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Abstract: The Indonesian Minister of Education and Culture implemented the
Merdeka Belajar Kampus Merdeka Curriculum in 2019, emphasizing
computational thinking (CT) as a crucial 21st-century skill. Despite its
importance in mathematics education, most Indonesian mathematics learning
has not been oriented toward developing computational thinking abilities.
Vocational school students majoring in Software Engineering possess
programming knowledge that could potentially enhance their mathematical
problem-solving through computational approaches. However, the extent of
their CT abilities when applied to mathematical contexts remains unclear. This
study aims to describe and analyze the computational thinking abilities of
10th-grade vocational school students majoring in Software Engineering when
solving quadratic function problems using Python programming language.
This qualitative research employed a case study approach with three
purposively selected students representing different proficiency levels (high,
moderate, and low) based on standardized programming and mathematics
assessment criteria. Data were collected through written tests, structured
observations, and semi-structured interviews. The assessmentfocused on four
CT components: decomposition, pattern recognition, abstraction, and
algorithmic thinking. The analysis revealed distinct patterns in CT abilities
across proficiency levels. High-proficiency students (S1) demonstrated
systematic problem decomposition, optimal pattern utilization, effective
information filtering, and efficient algorithm development, achieving an
average CT score of 91.25. Moderate-proficiency students (S2) showed
adequate CT abilities with some limitations in systematic organization and
strategic thinking, scoring 78.75 on average. Low-proficiency students (S3)
exhibited significant difficulties across all CT components, particularly in
problem decomposition and algorithmic thinking, with an average score of
64.25. The findings indicate that students' mathematical foundations
significantly influence their CT development when integrated with
programming tools. The computational thinking abilities of 10th-grade
Software Engineering students vary considerably when solving quadratic
function problems with Python assistance. Students with stronger
mathematical foundations demonstrate superior CT performance across all
components, while those with weaker foundations require substantial
scaffolding. These findings highlight the need for differentiated instructional
approaches that consider students' varying CT development levels in
mathematics education.
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INTRODUCTION

Computational thinking represents a fundamental problem-solving approach that involves
formulating problems in computational terms and developing systematic solutions, as
defined by (Wing, 2006). This cognitive skill extends beyond computer science applications,
serving as a critical competency for systematic problem-solving across various disciplines,
including mathematics education. According to (Simanjuntak, Armanto, & Dewi, 2023), the
integration of computational thinking into mathematics learning supports students in
developing structured, logical approaches to complex problem-solving scenarios.

Contemporary educational frameworks emphasize computational thinking as an
essential 21st-century skill that enables students to approach problems recursively,
establishing pattern regularities and logical calculations that facilitate deeper analysis
according to research by (Irawan, Rosjanuardi, & Prabawanto, 2024). This capability aligns
closely with mathematics education objectives that prioritize the development of critical
thinking and systematic problem-solving abilities, as advocated by the National Council of
Teachers of Mathematics and the National Science Teachers Association (Minarni, 2021).

However, according to (Syari, Fatra, & Diwidian, 2024), mathematics education
practices in Indonesia remain largely disconnected from computational thinking
development. Many educational approaches continue to employ conventional pedagogical
methods that inadequately address the four core computational thinking indicators:
decomposition, pattern recognition, abstraction, and algorithmic thinking, as identified by
researchers such as (Gadanidis, Hughes, Minniti, & White, 2017), (Marcelino, M. J., Pessoa,
T., Vieira, C,, Salvador, T., & Mendes, 2018), and (Yadav, Gretter, Hambrusch, & Sands,
2017). Traditional teaching methods that emphasize formula memorization and procedural
execution, as noted by (Azmi & Yunita, 2022), fail to cultivate the deeper cognitive skills
associated with computational thinking development.

Quadratic functions present a particularly suitable mathematical context for
computational thinking development due to their conceptual complexity and practical
applications. This topic encompasses fundamental mathematical concepts including
function relationships, algebraic operations, and graphical representations that connect to
real-world problem scenarios , as discussed by (Fadillah, 2019). Nevertheless, research by
(Azmi & Yunita, 2022) shows that students frequently encounter difficulties in
understanding quadratic function concepts, performing accurate calculations, and
connecting prerequisite knowledge to new learning contexts.

Vocational schools offering Software Engineering programs provide a unique
educational context where students acquire programming skills alongside traditional
academic subjects. These students develop proficiency in programming languages,
including Python, which offers significant potential for mathematical problem-solving
applications. Python's accessible syntax and robust visualization capabilities make it
particularly suitable for exploring mathematical concepts such as quadratic functions
through computational approaches. The integration of programming skills with
mathematical learning creates opportunities for enhanced conceptual understanding
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through interactive exploration and visual representation of abstract mathematical
relationships.

The Indonesian Merdeka Belajar curriculum initiative specifically identifies
computational thinking as a crucial competency for preparing students to meet future
challenges in an increasingly digital society, as outlined by (Nau & Sulistyani, 2023). This
educational framework recognizes that traditional mathematics instruction must evolve to
incorporate computational approaches that reflect contemporary problem-solving
methodologies. However, the effectiveness of this integration depends significantly on
understanding how students with existing programming knowledge apply computational
thinking skills to mathematical contexts.

Given the unique position of Software Engineering students who possess both
mathematical knowledge and programming skills, investigating their computational
thinking abilities in mathematical problem-solving contexts becomes particularly relevant.
These students represent an important demographic for understanding how programming
knowledge can enhance mathematical learning and whether existing computational skills
transfer effectively to mathematical applications. Understanding their CT abilities can
inform educational strategies for integrating programming into mathematics curriculamore
broadly.

Therefore, this study aims to describe and analyze the computational thinking abilities
of 10th-grade vocational school students majoring in Software Engineering when solving
quadratic function problems using Python programming language. This investigation
addresses the need for empirical evidence regarding how students apply computational
thinking skills in mathematics contexts and provides insights for developing more effective
integration strategies between programming and mathematics education.

