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 Abstract: The Indonesian Minister of Education and Culture implemented the 
Merdeka Belajar Kampus Merdeka Curriculum in 2019, emphasizing 

computational thinking (CT) as a crucial 21st-century skill. Despite its 
importance in mathematics education, most Indonesian mathematics learning 

has not been oriented toward developing computational thinking abilities. 
Vocational school students majoring in Software Engineering possess 

programming knowledge that could potentially enhance their mathematical 

problem-solving through computational approaches. However, the extent of 
their CT abilities when applied to mathematical contexts remains unclear. This 

study aims to describe and analyze the computational thinking abilities of 
10th-grade vocational school students majoring in Software Engineering when 

solving quadratic function problems using Python programming language. 
This qualitative research employed a case study approach with three 

purposively selected students representing different proficiency levels (high, 

moderate, and low) based on standardized programming and mathematics 
assessment criteria. Data were collected through written tests, structured 

observations, and semi-structured interviews. The assessment focused on four 
CT components: decomposition, pattern recognition, abstraction, and 

algorithmic thinking. The analysis revealed distinct patterns in CT abilities 
across proficiency levels. High-proficiency students (S1) demonstrated 

systematic problem decomposition, optimal pattern utilization, effective 

information filtering, and efficient algorithm development, achieving an 
average CT score of 91.25. Moderate-proficiency students (S2) showed 

adequate CT abilities with some limitations in systematic organization and 
strategic thinking, scoring 78.75 on average. Low-proficiency students (S3) 

exhibited significant difficulties across all CT components, particularly in 
problem decomposition and algorithmic thinking, with an average score of 

64.25. The findings indicate that students' mathematical foundations 

significantly influence their CT development when integrated with 
programming tools. The computational thinking abilities of 10th-grade 

Software Engineering students vary considerably when solving quadratic 
function problems with Python assistance. Students with stronger 

mathematical foundations demonstrate superior CT performance across all 
components, while those with weaker foundations require substantial 

scaffolding. These findings highlight the need for differentiated instructional 

approaches that consider students' varying CT development levels in 
mathematics education. 
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INTRODUCTION 

Computational thinking represents a fundamental problem-solving approach that involves 

formulating problems in computational terms and developing systematic solutions , as 

defined by (Wing, 2006). This cognitive skill extends beyond computer science applications, 

serving as a critical competency for systematic problem-solving across various disciplines, 

including mathematics education. According to (Simanjuntak, Armanto, & Dewi, 2023), the 

integration of computational thinking into mathematics learning supports students in 

developing structured, logical approaches to complex problem-solving scenarios. 

Contemporary educational frameworks emphasize computational thinking as an 

essential 21st-century skill that enables students to approach problems recursively, 

establishing pattern regularities and logical calculations that facilitate deeper analysis 

according to research by (Irawan, Rosjanuardi, & Prabawanto, 2024). This capability aligns 

closely with mathematics education objectives that prioritize the development of critical 

thinking and systematic problem-solving abilities, as advocated by the National Council of 

Teachers of Mathematics and the National Science Teachers Association (Minarni, 2021). 

However, according to (Syari, Fatra, & Diwidian, 2024), mathematics education 

practices in Indonesia remain largely disconnected from computational thinking 

development. Many educational approaches continue to employ conventional pedagogical 

methods that inadequately address the four core computational thinking indicators: 

decomposition, pattern recognition, abstraction, and algorithmic thinking, as identified by 

researchers such as (Gadanidis, Hughes, Minniti, & White, 2017), (Marcelino, M. J., Pessoa, 

T., Vieira, C., Salvador, T., & Mendes, 2018), and  (Yadav, Gretter, Hambrusch, & Sands, 

2017). Traditional teaching methods that emphasize formula memorization and procedural 

execution , as noted by (Azmi & Yunita, 2022), fail to cultivate the deeper cognitive skills 

associated with computational thinking development. 

Quadratic functions present a particularly suitable mathematical context for 

computational thinking development due to their conceptual complexity and practical 

applications. This topic encompasses fundamental mathematical concepts including 

function relationships, algebraic operations, and graphical representations that connect to 

real-world problem scenarios , as discussed by (Fadillah, 2019). Nevertheless, research by 

(Azmi & Yunita, 2022) shows that students frequently encounter difficulties in 

understanding quadratic function concepts, performing accurate calculations, and 

connecting prerequisite knowledge to new learning contexts. 

