while students with

weaker mathematical understanding (S3) struggled with multiple components

simultaneously. This suggests that CT development may be constrained by mathematical

conceptual understanding, supporting (Schoenfeld, 2016) assertion that foundational

knowledge affects problem-solving capabilities.

Furthermore, the analysis reveals that CT components are not independent but form an

interconnected skill system. Students who struggle with decomposition (S3) also have

difficulty with pattern recognition and algorithmic development, suggesting that these

skills may need to be developed together rather than in isolation.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 801

Educational Implications from Comparative Analysis

The three-student comparison provides crucial insights for mathematics education

practice. The dramatic differences in CT abilities suggest that one-size-fits-all approaches to

computational thinking instruction may be ineffective. Instead, the findings support

differentiated instruction approaches that provide varying levels of scaffolding based on

student proficiency.

For students at S3's level, the analysis suggests that CT instruction should begin with

explicit decomposition training, focusing on problem-breaking strategies before

progressing to more advanced skills. The findings also indicate that students like S3 need

more structured connections between mathematical concepts and programming

implementation, supporting (Gadanidis et al., 2017) recommendation for explicit

mathematical-computational bridging instruction.

For students at S2's level, instruction should focus on optimization and strategic

thinking, helping them leverage their pattern recognition abilities more effectively and

develop more systematic algorithmic approaches.

For advanced students like S1, instruction can focus on generalization and abstraction

refinement, encouraging them to develop increasingly sophisticated and reusable

computational solutions.

Implications for Curriculum Development

This comparative analysis has significant implications for curriculum development in

mathematics education, particularly for programs integrating computational thinking. The

findings suggest that curriculum designers should consider creating multiple pathways or

tracks that accommodate different CT development levels rather than assuming uniform

student capabilities.

The research also supports the integration of programming into mathematics education

but suggests that this integration requires careful scaffolding and explicit instruction in

mathematical-computational connections. Simply providing programming tools without

systematic CT skill development may not be sufficient for students at lower proficiency

levels.

Finally, the findings suggest that assessment strategies should evaluate CT components

both individually and in integration, recognizing that these skills develop as interconnected

systems rather than isolated capabilities.

Research Limitations

This study has several limitations that should be considered when interpreting the

results and for future research consideration. First, this research involved only three

research subjects, so generalization of research results should be done cautiously. For fu ture

research, the number of research subjects could be increased to obtain a more

comprehensive picture of students' computational thinking abilities.

Second, this research is limited to the context of quadratic function material. Students'

computational thinking abilities may differ when facing different mathematical material.

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 802

For future research, exploration of students' computational thinking abilities in more

diverse mathematical contexts could be conducted.

Third, this research focuses only on tenth-grade vocational high school students in

Software Engineering who already have basic knowledge of Python programming. Results

might differ if applied to students from different majors or educational levels. Future

research could involve students from various educational backgrounds to gain broader

understanding of how educational background influences computational thinking abilities.

Fourth, this research uses a qualitative approach with a case study method, so it cannot

examine causal relationships between Python use and computational thinking

development. Future research could use experimental approaches to test the effectiveness

of Python use in developing students' computational thinking abilities.

CONCLUSION AND SUGGESTIONS

Based on the research results and discussion, The authors conclude that the computational

thinking abilities of tenth-grade vocational high school students in Software Engineering

when solving quadratic function problems using Python vary significantly, categorized as

high, medium, and low. Students with high ability (S1) demonstrated excellent

decomposition, pattern recognition, abstraction, and algorithmic skills, characterized by

systematic and comprehensive problem decomposition, accurate pattern identification with

optimal utilization, and efficient structured algorithm development. Meanwhile, students

with medium ability (S2) showed good capabilities but were less optimal in several aspects,

such as less systematic decomposition, suboptimal pattern utilization, inclusion of

unnecessary details in abstraction, and less comprehensive algorithm development.

Students with low ability (S3) demonstrated difficulties in several computational thinking

aspects. This research also found that using Python in mathematics education, particularly

in quadratic function material, can help students develop their computational thinking

abilities through abstract concept visualization and mathematical concept application in

more authentic contexts. This indicates that integrating programming into mathematics

education has potential to enhance students' computational thinking skills, which are

essential in today's digital era.

Based on the research results, the authors recommend that educators integrate

programming, particularly Python, into mathematics education to develop students'

computational thinking skills. Teachers should provide adequate scaffolding for students

with different abilities and design learning activities that encourage development across all

computational thinking aspects. Schools should facilitate curriculum development that

integrates computational thinking into mathematics education, including technological

infrastructure provision and teacher training. For future research, the authors recommend

involving more research subjects, exploring more diverse mathematical topics, and using

different methodological approaches such as experimental research to test the effectiveness

of various approaches in developing students' computational thinking skills. Curriculum

developers should consider explicitly integrating computational thinking into the

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 803

mathematics curriculum, including providing guidelines and resources that support its

implementation. For students, the authors recommend utilizing technology, particularly

Python programming, as a tool to aid mathematical concept understanding and problem-

solving skill development, ultimately increasing their competitiveness in the increasingly

developing digital era.

Acknowledgement

The authors thank all parties who assisted in this research. The authors express our gratitude to the principal,

teachers, and students of the vocational high school who were willing to be the location and subjects of the

research. Acknowledgments are also conveyed to the supervising professors who provided direction and

input during the research process, as well as to colleagues who provided support and assistance. Not

forgotten, the authors also thank their families for the support and prayers given during the implementation

of the research.