Computational Thinking Framework

Computational thinking has evolved from its origins in computer science to become a
fundamental cognitive framework applicable across multiple disciplines. According to
(Wing, 2006) initially defined computational thinking as a problem-solving process that
involves formulating problems in computational terms and developing effective solutions
through systematic approaches. This definition has been expanded by subsequent
researchers who recognize computational thinking as a transferable skill set essential for
navigating complex problem-solving scenarios in various academic and professional
contexts.

Research by (Angeli & Giannakos, 2020) conceptualize computational thinking as a
thinking process that originates from computer science principles but extends its
applicability across diverse disciplinary boundaries. Similarly, (Syari et al., 2024) describes
computational thinking as a comprehensive problem-solving methodology that begins with
problem formulation and proceeds through systematic decomposition into manageable
components.

The theoretical framework for computational thinking encompasses four fundamental
components that work synergistically to support effective problem-solving. Decomposition

DOI: 10.26740/ mathedunesa.v14n3.p780-804 782



Volume 14 No. 3 Year 2025, page 780-804

involves breaking complex problems into smaller, more manageable parts that can be
addressed systematically. Pattern recognition requires identifying similarities, regularities,
or recurring elements within problems or solution approaches. Abstraction focuses on
identifying and extracting relevant information while filtering out unnecessary details that
may complicate the solution process. Algorithmic thinking involves developing clear,
sequential steps that lead to systematic problem resolution, as outlined by (Syari et al., 2024)
and (Barr & Stephenson, 2011).

Figure 1. Computational Thinking Components Framework
Source: Made with Figma

Research conducted by (Irawan et al., 2024) expand this framework by emphasizing that
computational thinking enables recursive problem-solving approaches, where students can
address complex challenges by establishing pattern regularities and implementing logical
calculations that facilitate systematic analysis. This recursive capability proves particularly
valuable in mathematics education, where students must process and transform
information to solve increasingly complex problems.

Mathematical Problem-Solving Theory

Mathematical problem-solving has emerged as a central focus in mathematics education
worldwide, reflecting its importance for developing students' analytical and reasoning
capabilities. The seminal work by (polya, 1957) seminal work established a four-stage
framework for mathematical problem-solving that continues to influence contemporary
educational approaches: understanding the problem, devising solution plans, executing the
plan, and reviewing results for accuracy and reasonableness.

According to the National Council of Teachers of Mathematics, they emphasize that
problem-solving serves dual purposes in mathematics education, functioning both as a
learning objective and as a pedagogical method for developing mathematical
understanding. Through systematic problem-solving experiences, students develop deeper
conceptual comprehensionof mathematical ideas while strengthening connections between
different mathematical concepts and real-world applications.
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Research by (Schoenfeld, 2016) identifies four critical components that contribute to
successful mathematical problem-solving: foundational mathematical knowledge, strategic
problem-solving approaches, metacognitive regulation and self-monitoring, and positive
beliefs and dispositions toward mathematics. These components interact dynamically to
influence students' overall problem-solving effectiveness and their willingness to persist
through challenging mathematical scenarios.

Studies conducted by (Killpatrick, Swafford, & Findell, 2010) propose five mathematical
proficiency strands essential for successful problem-solving: conceptual understanding,
procedural fluency, strategic competence, adaptive reasoning, and productive disposition.
Strategic competence, which involves the ability to formulate, represent, and solve
mathematical problems effectively, shows particular alignment with computational
thinking principles.

In the context of quadratic function learning, mathematical problem-solving involves
applying quadratic relationships to diverse situations, including optimization problem:s,
equation solving, and graphical analysis, as discussed by (Fadillah, 2019). The integration
of computational thinking approaches into quadratic function problem-solving can enhance
students' systematic solution strategies while providing opportunities for deeper
conceptual exploration through technological tools.

Quadratic Function Theory in Mathematics

Quadratic functions represent an important topic in secondary school mathematics

curricula. A quadratic function is defined as a function with the general form f(x) = ax® +
bx + ¢, where a, b, dan c are constants and a # 0, as explained by (Fadillah, 2019). This
function has a parabolic graph that can open upward (if a > 0) or downward (if a < 0).

According to (Fadillah, 2019) state that quadratic function material encompasses several
basic concepts and prerequisite materials such as function concepts, algebraic operations in
functions, and function graphs. Students need to understand the properties of quadratic
functions, including: (1) The vertex of the parabola, (2) The axis of symmetry, (3) The roots
of the quadratic equation, (4) The discriminant and its types, and (5) The relationship
between coefficients and roots of quadratic equations.

Research by (Azmi & Yunita, 2022) identifies several difficulties faced by students in
learning quadratic functions, including: (1) Inability to understand and apply quadratic
function concepts to problems, (2) Difficulties in calculating or operating on quadratic
function problems, and (3) Inability to recall previously learned material.

These difficulties are often caused by conventional teaching approaches, where students
tend to learn procedurally without deep conceptual understanding.

Integration of Programming in Mathematics Education

The integration of programming languages into mathematics education represents an
emerging pedagogical approach designed to enhance conceptual understanding and
problem-solving capabilities. Python, with its intuitive syntax and powerful mathematical
libraries, has gained recognition as an effective tool for mathematics education integration,
as noted by (Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, 2018).
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Research conducted by (Yadav et al., 2017) demonstrates that programming language
integration in mathematics education can significantly enhance students' computational
thinking development. Programming environments allow students to apply mathematical
concepts in authentic contexts while providing opportunities to visualize abstract
mathematical relationships through interactive exploration and graphical representation.