Vocational schools offering Software Engineering programs provide a unique 

educational context where students acquire programming skills alongside traditional 

academic subjects. These students develop proficiency in programming languages, 

including Python, which offers significant potential for mathematical problem-solving 

applications. Python's accessible syntax and robust visualization capabilities make it 

particularly suitable for exploring mathematical concepts such as quadratic functions 

through computational approaches. The integration of programming skills with 

mathematical learning creates opportunities for enhanced conceptual understanding 
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through interactive exploration and visual representation of abstract mathematical 

relationships. 

The Indonesian Merdeka Belajar curriculum initiative specifically identifies 

computational thinking as a crucial competency for preparing students to meet future 

challenges in an increasingly digital society, as outlined by (Nau & Sulistyani, 2023). This 

educational framework recognizes that traditional mathematics instruction must evolve to 

incorporate computational approaches that reflect contemporary problem-solving 

methodologies. However, the effectiveness of this integration depends significantly on 

understanding how students with existing programming knowledge apply computational 

thinking skills to mathematical contexts. 

Given the unique position of Software Engineering students who possess both 

mathematical knowledge and programming skills, investigating their computational 

thinking abilities in mathematical problem-solving contexts becomes particularly relevant. 

These students represent an important demographic for understanding how programming 

knowledge can enhance mathematical learning and whether existing computational skills 

transfer effectively to mathematical applications. Understanding their CT abilities can 

inform educational strategies for integrating programming into mathematics curricula more 

broadly. 

Therefore, this study aims to describe and analyze the computational thinking abilities 

of 10th-grade vocational school students majoring in Software Engineering when solving 

quadratic function problems using Python programming language. This investigation 

addresses the need for empirical evidence regarding how students apply computational 

thinking skills in mathematics contexts and provides insights for developing more effective 

integration strategies between programming and mathematics education. 

Computational Thinking Framework 

Computational thinking has evolved from its origins in computer science to become a 

fundamental cognitive framework applicable across multiple disciplines. According to 

(Wing, 2006) initially defined computational thinking as a problem-solving process that 

involves formulating problems in computational terms and developing effective solutions 

through systematic approaches. This definition has been expanded by subsequent 

researchers who recognize computational thinking as a transferable skill set essential for 

navigating complex problem-solving scenarios in various academic and professional 

contexts. 

Research by (Angeli & Giannakos, 2020) conceptualize computational thinking as a 

thinking process that originates from computer science principles but extends its 

applicability across diverse disciplinary boundaries. Similarly, (Syari et al., 2024) describes 

computational thinking as a comprehensive problem-solving methodology that begins with 

problem formulation and proceeds through systematic decomposition into manageable 

components. 

The theoretical framework for computational thinking encompasses four fundamental 

components that work synergistically to support effective problem-solving. Decomposition 
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involves breaking complex problems into smaller, more manageable parts that can be 

addressed systematically. Pattern recognition requires identifying similarities, regularities, 

or recurring elements within problems or solution approaches. Abstraction focuses on 

identifying and extracting relevant information while filtering out unnecessary details that 

may complicate the solution process. Algorithmic thinking involves developing clear, 

sequential steps that lead to systematic problem resolution, as outlined by (Syari et al., 2024) 

and (Barr & Stephenson, 2011). 

 
Figure 1. Computational Thinking Components Framework 

Source: Made with Figma 

Research conducted by (Irawan et al., 2024) expand this framework by emphasizing that 

computational thinking enables recursive problem-solving approaches, where students can 

address complex challenges by establishing pattern regularities and implementing logical 

calculations that facilitate systematic analysis. This recursive capability proves particularly 

valuable in mathematics education, where students must process and transform 

information to solve increasingly complex problems. 

Mathematical Problem-Solving Theory 

Mathematical problem-solving has emerged as a central focus in mathematics education 

worldwide, reflecting its importance for developing students' analytical and reasoning 

capabilities. The seminal work by (polya, 1957) seminal work established a four-stage 

framework for mathematical problem-solving that continues to influence contemporary 

educational approaches: understanding the problem, devising solution plans, executing the 

plan, and reviewing results for accuracy and reasonableness. 