REFERENCES

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges. Computers in

Human Behavior, 105(January). https://doi.org/10.1016/j.chb.2019.106185

Azmi, N., & Yunita, R. (2022). Menyelesaikan Masalah Fungsi Kuadrat Di, 3(1), 41–49.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the

role of the computer science education community? ACM Inroads, 2(1), 48–54.

https://doi.org/10.1145/1929887.1929905

Cahdriyana, R. A., & Richardo, R. (2020). Berpikir Komputasi Dalam Pembelajaran Matematika. LITERASI

(Jurnal Ilmu Pendidikan), 11(1), 50. https://doi.org/10.21927/literasi.2020.11(1).50-56

Dull, E., & Reinhardt, S. P. (2014). An analytic approach for discovery. CEUR Workshop Proceedings.

Fadillah, A. (2019). Analisis Kemampuan Penalaran Deduktif Matematis Siswa. JTAM | Jurnal Teori Dan

Aplikasi Matematika, 3(1), 15. https://doi.org/10.31764/jtam.v3i1.752

Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. G. (2017). Computational Thinking, Grade 1 Students

and the Binomial Theorem. Digital Experiences in Mathematics Education, 3(2), 77–96.

https://doi.org/10.1007/s40751-016-0019-3

Harangus, K., & Kátai, Z. (2020). Computational thinking in secondary and higher education. Procedia

Manufacturing, 46(2019), 615–622. https://doi.org/10.1016/j.promfg.2020.03.088

Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2024). Promoting Computational Thinking through
Programming Trends, Tools, and Educational Approaches: a Systematic Review. JTAM (Jurnal Teori Dan

Aplikasi Matematika), 8(4), 1327. https://doi.org/10.31764/jtam.v8i4.26407

Kamil, R., Imami, A. I., & Abadi, A. P. (2021). Analisis kemampuan berpikir komputasional matematis Siswa
Kelas IX SMP Negeri 1 Cikampek pada materi pola bilangan Abstrak A . Pendahuluan Memasuki abad ke-

21 yang disebut dengan abad digital , dimana perkembangan teknologi semakin maju dan berkembang

san. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(2), 259–270.

Killpatrick, J., Swafford, J., & Findell, B. (2010). it UP ! October.

Mackiewicz, J. (2018). Writing center talk over time: A mixed-method study. Writing Center Talk over Time: A Mixed-

Method Study. https://doi.org/10.4324/9780429469237

Maifi, Y. K., Anwar, & Ahmad, A. (2021). Students’ understanding of mathematical concepts and their self-

confidence through a discovery learning model. Journal of Physics: Conference Series, 1882(1).

https://doi.org/10.1088/1742-6596/1882/1/012081

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning Computational Thinking

and Stratch at Distance. Computers on Human Behavior, 80(80), 470–477.

https://doi.org/10.1016/j.chb.2019.106185
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.21927/literasi.2020.11(1).50-56
https://doi.org/10.31764/jtam.v3i1.752
https://doi.org/10.1007/s40751-016-0019-3
https://doi.org/10.1016/j.promfg.2020.03.088
https://doi.org/10.31764/jtam.v8i4.26407
https://doi.org/10.4324/9780429469237
https://doi.org/10.1088/1742-6596/1882/1/012081

Volume 14 No. 3 Year 2025, page 780-804

DOI: 10.26740/mathedunesa.v14n3.p780-804 804

Minarni, A. (2021). Pengaruh Pembelajaran Berbasis Masalah Dan Keterampilan Sosial Siswa Smp Negeri Di.

Jurnal Pendidikan Matematika PARADIKMA, 6(2), 162–174.

Mubarokah, H. R., Pambudi, D. S., Lestari, N. D. S., Kurniati, D., & Jatmiko, D. D. H. (2023). Kemampuan
Berpikir Komputasi Siswa dalam Menyelesaikan Soal Numerasi Tipe AKM Materi Pola Bilangan. JNPM

(Jurnal Nasional Pendidikan Matematika), 7(2), 343. https://doi.org/10.33603/jnpm.v7i2.8013

Nau, S., & Sulistyani, N. (2023). ISSN  : 3047-2059 Pengembangan Modul Pembelajaran Interaktif Berbasis

Computational Thinking Menggunakan Canva ISSN  : 3047-2059. Semnaptika2023, 66.

polya. (1957). George_Polya_How_To_Solve_It_.pdf.

Schoenfeld, A. H. (2016). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense
Making in Mathematics (Reprint). Journal of Education, 196(2), 1–38.

https://doi.org/10.1177/002205741619600202

Simanjuntak, E., Armanto, D., & Dewi, I. (2023). Analisis Kemampuan Berpikir Komputasional Matematis
Siswa Dalam Menyelesaikan Soal Pisa Konten Change And Relationship. Jurnal Fibonaci: Jurnal Pendidikan

Matematika, 4(1), 11. https://doi.org/10.24114/jfi.v4i1.46106

Syari, A. K., Fatra, M., & Diwidian, F. (2024). Analisis Kemampuan Berpikir Komputasional Matematis Siswa Dalam

Menyelesaikan Masalah Kontekstual Ditinjau Dari Kemandirian Belajar. ALGORITMA: Journal of Mathematics

Education (Vol. 6). https://doi.org/10.15408/ajme.v6i1.38380

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

https://doi.org/10.1145/1118178.1118215

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2017). Expanding computer science education in schools:

understanding teacher experiences and challenges. Computer Science Education, 26(4), 235–254.

https://doi.org/10.1080/08993408.2016.1257418

https://doi.org/10.33603/jnpm.v7i2.8013
https://doi.org/10.1177/002205741619600202
https://doi.org/10.24114/jfi.v4i1.46106
https://doi.org/10.15408/ajme.v6i1.38380
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1080/08993408.2016.1257418