For quadratic function learning specifically, Python programming offers several
educational advantages. Students can utilize programming to calculate function values for
specific inputs, determine equation roots through numerical methods, create dynamic
visualizations of function behavior, and analyze function properties through both numerical
and graphical approaches. These capabilities provide students with multiple representation
systems for understanding quadratic relationships while developing computational skills
simultaneously.

According to (Gadanidis et al., 2017) emphasize that programming integration in
mathematics education should focus not only on developing technical programming skills
but also on deepening mathematical understanding and cultivating higher-order thinking
capabilities. This dual focus ensures that programming tools serve mathematical learning
objectives rather than becoming isolated technical skills.

Previous Research on Computational Thinking in Mathematics Education

The intersection of computational thinking and mathematics education has emerged as
a critical area of investigation, particularly as educational systems worldwide grapple with
integrating 21st-century digital competencies into traditional academic subjects. Research
in this domain reveals both promising opportunities and significant implementation
challenges that warrant careful examination.

The current state of computational thinking integration in mathematics education
presents a complex landscape. Indonesian educational contexts, in particular, face
substantial hurdles in developing students' computational thinking capabilities within
mathematical learning environments. Research consistently demonstrates that traditional
mathematics pedagogical approaches inadequately support the development of
computational thinking skills, creating a significant gap between educational goals and
classroom realities, as found by (Syari etal., 2024) and (Maifi, Anwar, & Ahmad, 2021). This
disconnect is particularly concerning given the Indonesian government's emphasis on
computational thinking as a crucial 21st-century competency through the Merdeka Belajar
curriculum initiative.

Empirical investigations into students' computational thinking abilities reveal troubling
patterns in skill development. Studies examining Indonesian students' performance across
various mathematical contexts consistently identify weaknesses in fundamental
computational thinking components, including problem decomposition, pattern
recognition, abstraction, and algorithmic reasoning, as reported by (Kamil, Imami, & Abadi,
2021). These deficiencies appear to stem from educational approaches that prioritize
procedural knowledge acquisition over the development of systematic thinking processes
that characterize effective computational problem-solving.

DOI: 10.26740/ mathedunesa.v14n3.p780-804 785



Volume 14 No. 3 Year 2025, page 780-804

However, emerging research suggests that strategic integration of programming
activities within mathematics education can significantly enhance students' computational
thinking development. According to (Harangus & Katai, 2020) demonstrated that students
who engage in programming-integrated mathematics instruction show measurable
improvements in computational thinking capabilities compared to peers receiving
traditional instruction. This finding supports the theoretical proposition that programming
tools can serve as cognitive amplifiers for mathematical thinking when properly integrated
into pedagogical frameworks.

The relationship between computational thinking and broader cognitive abilities
presents another crucial dimension of this research domain. Educational researchers have
established meaningful connections between computational thinking skills and critical
thinking, problem-solving, and mathematical reasoning capabilities that extend beyond
specific technological applications, as demonstrated by (Cahdriyana & Richardo, 2020).
These connections suggest that computational thinking development may have cascading
effects on students' overall mathematical proficiency and analytical capabilities.

Specific mathematical topics, such as quadratic functions, have proven particularly
suitable for computational thinking integration research. According to (Mubarokah,
Pambudi, Lestari, Kurniati, & Jatmiko, 2023) found that students who developed stronger
computational thinking skills through programming-enhanced instruction demonstrated
superior performance in understanding and applying quadratic function concepts. Their
research revealed that computational approaches help students overcome traditional
conceptual barriers associated with quadratic function learning while building stronger
connections between abstract mathematical relationships and practical problem-solving
applications.

Despite these promising findings, significant research gaps remain in understanding
how computational thinking manifests across different student populations and
mathematical contexts. Most existing studies focus on general student populations without
considering how prior programming experience might influence computational thinking
development in mathematical contexts. Additionally, limited research examines how
computational thinking abilities vary among students with different mathematical
proficiency levels, particularly in specialized educational contexts such as vocational
programs where students possess existing technical skills.

The research landscape also reveals insufficient attention to the specific mechanisms
through which programming tools enhance mathematical understanding. While studies
demonstrate positive correlations between programming integration and computational
thinking development, fewer investigations examine the detailed cognitive processes
through which students translate mathematical concepts into computational solutions. This
gap is particularly significant for educators seeking evidence-based strategies for
implementing computational thinking instruction in mathematics curricula.

Furthermore, most existing research employs broad assessment approaches that may
not capture the nuanced ways computational thinking manifests in specific mathematical
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problem-solving contexts. There remains a need for more detailed, qualitative
investigations that examine how students apply computational thinking components in
real-time problem-solvingscenarios, particularly when using programming tools to explore
mathematical concepts.

These research limitations highlight the importance of investigating computational
thinking abilities among specific student populations, such as vocational students with
existing programming knowledge, who represent unique cases for understanding how
technical skills transfer to mathematical contexts. Such investigations can provide crucial
insights for developing more effective integration strategies that leverage students' existing
capabilities while addressing identified weaknesses in computational thinking
development.

Research Framework

Based on the literature review, this research operates within a framework that views
computational thinking as a bridge between programming knowledge and mathematical
problem-solving. The study examines how Software Engineering students apply their
existing programming skills to mathematical contexts, specifically focusing on how the four
computational thinking components manifest in quadratic function problem-solving
scenarios using Python programming tools.

Concwptual Framework of Computational Thinking in Sobying Quadratic Function Problems Using Pythan

Computational Thinking {CT)

’ enproveerent of Seedents’ CT Ahdities m Salving Quacratic | uscoen Problem ‘

Figure 2. Conceptual Research Framework
Source: Made with Figma

METHOD

Research Design and Approach

This research employsa qualitative case study approach to providein-depth understanding
of computational thinking abilities among vocational school students. According to
Creswell that described by (Mackiewicz, 2018), qualitative research focuses on detailed
exploration and comprehensive understanding of specific phenomena within their natural
contexts. The case study method allows for intensive examination of computational
thinking manifestation in mathematical problem-solving scenarios while maintaining the
complexity and richness of real educational settings.
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Participant Selection and Characteristics

Three 10th-grade vocational high school students majoring in Software Engineering
were selected through purposive sampling based on standardized assessment of their
programming and mathematics proficiency levels. The selection process involved
administering comprehensive assessments in both domains to ensure representation across
different ability levels.