According to the National Council of Teachers of Mathematics, they emphasize that 

problem-solving serves dual purposes in mathematics education, functioning both as a 

learning objective and as a pedagogical method for developing mathematical 

understanding. Through systematic problem-solving experiences, students develop deeper 

conceptual comprehension of mathematical ideas while strengthening connections between 

different mathematical concepts and real-world applications. 
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Research by (Schoenfeld, 2016) identifies four critical components that contribute to 

successful mathematical problem-solving: foundational mathematical knowledge, strategic 

problem-solving approaches, metacognitive regulation and self-monitoring, and positive 

beliefs and dispositions toward mathematics. These components interact dynamically to 

influence students' overall problem-solving effectiveness and their willingness to persist 

through challenging mathematical scenarios. 

Studies conducted by (Killpatrick, Swafford, & Findell, 2010) propose five mathematical 

proficiency strands essential for successful problem-solving: conceptual understanding, 

procedural fluency, strategic competence, adaptive reasoning, and productive disposition. 

Strategic competence, which involves the ability to formulate, represent, and solve 

mathematical problems effectively, shows particular alignment with computational 

thinking principles. 

In the context of quadratic function learning, mathematical problem-solving involves 

applying quadratic relationships to diverse situations, including optimization problems, 

equation solving, and graphical analysis, as discussed by (Fadillah, 2019). The integration 

of computational thinking approaches into quadratic function problem-solving can enhance 

students' systematic solution strategies while providing opportunities for deeper 

conceptual exploration through technological tools. 

Quadratic Function Theory in Mathematics 

Quadratic functions represent an important topic in secondary school mathematics 

curricula. A quadratic function is defined as a function with the general form 𝑓(𝑥) =  𝑎𝑥² +

 𝑏𝑥 +  𝑐, where 𝑎, 𝑏, dan 𝑐 are constants and 𝑎 ≠  0, as explained by (Fadillah, 2019). This 

function has a parabolic graph that can open upward (if 𝑎 >  0) or downward (if 𝑎 <  0). 

According to (Fadillah, 2019) state that quadratic function material encompasses several 

basic concepts and prerequisite materials such as function concepts, algebraic operations in 

functions, and function graphs. Students need to understand the properties of quadratic 

functions, including: (1) The vertex of the parabola, (2) The axis of symmetry, (3) The roots 

of the quadratic equation, (4) The discriminant and its types, and (5) The relationship 

between coefficients and roots of quadratic equations. 

Research by (Azmi & Yunita, 2022) identifies several difficulties faced by students in 

learning quadratic functions, including: (1) Inability to understand and apply quadratic 

function concepts to problems, (2) Difficulties in calculating or operating on quadratic 

function problems, and (3) Inability to recall previously learned material . 

These difficulties are often caused by conventional teaching approaches, where students 

tend to learn procedurally without deep conceptual understanding. 

Integration of Programming in Mathematics Education  

The integration of programming languages into mathematics education represents an 

emerging pedagogical approach designed to enhance conceptual understanding and 

problem-solving capabilities. Python, with its intuitive syntax and powerful mathematical 

libraries, has gained recognition as an effective tool for mathematics education integration, 

as noted by (Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, 2018). 
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Research conducted by (Yadav et al., 2017) demonstrates that programming language 

integration in mathematics education can significantly enhance students' computational 

thinking development. Programming environments allow students to apply mathematical 

concepts in authentic contexts while providing opportunities to visualize abstract 

mathematical relationships through interactive exploration and graphical representation. 

For quadratic function learning specifically, Python programming offers several 

educational advantages. Students can utilize programming to calculate function values for 

specific inputs, determine equation roots through numerical methods, create dynamic 

visualizations of function behavior, and analyze function properties through both numerical 

and graphical approaches. These capabilities provide students with multiple representation 

systems for understanding quadratic relationships while developing computational skills 

simultaneously. 

According to (Gadanidis et al., 2017) emphasize that programming integration in 

mathematics education should focus not only on developing technical programming skills 

but also on deepening mathematical understanding and cultivating higher-order thinking 

capabilities. This dual focus ensures that programming tools serve mathematical learning 

objectives rather than becoming isolated technical skills. 

Previous Research on Computational Thinking in Mathematics Education  

The intersection of computational thinking and mathematics education has emerged as 

a critical area of investigation, particularly as educational systems worldwide grapple with 

integrating 21st-century digital competencies into traditional academic subjects. Research 

in this domain reveals both promising opportunities and significant implementation 

challenges that warrant careful examination. 

The current state of computational thinking integration in mathematics education 

presents a complex landscape. Indonesian educational contexts, in particular, face 

substantial hurdles in developing students' computational thinking capabilities within 

mathematical learning environments. Research consistently demonstrates that traditional 

mathematics pedagogical approaches inadequately support the development of 

computational thinking skills, creating a significant gap between educational goals and 

classroom realities, as found by (Syari et al., 2024) and (Maifi, Anwar, & Ahmad, 2021). This 

disconnect is particularly concerning given the Indonesian government's emphasis on 

computational thinking as a crucial 21st-century competency through the Merdeka Belajar 

curriculum initiative. 

Empirical investigations into students' computational thinking abilities reveal troubling 

patterns in skill development. Studies examining Indonesian students' performance across 

various mathematical contexts consistently identify weaknesses in fundamental  

computational thinking components, including problem decomposition, pattern 

recognition, abstraction, and algorithmic reasoning, as reported by (Kamil, Imami, & Abadi, 

2021). These deficiencies appear to stem from educational approaches that prioritize 

procedural knowledge acquisition over the development of systematic thinking processes 

that characterize effective computational problem-solving. 
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However, emerging research suggests that strategic integration of programming 

activities within mathematics education can significantly enhance students' computational 

thinking development. According to (Harangus & Kátai, 2020) demonstrated that students 

who engage in programming-integrated mathematics instruction show measurable 

improvements in computational thinking capabilities compared to peers receiving 

traditional instruction. This finding supports the theoretical proposition that programming 

tools can serve as cognitive amplifiers for mathematical thinking when properly integrated 

into pedagogical frameworks. 

The relationship between computational thinking and broader cognitive abilities 

presents another crucial dimension of this research domain. Educational researchers have 

established meaningful connections between computational thinking skills and critical 

thinking, problem-solving, and mathematical reasoning capabilities that extend beyond 

specific technological applications, as demonstrated by (Cahdriyana & Richardo, 2020). 

These connections suggest that computational thinking development may have cascading 

effects on students' overall mathematical proficiency and analytical capabilities.  

Specific mathematical topics, such as quadratic functions, have proven particularly 

suitable for computational thinking integration research. According to (Mubarokah, 

Pambudi, Lestari, Kurniati, & Jatmiko, 2023) found that students who developed stronger 

computational thinking skills through programming-enhanced instruction demonstrated 

superior performance in understanding and applying quadratic function concepts. Their 

research revealed that computational approaches help students overcome traditional 

conceptual barriers associated with quadratic function learning while building stronger 

connections between abstract mathematical relationships and practical problem-solving 

applications. 

Despite these promising findings, significant research gaps remain in understanding 

how computational thinking manifests across different student populations and 

mathematical contexts. Most existing studies focus on general student populations without 

considering how prior programming experience might influence computational thinking 

development in mathematical contexts. Additionally, limited research examines how 

computational thinking abilities vary among students with different mathematical 

proficiency levels, particularly in specialized educational contexts such as vocational 

programs where students possess existing technical skills. 

The research landscape also reveals insufficient attention to the specific mechanisms 

through which programming tools enhance mathematical understanding. While studies 

demonstrate positive correlations between programming integration and computational 

thinking development, fewer investigations examine the detailed cognitive processes 

through which students translate mathematical concepts into computational solutions. This 

gap is particularly significant for educators seeking evidence-based strategies for 

implementing computational thinking instruction in mathematics curricula. 

Furthermore, most existing research employs broad assessment approaches that may 

not capture the nuanced ways computational thinking manifests in specific mathematical 
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problem-solving contexts. There remains a need for more detailed, qualitative 

investigations that examine how students apply computational thinking components in 

real-time problem-solving scenarios, particularly when using programming tools to explore 

mathematical concepts. 

These research limitations highlight the importance of investigating computational 

thinking abilities among specific student populations, such as vocational students with 

existing programming knowledge, who represent unique cases for understanding how 

technical skills transfer to mathematical contexts. Such investigations can provide crucial 

insights for developing more effective integration strategies that leverage students' existing 

capabilities while addressing identified weaknesses in computational thinking 

development. 