Programming Proficiency Assessment Criteria.

Students were evaluated on Python programming fundamentals including variable
manipulation, control structures implementation, function development, and basic data
processing capabilities. Assessment items required students to demonstrate understanding
of programming logic, syntax accuracy, and problem-solving approaches using Python.
Mathematics Proficiency Assessment Criteria

Students completed assessments covering quadratic function concepts, including
function properties identification, equation solving techniques, graphical interpretation
skills, and application of quadratic relationships to contextual problems.

Proficiency categories were established using the Merdeka Curriculum assessment

framework, as outlined by Directorate General of Higher Education in year of 2022 as in
Table 1.

Table 1. Proficiency Level Classification

No. Score Range Proficiency Category
1. 85 < score <100 High
2. 65 < score < 85 Moderate
3. 0 < score < 65 Low

From the assessment results, three students were selected representing each proficiency
category: one high-proficiency student (S1), one moderate-proficiency student (52), and one
low-proficiency student (S3). This selection strategy ensures comprehensive representation
of computational thinking abilities across different competency levels.

Research Instruments and Procedures

This research utilized five primary instruments to collectcomprehensive data regarding
students' computational thinking capabilities. Instrument development incorporated
indicators of CT capabilities and quadratic function conceptual material. Prior to
implementation, all instruments were validated by two experts in mathematics education
and informatics to ensure content validity.

The research procedure commenced with a preparation phase encompassing
instrument development, validation, and subject selection. Subsequently, during the
implementation phase, students completed written tests while being observed by
researchers, followed by in-depth interviews. The acquired data were then analyzed
through data reduction, data presentation, and conclusion drawing. The following are
details and examples of each instrument used.
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Python Programming Proficiency Assessment (pre-test)

This pre-assessment evaluated students' foundational programming knowledge
through practical coding tasks. This assessment consisted of one basic programming
question covering concepts of variables, control structures, functions, and simple data
manipulation.

"Create a Python function named 'calculate_average' that accepts a list of numbers as a parameter

and returns the average value of the list. Then, test the function with the list [10, 15, 20, 25, 30]."

Assessment criteria included syntax accuracy, algorithm efficiency, and program output
correctness.
Mathematics Proficiency Test (pre- test)

This pre-assessment examined students' understanding of quadratic function concepts
through analytical and graphical problems This assessment contained one question on
quadratic function concepts and applications.

“Determine the vertex point, axis of symmetry, and maximum or minimum value of the quadratic

function f(x) = —2x* + 8x — 3. Draw the graph of this function.”

Assessment was based on conceptual accuracy, calculation precision, and answer
completeness.
Computational Thinking Test in Quadratic Function Problem-Solving (core)

This core assessment presented contextual problems requiring integration of
mathematical understanding with programming implementation. The assessment was
specifically designed to evaluate all four computational thinking components within
authentic problem-solving contexts.

“A manufacturing company discovered that their daily profit (in thousands of rupiah) can be

modeled with the function P(x) = -2x> + 120x - 300, where x is the number of products (in

hundreds of units) produced per day.

a) Create a Python program to determine how many products should be produced for maximum
profit.

b) Modify the program to calculate the maximum profit obtainable.

c) Create a visualization of the profit function graph using matplotlib.

d) If production costs increase such that the x? coefficient changes to -3 how does this affect the
optimal production quantity and maximum profit? Modify your program to answer this
question.”

Assessment encompassed students' capabilities in decomposing problems, identifying
patterns, performing abstraction, and developing solution algorithms.
Observation Guidelines

The observation guidelines contained indicators of CT capabilities observed while
students completed the problem-solving test. Observation was conducted using structured
observation sheets of CT indicator with source from developed based on computational
thinking literature and validated by expert review.
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Table 2. Computational Thinking Indicators Observation

Decomposition Pattern Recognition Abstraction Algorithm
Unable to break down the Unable to 1'dent1fy Unable to identify Unable to develop
. patterns in the . . .
problem into smaller parts relevant information solution steps
problem
Breaks down a small o . Identifies a small portion Develops solution
. . Identifies patterns in . .
portion of the problem into L of relevant information steps but not
a limited way and ) .
smaller parts but not . but remains focused on systematically and
. cannot utilize them - .
systematically unnecessary details sequentially
Identifies patterns Identifies most relevant
Breaks down most of the p . . . Develops systematic
. well but sub- information but still .
problem into smaller parts . - . solution steps but less
) optimally utilizes considers some L
but less systematically . efficiently
them unnecessary details
Breaks down the problem Identifies patterns
. p p Identifies all relevant Develops systematic,
into smaller parts accurately and . . - ;
. . - information and ignores sequential, and
systematically and optimally utilizes . . ;
; - unnecessary details efficient solution steps
comprehensively them for solutions

Interview Guidelines

Semi-structured interviews were conducted after students completed the test to explore
their thinking processes and strategies more deeply. The interview guidelines contained
questions covering all four CT indicators. Interview questions:

Table 3. Interview Questions

Decomposition Pattern Recognition Abstraction Algorithm
. . Did you see any similarities =~ What information did
How did you begin o o . . .
. . or specific patterns in this you ignore because it Why did you choose
solving this ) th 1 . h h?
roblem? problem with problems was considered that approach?
P you've solved previously? irrelevant?
What parts did you How did you use those Explain the steps you .HOW did you
. . ) L ; implement the
identify from this patterns to assist in the used to solve this . .
- mathematical solution
problem? solution? problem.

into Python code?