Research Framework 

Based on the literature review, this research operates within a framework that views 

computational thinking as a bridge between programming knowledge and mathematical 

problem-solving. The study examines how Software Engineering students apply their 

existing programming skills to mathematical contexts, specifically focusing on how the four 

computational thinking components manifest in quadratic function problem-solving 

scenarios using Python programming tools.  

 
Figure 2. Conceptual Research Framework 

Source: Made with Figma 

METHOD 

Research Design and Approach 

This research employs a qualitative case study approach to provide in-depth understanding 

of computational thinking abilities among vocational school students. According to  

Creswell that described by (Mackiewicz, 2018), qualitative research focuses on detailed 

exploration and comprehensive understanding of specific phenomena within their natural 

contexts. The case study method allows for intensive examination of computational 

thinking manifestation in mathematical problem-solving scenarios while maintaining the 

complexity and richness of real educational settings. 
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Participant Selection and Characteristics 

Three 10th-grade vocational high school students majoring in Software Engineering 

were selected through purposive sampling based on standardized assessment of their 

programming and mathematics proficiency levels. The selection process involved 

administering comprehensive assessments in both domains to ensure representation across 

different ability levels. 

Programming Proficiency Assessment Criteria. 

Students were evaluated on Python programming fundamentals including variable  

manipulation, control structures implementation, function development, and basic data 

processing capabilities. Assessment items required students to demonstrate understanding 

of programming logic, syntax accuracy, and problem-solving approaches using Python. 

Mathematics Proficiency Assessment Criteria 

Students completed assessments covering quadratic function concepts, including 

function properties identification, equation solving techniques, graphical interpretation 

skills, and application of quadratic relationships to contextual problems. 

Proficiency categories were established using the Merdeka Curriculum assessment 

framework, as outlined by Directorate General of Higher Education in year of 2022 as in 

Table 1. 

Table 1. Proficiency Level Classification 

No. Score Range Proficiency Category 
1. 85 < score ≤ 100 High 

2. 65 < score ≤ 85 Moderate 

3. 0 < score ≤ 65 Low 

From the assessment results, three students were selected representing each proficiency 

category: one high-proficiency student (S1), one moderate-proficiency student (S2), and one 

low-proficiency student (S3). This selection strategy ensures comprehensive representation 

of computational thinking abilities across different competency levels. 

Research Instruments and Procedures 

This research utilized five primary instruments to collect comprehensive data regarding 

students' computational thinking capabilities. Instrument development incorporated 

indicators of CT capabilities and quadratic function conceptual material. Prior to 

implementation, all instruments were validated by two experts in mathematics education 

and informatics to ensure content validity. 

The research procedure commenced with a preparation phase encompassing 

instrument development, validation, and subject selection. Subsequently, during the 

implementation phase, students completed written tests while being observed by 

researchers, followed by in-depth interviews. The acquired data were then analyzed 

through data reduction, data presentation, and conclusion drawing. The following are 

details and examples of each instrument used. 
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Python Programming Proficiency Assessment (pre-test) 

This pre-assessment evaluated students' foundational programming knowledge 

through practical coding tasks. This assessment consisted of one basic programming 

question covering concepts of variables, control structures, functions, and simple data 

manipulation. 

"Create a Python function named 'calculate_average' that accepts a list of numbers as a parameter 

and returns the average value of the list. Then, test the function with the list [10, 15, 20, 25, 30]." 

Assessment criteria included syntax accuracy, algorithm efficiency, and program output 

correctness. 

Mathematics Proficiency Test (pre- test) 

This pre-assessment examined students' understanding of quadratic function concepts 

through analytical and graphical problems This assessment contained one question on 

quadratic function concepts and applications. 

“Determine the vertex point, axis of symmetry, and maximum or minimum value of the quadratic 

function 𝑓(𝑥) =  −2𝑥² +  8𝑥 −  3. Draw the graph of this function.” 

Assessment was based on conceptual accuracy, calculation precision, and answer 

completeness. 

Computational Thinking Test in Quadratic Function Problem-Solving (core) 

This core assessment presented contextual problems requiring integration of 

mathematical understanding with programming implementation. The assessment was 

specifically designed to evaluate all four computational thinking components within 

authentic problem-solving contexts. 