What information did you
consider important in this
problem?

Data Collection Techniques

Data in this research were collected through three techniques: observation, written tests,
and interviews. Observation was conducted to monitor students' processes in solving
quadratic function problems using Python, focusing on the applicationof four CT capability
indicators. Written tests were used to assess students' capabilities in solving quadratic
function problems with Python assistance, and interviews were conducted to obtain deeper
information about students' thinking processes and strategies.
Data Analysis Techniques

Data analysis was performed following Miles and Huberman's model, as described by
(Dull & Reinhardt, 2014), which includes three stages: data reduction, data presentation,
and conclusion drawing. To ensure data validity, researchers conducted method
triangulation by comparing data obtained from problem-solving test results with interview
results. Additionally, researchers also performed member checking by confirming analysis
results with research subjects.
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RESULTS AND DISCUSSION
Results
This research aimed to describe the computational thinking capabilities of tenth-grade
vocational high school students majoring in Software Engineering in solving quadratic
function problems with Python programming language assistance. Data collection was
conducted through written tests, observation, and interviews with three research subjects
selected based on programming and mathematics proficiency criteria.
Research Subject Profiles

Based on Python programming proficiency and mathematics proficiency test results,
three research subjects coded S1, S2, and S3 were selected, representing high, moderate, and
low proficiency categories. The profiles of the three research subjects are presented in Table
4.

Table 4. Research Subject Background and Proficiency Levels

Subject Programming Mathematics Proficiency .
Code Proficiency Score Proficiency Score Category Key Characteristics
s1 9 88 High Strong al gorlthl'rmc thmkn@g, solid
mathematical reasoning
s 78 79 Moderate Good basic skills with some
conceptual gaps
Limited programming experience,
S3 63 58 Low struggles with mathematical

abstractions

Computational Thinking Assessment Results
The core assessmentrevealed significant variations in computational thinking abilities

across the four key components. Each student's performance was evaluated using the
structured rubric, yielding comprehensive profiles of their computational thinking

development.

Table 5. Computational Thinking Capability Assessment Results

Subject Decomposition Pattern Recognition Abstraction Algorithm Average Category

S1 93 90 87 95 91.25 High
S2 82 75 78 80 78.75 Moderate
S3 65 60 70 62 64.25 Low

These results demonstrate clear differentiation in computational thinking abilities that align
with students' foundational proficiency levels while revealing specific patterns within each
component.
Analysis of Subject S1's Computational Thinking Capabilities

Subject S1 demonstrated high computational thinking capabilities in solving quadratic
function problems with Python assistance. The following is an analysis of subject Sl's
capabilities based on four indicators.
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Decomposition Capability

Subject S1 was able to break down quadratic function problems into smaller parts
systematically and comprehensively. This was evident from S1's work on the manufacturing
company profit model question shown in Figure 3.

Figure 3. Problem Decomposition by Subject S1
Source: VSCode Text Editor

During the interview, subject S1 explained their decomposition process:

“I broke the problem down into several steps. First, defining the profit function. Second, using calculus to find the
optimal x value from the first derivative equals zero. Third, calculating the maximum profit by inputting the optimal

x value into the profit function. Finally, visualizing the graph to verify the results.”
Pattern Recognition Capability
Subject S1 was able to identify patterns accurately and utilize them optimally for
solutions. In the profit function modification question, S1 quickly recognized the pattern of
changes occurring and adapted their solution as shown in Figure 4.

Figure 4. Pattern Recognition by Subject S1
Source: VSCode Text Editor

Based on interview results, subject S1 explained:

"I saw the pattern that if the x* coefficient changes from —2 to —3, then the optimal point calculation will change. I
used the same pattern as before, finding the first derivative and setting it equal to zero. If the x* coefficient is —3, then
its derivative is —6x + 120, so the optimal x = 20. This shows a pattern that the more negative the x* coefficient,
the smaller the optimal x value, which logically means the company must reduce production when production costs

increase."

Abstraction Capability

Subject S1 was able to identify and extract relevant information and ignore unnecessary
details well. This was evident from how S1 modeled the quadratic function problem in
computational form as shown in Figure 5.
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Figure 5. Abstraction by Subject S1
Source: VSCode Text Editor

From the interview results, subject S1 explained their abstraction process:

“In this problem, what's relevant are the quadratic function coefficients and the formula for finding the optimal x
value. I ignored details about how the company produces goods or its marketing process because that's irrelevant to
the mathematical solution. I also ignored other values on the graph and only focused on the maximum point.”

Algorithm Capability
Subject S1 was able to develop ordered steps to solve problems very well. The algorithm
developed by Sl to visualize quadratic functions is shown in Figure 6.

Figure 6. Algorithm Development by Subject S1
Source: VSCode Text Editor

In the interview, subject S1 explained:

"I created a general function for visualizing quadratic functions that can be used for various coefficient values
a, b, and c. This algorithm first defines the function, then calculates important values such as the vertex point and x-
axis intercepts, then visualizes them. I also added text output for important information to make it easier to
understand."
Analysis of Subject S2's Computational Thinking Capabilities
Subject S2 demonstrated computational thinking capabilities in the moderate category
when solving quadratic function problems with Python assistance.
Decomposition Capability
Subject S2 was able to break down most of the problem into smaller parts, but less
systematically compared to S1. S2's work on the manufacturing company profit model

question is shown in Figure 7.
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Figure 7.Problem Decomposition by Subject S2
Source: VSCode Text Editor

From the interview results, subject S2 explained:

"I divided this problem into several parts. First, defining the profit function. Then finding the optimal x value using
the parabola vertex formula. After that, calculating the maximum profit by inputting the optimal x value into the
function. Finally, I visualized the graph."