“A manufacturing company discovered that their daily profit (in thousands of rupiah) can be  

modeled with the function P(x) = -2x² + 120x - 300, where x is the number of products (in  

hundreds of units) produced per day. 

a) Create a Python program to determine how many products should be produced for maximum 

profit. 

b) Modify the program to calculate the maximum profit obtainable. 

c) Create a visualization of the profit function graph using matplotlib. 

d) If production costs increase such that the x² coefficient changes to -3 how does this affect the 

optimal production quantity and maximum profit? Modify your program to answer this 

question.” 

Assessment encompassed students' capabilities in decomposing problems, identifying 

patterns, performing abstraction, and developing solution algorithms. 

Observation Guidelines 

The observation guidelines contained indicators of CT capabilities observed while 

students completed the problem-solving test. Observation was conducted using structured 

observation sheets of CT indicator with source from developed based on computational 

thinking literature and validated by expert review. 
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Table 2. Computational Thinking Indicators Observation  

Decomposition Pattern Recognition Abstraction Algorithm 

Unable to break down the 

problem into smaller parts 

Unable to identify 

patterns in the 
problem 

Unable to identify 

relevant information 

Unable to develop 

solution steps 

Breaks down a small 

portion of the problem into 

smaller parts but not 
systematically 

Identifies patterns in 
a limited way and 

cannot utilize them 

Identifies a small portion 

of relevant information 

but remains focused on 
unnecessary details 

Develops solution 

steps but not 

systematically and 
sequentially 

Breaks down most of the 
problem into smaller parts 

but less systematically 

Identifies patterns 

well but sub-
optimally utilizes 

them 

Identifies most relevant 

information but still 
considers some 

unnecessary details 

Develops systematic 
solution steps but less 

efficiently 

Breaks down the problem 

into smaller parts 
systematically and 

comprehensively 

Identifies patterns 

accurately and 
optimally utilizes 

them for solutions 

Identifies all relevant 
information and ignores 

unnecessary details 

Develops systematic, 
sequential, and 

efficient solution steps 

Interview Guidelines 

Semi-structured interviews were conducted after students completed the test to explore 

their thinking processes and strategies more deeply. The interview guidelines contained 

questions covering all four CT indicators. Interview questions: 

Table 3. Interview Questions 

Decomposition Pattern Recognition Abstraction Algorithm 

How did you begin 

solving this 
problem? 

Did you see any similarities 

or specific patterns in this 
problem with problems 

you've solved previously? 

What information did 

you ignore because it 
was considered 

irrelevant? 

Why did you choose 
that approach? 

What parts did you 

identify from this 
problem? 

How did you use those 

patterns to assist in the 
solution? 

Explain the steps you 

used to solve this 
problem. 

How did you 
implement the 

mathematical solution 

into Python code? 

 
What information did you 
consider important in this 

problem? 

  

Data Collection Techniques 

Data in this research were collected through three techniques: observation, written tests, 

and interviews. Observation was conducted to monitor students' processes in solving 

quadratic function problems using Python, focusing on the application of four CT capability 

indicators. Written tests were used to assess students' capabilities in solving quadratic 

function problems with Python assistance, and interviews were conducted to obtain deeper 

information about students' thinking processes and strategies. 

Data Analysis Techniques 

Data analysis was performed following Miles and Huberman's model, as described by 

(Dull & Reinhardt, 2014), which includes three stages: data reduction, data presentation, 

and conclusion drawing. To ensure data validity, researchers conducted method 

triangulation by comparing data obtained from problem-solving test results with interview 

results. Additionally, researchers also performed member checking by confirming analysis 

results with research subjects. 
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RESULTS AND DISCUSSION 

Results 

This research aimed to describe the computational thinking capabilities of tenth-grade 

vocational high school students majoring in Software Engineering in solving quadratic 

function problems with Python programming language assistance. Data collection was 

conducted through written tests, observation, and interviews with three research subjects 

selected based on programming and mathematics proficiency criteria. 

Research Subject Profiles 

Based on Python programming proficiency and mathematics proficiency test results,  

three research subjects coded S1, S2, and S3 were selected, representing high, moderate, and 

low proficiency categories. The profiles of the three research subjects are presented in Table 

4. 