Pattern Recognition Capability

Subject S2 was able to identify patterns well but sub-optimally utilized them. In the
profit function modification question, S2 recognized the changes occurring but did not
analyze them as deeply as shown in Figure 8.

Figure 8. Pattern Recognition by Subject S2
Source: VSCode Text Editor

From the interview results, subject S2 explained:

"I saw that the x? coefficient changed from -2 to -3, so the optimal x value would also change. I used the same x =

- zb_a’ where a is now 3, so the optimal x becomes 20."

Abstraction Capability
Subject S2 was able to identify relevant information well but sometimes still included
some unnecessary details. This was evident from how S2 modeled the problem as shown in

Figure 9.
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calculate profit

find optimal x

Figure 9. Abstraction by Subject 52
Source: VSCode Text Editor

From the interview results, subject S2 explained:

"I focused on the profit function and formulas for finding the optimal point. I created a function that can accept
different a value to facilitate analysis of coefficient changes. But I still included b and c values within the function
even though their values don't change.

Algorithm Capability
Subject S2 was able to develop ordered steps to solve problems well, but less

comprehensively compared to S1. The algorithm developed by S2 to visualize quadratic
functions is shown in Figure 10.

Figure 10. Algorithm Development by Subject S2
Source: VSCode Text Editor

In the interview, subject S2 explained:

"I created a function to visualize quadratic functions with parameters a, b, and c. This algorithm draws the graph,
determines the vertex point, and displays important information. 1 didn't add calculation of x — axis intercepts
because I didn't think they were very important for the profit problem."

Analysis of Subject S3's Computational Thinking Capabilities

Subject S3 demonstrated computational thinking capabilities in the low category when
solving quadratic function problems with Python assistance. The detailed analysis reveals
specific areas where S3 struggled, providing crucial insights for educators working with
students who have similar challenges.
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Decomposition Capability

Subject S3 showed significant difficulties in breaking down the quadratic function
problem into manageable components. Unlike S1 and S2 who could identify distinct steps,
S3 attempted to solve the entire problem as one unit without systematic breakdown. S3's
work on the manufacturing company profit model question is shown in Figure 11.

Figure 11. Problem Decomposition Attempt by Subject S3
Source: VSCode Text Editor

During the interview, subject S3 explained their struggle with decomposition:

"I knew I needed to find the maximum profit, but I wasn't sure how to break it down. I tried plugging in different x
values to see which gave the highest profit, but I realized there were too many possibilities to check. I got stuck because
I couldn't figure out what steps to take first."

This difficulty in decomposition appears to stem from S3's limited understanding of how
mathematical concepts translate into programming logic. The student could not identify the
intermediate steps needed (finding the derivative, setting it to zero, solving for x) and
instead resorted to a trial-and-error approach that quickly became overwhelming.
Pattern Recognition Capability

Subject S3 struggled significantly with pattern recognition, showing minimal ability to
identify mathematical relationships or programming patterns. When faced with the profit
function modification question (changing the coefficient from -2 to -3), S3 could not
recognize the underlying pattern or adapt their solution approach, as shown in Figure 12.

Figure 12. Pattern Recognition Struggle by Subject S3
Source: VSCode Text Editor

From the interview results, subject S3 explained:

"When the coefficient changed to -3, I saw that the answers were different, but I couldn't understand why or what it
meant. [ tried the same way as before, testing different numbers, but I couldn't see any pattern in how the change
affected the optimal point. I didn't know how to connect the mathematical change to the programming solution."

This struggle with pattern recognition indicates that S3 has difficulty connecting
mathematical concepts across different contexts. The student could not recognize that the
same optimization principles apply regardless of coefficient values, nor could they identify
programming patterns that could be reused with modifications.
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Abstraction Capability

Subject S3 demonstrated particular difficulty with abstraction, showing an inability to
distinguish between relevant and irrelevant information in the problem context. This was
evident in how S3 approached the profit modelling task, as shown in Figure 13.

Figure 13. Abstraction Difficulties by Subject S3
Source: VSCode Text Editor

From the interview results, subject S3 explained their abstraction process:

"I thought I needed to include information about the company and the products because it was mentioned in the
problem. I spent time trying to make the program look realistic with company details. I wasn't sure which parts of the
problem were important for the math and which parts were just story context."

This difficulty with abstraction reveals that S3 cannot effectively filter information to focus
on the essential mathematical relationships. The student becomes overwhelmed by
contextual details rather than extracting the core computational problem that needs to be
solved.
Algorithm Capability

Subject S3 showed the most significant struggles with algorithmic thinking,
demonstrating an inability to develop systematic, sequential steps for problem-solving. The
student's attempt at creating a solution algorithm is shown in Figure 14.

Figure 14. Algorithm Development Struggle by Subject S3
Source: VSCode Text Editor

In the interview, subject S3 explained their algorithmic challenges:

"I knew I needed to make steps to solve the problem, but I couldn't figure out the right order. I tried to copy what I
saw in examples, like making a graph, but I didn't understand how to make the computer find the exact answer. 1
could see the highest point on the graph, but I couldn't make the program tell me the exact numbers."

This algorithmic struggle demonstrates that S3 lacks the ability to translate mathematical
procedures into computational steps. The student cannot bridge the gap between
understanding that an optimization problem exists and implementing a systematic

approach to solve it.
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Key Areas Where S3 Struggled

The analysis reveals that S3's difficulties stemmed from several interconnected issues:
(1) Mathematical-Programming  Translation Gap: S3 could not effectively translate
mathematical concepts (like finding derivatives or using vertex formulas) into
programming logic. This suggests a need for more scaffolded instruction that explicitly
connects mathematical procedures to coding implementations; (2) Procedural vs. Conceptual
Understanding: S3 appeared to rely heavily on memorized procedures without deep
conceptual understanding. When faced with variations in the problem, the student could
not adapt because they lacked understanding of underlying principles; (3) Cognitive Load
Management: S3 became overwhelmed when trying to handle multiple aspects of the
problem simultaneously (mathematical concepts, Python syntax, problem context),
suggesting a need for more structured, step-by-step instruction; (4) Debugging and Iteration
Skills: Unlike S1 and S2 who could refine their approaches when initial attempts didn't work,
S3 lacked the metacognitive skills to evaluate and improve their solutions systematically.

These findings have important implications for educators working with students at
similar levels, highlighting the need for differentiated instruction that provides additional
support in connecting mathematical concepts to computational implementation.
Discussion

Based on the comprehensive research findings examining all three students (51, S2, and
S3), there are significant variations in computational thinking (CT) abilities among tenth-
grade Software Engineering students at vocational high schools when solving quadratic
function problems using Python. The following discussion compares and contrasts these
findings while connecting them to relevant theories and previous research.

Comparative Analysis of Computational Thinking Components
Decomposition Skills Across Proficiency Levels

The analysis reveals a clear progression in decomposition abilities across the three
proficiency levels. Subject S1 demonstrated systematic and comprehensive problem
breakdown, organizing the quadratic function optimization into distinct, logical steps:
function definition, derivative calculation, optimization point finding, and result
verification. This sophisticated approach aligns with (Wing's, 2006) assertion that strong
decomposition abilities enable more effective complex problem-solving by reducing
cognitive load through structured problem partitioning.

Subject S2 showed intermediate decomposition skills, successfully identifying major
problem components but with less systematic organization than S1. While S2 could
recognize the need to separate function definition from optimization calculations, their
approach lacked the comprehensive structure that made S1's solution more robust and
reusable.

In stark contrast, Subject S3 demonstrated significant decomposition difficulties,
attempting to solve the entire problem as a monolithic unit without recognizing the need
for systematic breakdown. This finding is particularly concerning as it suggests S3 lacks the
fundamental CT skill that underlies all other computational thinking components. S3's
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struggle with decompositionappears to stem from an inability to recognize that complex
problemsrequire systematic partitioning, which (Syari etal., 2024) identifies as a critical gap
in many Indonesian students' computational thinking abilities.

The progression from S3's holistic but ineffective approach to Sl's systematic
decomposition illustrates how decomposition skills develop from novice pattern
recognition to expert systematic analysis. This gradient suggests that decomposition skills
can be scaffolded through explicit instruction in problem-breaking strategies.

Pattern Recognition: From Recognition to Strategic Application

Pattern recognition abilities showed equally dramatic variation across subjects,
revealing different levels of mathematical and computational pattern awareness. Subject S1
demonstrated advanced pattern recognition by not only identifying mathematical
relationships (how coefficient changes affect optimization) but also recognizing
programming patterns that could be generalized and reused. Sl's ability to abstract the
optimization pattern into a reusable function demonstrates what (Chan etal., 2021) describe
as recursive thinking capability.

Subject S2 exhibited good pattern identification but struggled with optimal pattern
utilization. While S2 could recognize that coefficient changes would affect the optimal point,
they could not fully leverage this recognition to create more efficient or generalizable
solutions. This suggests an intermediate stage where students can perceive patterns but lack
the strategic thinking to fully exploit them.

Subject S3's pattern recognition difficulties were profound, showing minimal ability to
identify even basic mathematical relationships between coefficient changes and function
behavior. This finding aligns with (Maifi et al., 2021) observation that Indonesian students'
pattern recognition skills need significant improvement. S3's struggles suggest that pattern
recognition may require explicitinstruction in both mathematical relationship identification
and computational pattern awareness.

The comparison reveals that pattern recognition in computational contexts requires
both mathematical understanding and programming fluency, creating a compound
learning challenge that may explain why this skill varies so dramatically among students.
Abstraction: Information Filtering and Focus Management

Abstraction abilities demonstrated perhaps the most educationally significant
variations among the three subjects. Subject S1 exhibited sophisticated abstraction skills,
effectively filtering relevant mathematical information while ignoring contextual details
that didn't contribute to the computational solution. This selective attention aligns with
(Lester & Cai's, 2016) emphasis on metacognitive awareness in mathematical problem-
solving.

Subject S2 showed intermediate abstraction abilities, generally identifying relevant
information but occasionally including unnecessary computational details. This suggests
developing but not fully mature abstraction skills, where students understand the need to
focus on relevant information but struggle with consistently applying this principle.
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Subject S3's abstraction difficulties were particularly revealing for educators. S3 became
overwhelmed by contextual problem details (company names, product types, currency)
rather than extracting the essential mathematical relationships. This suggests that S3 lacks
the metacognitive awareness to distinguish between story context and computational
requirements, a skill that (Killpatrick et al., 2010) identify as crucial for mathematical
proficiency.

The abstraction skill progression illuminates how students develop from being
overwhelmed by surface details to focusing on underlying mathematical structures,
suggesting that abstraction instruction should explicitly address information filtering
strategies.

Algorithmic Thinking: From Trial-and-Error to Systematic Solutions

Algorithmic thinking capabilities showed the most dramatic differences across subjects,
revealing fundamentally different approaches to systematic problem-solving. Subject S1
demonstrated sophisticated algorithmic development, creating well-structured, sequential,
and efficient solution pathways that could be easily modified and reused. This systematic
approach reflects what describe as mathematical modeling capability.

Subject S2 exhibited developing algorithmicskills, creating sequential solutionsteps but
with less comprehensive planning and efficiency than S1. S2's algorithms worked but lacked
the elegance and reusability that characterized Sl's approach, suggesting intermediate
systematic thinking skills.