Table 4. Research Subject Background and Proficiency Levels  
Subject 

Code 
Programming 

Proficiency Score 
Mathematics 

Proficiency Score 
Proficiency 

Category 
Key Characteristics 

S1 92 88 High 
Strong algorithmic thinking, solid 

mathematical reasoning 

S2 78 72 Moderate 
Good basic skills with some 

conceptual gaps 

S3 63 58 Low 
Limited programming experience, 

struggles with mathematical 
abstractions 

Computational Thinking Assessment Results 

The core assessment revealed significant variations in computational thinking abilities 

across the four key components. Each student's performance was evaluated using the 

structured rubric, yielding comprehensive profiles of their computational thinking 

development. 

Table 5. Computational Thinking Capability Assessment Results  

Subject Decomposition Pattern Recognition Abstraction Algorithm Average Category 

S1 93 90 87 95 91.25 High 

S2 82 75 78 80 78.75 Moderate 

S3 65 60 70 62 64.25 Low 

These results demonstrate clear differentiation in computational thinking abilities that align 

with students' foundational proficiency levels while revealing specific patterns within each 

component. 

Analysis of Subject S1's Computational Thinking Capabilities 

Subject S1 demonstrated high computational thinking capabilities in solving quadratic 

function problems with Python assistance. The following is an analysis of subject S1's 

capabilities based on four indicators. 
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Decomposition Capability 

Subject S1 was able to break down quadratic function problems into smaller parts 

systematically and comprehensively. This was evident from S1's work on the manufacturing 

company profit model question shown in Figure 3. 

   
Figure 3. Problem Decomposition by Subject S1 

Source: VSCode Text Editor 

During the interview, subject S1 explained their decomposition process: 

“I broke the problem down into several steps. First, defining the profit function. Second, using calculus to find the 
optimal 𝑥  value from the first derivative equals zero. Third, calculating the maximum profit by inputting the optimal 

𝑥  value into the profit function. Finally, visualizing the graph to verify the results.” 

Pattern Recognition Capability 

Subject S1 was able to identify patterns accurately and utilize them optimally for 

solutions. In the profit function modification question, S1 quickly recognized the pattern of 

changes occurring and adapted their solution as shown in Figure 4. 

 
Figure 4. Pattern Recognition by Subject S1  

Source: VSCode Text Editor 

Based on interview results, subject S1 explained: 

"I saw the pattern that if the 𝑥² coefficient changes from −2 to −3, then the optimal point calculation will change. I 

used the same pattern as before, finding the first derivative and setting it equal to zero. If the 𝑥² coefficient is −3, then 
its derivative is −6𝑥 +  120, so the optimal 𝑥 =  20. This shows a pattern that the more negative the 𝑥² coefficient, 
the smaller the optimal 𝑥  value, which logically means the company must reduce production when production costs 

increase."  

Abstraction Capability 

Subject S1 was able to identify and extract relevant information and ignore unnecessary 

details well. This was evident from how S1 modeled the quadratic function problem in 

computational form as shown in Figure 5. 



 
Volume 14 No. 3 Year 2025, page 780-804 

 

DOI: 10.26740/mathedunesa.v14n3.p780-804  793 
 

 
Figure 5. Abstraction by Subject S1 

Source: VSCode Text Editor 

From the interview results, subject S1 explained their abstraction process: 

“In this problem, what's relevant are the quadratic function coefficients and the formula for finding the optimal 𝑥  
value. I ignored details about how the company produces goods or its marketing process because that's irrelevant to 
the mathematical solution. I also ignored other values on the graph and only focused on the maximum point.” 

Algorithm Capability 

Subject S1 was able to develop ordered steps to solve problems very well. The algorithm 

developed by S1 to visualize quadratic functions is shown in Figure 6. 

 
Figure 6. Algorithm Development by Subject S1 

Source: VSCode Text Editor 

In the interview, subject S1 explained: 

"I created a general function for visualizing quadratic functions that can be used for various coefficient values 
𝑎, 𝑏, and 𝑐. This algorithm first defines the function, then calculates important values such as the vertex point and x -
axis intercepts, then visualizes them. I also added text output for important information to make it easier to 
understand." 

Analysis of Subject S2's Computational Thinking Capabilities 

Subject S2 demonstrated computational thinking capabilities in the moderate category 

when solving quadratic function problems with Python assistance. 