Subject S3's algorithmic difficulties were most pronounced, showing an inability to
move beyond trial-and-error approaches to systematic problem-solving strategies. S3's
reliance on random value testing rather than mathematical optimization procedures
suggests fundamental gaps in understanding how to translate mathematical procedures
into computational algorithms.

This algorithmic skill progression reveals how students develop from unsystematic
problem-solving attempts to sophisticated computational thinking, highlighting the
importance of explicit algorithm development instruction.

Cross-Component Interactions and Dependencies

The comparative analysis reveals important interactions between CT components that
have significant educational implications. Students with stronger mathematical foundations
(S1) demonstrated superior performance across all CT components, while students with
weaker mathematical understanding (S3) struggled with multiple components
simultaneously. This suggests that CI development may be constrained by mathematical
conceptual understanding, supporting (Schoenfeld, 2016) assertion that foundational
knowledge affects problem-solving capabilities.

Furthermore, the analysis reveals that CT components are not independent but form an
interconnected skill system. Students who struggle with decomposition (S3) also have
difficulty with pattern recognition and algorithmic development, suggesting that these
skills may need to be developed together rather than in isolation.
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Educational Implications from Comparative Analysis

The three-student comparison provides crucial insights for mathematics education
practice. The dramatic differences in CT abilities suggest that one-size-fits-all approaches to
computational thinking instruction may be ineffective. Instead, the findings support
differentiated instruction approaches that provide varying levels of scaffolding based on
student proficiency.

For students at S3's level, the analysis suggests that CT instruction should begin with
explicit decomposition training, focusing on problem-breaking strategies before
progressing to more advanced skills. The findings also indicate that students like S3 need
more structured connections between mathematical concepts and programming
implementation, supporting (Gadanidis et al., 2017) recommendation for explicit
mathematical-computational bridging instruction.

For students at S2's level, instruction should focus on optimization and strategic
thinking, helping them leverage their pattern recognition abilities more effectively and
develop more systematic algorithmic approaches.

For advanced students like S1, instruction can focus on generalization and abstraction
refinement, encouraging them to develop increasingly sophisticated and reusable
computational solutions.

Implications for Curriculum Development

This comparative analysis has significant implications for curriculum development in
mathematics education, particularly for programs integrating computational thinking. The
findings suggest that curriculum designers should consider creating multiple pathways or
tracks that accommodate different CT development levels rather than assuming uniform
student capabilities.

The research also supports the integration of programming into mathematics education
but suggests that this integration requires careful scaffolding and explicit instruction in
mathematical-computational connections. Simply providing programming tools without
systematic CT skill development may not be sufficient for students at lower proficiency
levels.

Finally, the findings suggest that assessment strategies should evaluate CT components
both individually and in integration, recognizing that these skills develop as interconnected
systems rather than isolated capabilities.

Research Limitations

This study has several limitations that should be considered when interpreting the
results and for future research consideration. First, this research involved only three
research subjects, so generalization of research results should be done cautiously. For fu ture
research, the number of research subjects could be increased to obtain a more
comprehensive picture of students' computational thinking abilities.

Second, this research is limited to the context of quadratic function material. Students'
computational thinking abilities may differ when facing different mathematical material.

DOI: 10.26740/ mathedunesa.v14n3.p780-804 801



Volume 14 No. 3 Year 2025, page 780-804

For future research, exploration of students' computational thinking abilities in more
diverse mathematical contexts could be conducted.

Third, this research focuses only on tenth-grade vocational high school students in
Software Engineering who already have basic knowledge of Python programming. Results
might differ if applied to students from different majors or educational levels. Future
research could involve students from various educational backgrounds to gain broader
understanding of how educational background influences computational thinking abilities.

Fourth, this research uses a qualitative approach with a case study method, so it cannot
examine causal relationships between Python wuse and computational thinking
development. Future research could use experimental approaches to test the effectiveness
of Python use in developing students' computational thinking abilities.

CONCLUSION AND SUGGESTIONS

Based on the research results and discussion, The authors conclude that the computational
thinking abilities of tenth-grade vocational high school students in Software Engineering
when solving quadratic function problems using Python vary significantly, categorized as
high, medium, and low. Students with high ability (S1) demonstrated excellent
decomposition, pattern recognition, abstraction, and algorithmic skills, characterized by
systematic and comprehensive problem decomposition, accurate patternidentification with
optimal utilization, and efficient structured algorithm development. Meanwhile, students
with medium ability (52) showed good capabilities but were less optimal in several aspects,
such as less systematic decomposition, suboptimal pattern utilization, inclusion of
unnecessary details in abstraction, and less comprehensive algorithm development.
Students with low ability (S3) demonstrated difficulties in several computational thinking
aspects. This research also found that using Python in mathematics education, particularly
in quadratic function material, can help students develop their computational thinking
abilities through abstract concept visualization and mathematical concept application in
more authentic contexts. This indicates that integrating programming into mathematics
education has potential to enhance students' computational thinking skills, which are
essential in today's digital era.

Based on the research results, the authors recommend that educators integrate
programming, particularly Python, into mathematics education to develop students'
computational thinking skills. Teachers should provide adequate scaffolding for students
with different abilities and design learning activities that encourage development across all
computational thinking aspects. Schools should facilitate curriculum development that
integrates computational thinking into mathematics education, including technological
infrastructure provisionand teacher training. For future research, the authors recommend
involving more research subjects, exploring more diverse mathematical topics, and using
different methodological approaches such as experimental research to test the effectiveness
of various approaches in developing students' computational thinking skills. Curriculum
developers should consider explicitly integrating computational thinking into the
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mathematics curriculum, including providing guidelines and resources that support its
implementation. For students, the authors recommend utilizing technology, particularly
Python programming, as a tool to aid mathematical concept understanding and problem-
solving skill development, ultimately increasing their competitiveness in the increasingly
developing digital era.
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