Decomposition Capability 

Subject S2 was able to break down most of the problem into smaller parts, but less 

systematically compared to S1. S2's work on the manufacturing company profit model 

question is shown in Figure 7. 
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Figure 7. Problem Decomposition by Subject S2 

Source: VSCode Text Editor 

From the interview results, subject S2 explained: 

"I divided this problem into several parts. First, defining the profit function. Then finding the optimal 𝑥  value using 
the parabola vertex formula. After that, calculating the maximum profit by inputting the optimal 𝑥  value into the 
function. Finally, I visualized the graph." 

Pattern Recognition Capability 

Subject S2 was able to identify patterns well but sub-optimally utilized them. In the 

profit function modification question, S2 recognized the changes occurring but did not 

analyze them as deeply as shown in Figure 8. 

 
Figure 8. Pattern Recognition by Subject S2 

Source: VSCode Text Editor 

From the interview results, subject S2 explained: 

"I saw that the x² coefficient changed from -2 to -3, so the optimal x value would also change. I used the same 𝑥 =

 −
𝑏

2𝑎
, where a is now 3, so the optimal 𝑥  becomes 20." 

Abstraction Capability 

Subject S2 was able to identify relevant information well but sometimes still included 

some unnecessary details. This was evident from how S2 modeled the problem as shown in 

Figure 9. 
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Figure 9. Abstraction by Subject S2 

Source: VSCode Text Editor 

From the interview results, subject S2 explained: 

"I focused on the profit function and formulas for finding the optimal point. I created a function that can accept 
different a value to facilitate analysis of coefficient changes. But I still included 𝑏 and 𝑐  values within the function 
even though their values don't change. 

Algorithm Capability 

Subject S2 was able to develop ordered steps to solve problems well, but less 

comprehensively compared to S1. The algorithm developed by S2 to visualize quadratic 

functions is shown in Figure 10. 

 
Figure 10. Algorithm Development by Subject S2 

Source: VSCode Text Editor 

In the interview, subject S2 explained: 

"I created a function to visualize quadratic functions with parameters 𝑎, 𝑏, and 𝑐. This algorithm draws the graph, 
determines the vertex point, and displays important information. I didn't add calculation of 𝑥 − 𝑎𝑥𝑖𝑠  intercepts 

because I didn't think they were very important for the profit problem." 

Analysis of Subject S3's Computational Thinking Capabilities 

Subject S3 demonstrated computational thinking capabilities in the low category when 

solving quadratic function problems with Python assistance. The detailed analysis reveals 

specific areas where S3 struggled, providing crucial insights for educators working with 

students who have similar challenges. 
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Decomposition Capability 

Subject S3 showed significant difficulties in breaking down the quadratic function 

problem into manageable components. Unlike S1 and S2 who could identify distinct steps, 

S3 attempted to solve the entire problem as one unit without systematic breakdown. S3's 

work on the manufacturing company profit model question is shown in Figure 11. 

 
Figure 11. Problem Decomposition Attempt by Subject S3 

Source: VSCode Text Editor 

During the interview, subject S3 explained their struggle with decomposition: 

"I knew I needed to find the maximum profit, but I wasn't sure how to break it down. I tried plugging in different x 
values to see which gave the highest profit, but I realized there were too many possibilities to check. I got stuck because 
I couldn't figure out what steps to take first." 

This difficulty in decomposition appears to stem from S3's limited understanding of how 

mathematical concepts translate into programming logic. The student could not identify the 

intermediate steps needed (finding the derivative, setting it to zero, solving for x) and 

instead resorted to a trial-and-error approach that quickly became overwhelming. 

Pattern Recognition Capability 

Subject S3 struggled significantly with pattern recognition, showing minimal ability to 

identify mathematical relationships or programming patterns. When faced with the profit 

function modification question (changing the coefficient from -2 to -3), S3 could not 

recognize the underlying pattern or adapt their solution approach, as shown in Figure 12.  

 
Figure 12. Pattern Recognition Struggle by Subject S3 

Source: VSCode Text Editor 

From the interview results, subject S3 explained: 

"When the coefficient changed to -3, I saw that the answers were different, but I couldn't understand why or what it 
meant. I tried the same way as before, testing different numbers, but I couldn't see any pattern in how the change 
affected the optimal point. I didn't know how to connect the mathematical change to the programming solution." 

This struggle with pattern recognition indicates that S3 has difficulty connecting 

mathematical concepts across different contexts. The student could not recognize that the 

same optimization principles apply regardless of coefficient values, nor could they identify 

programming patterns that could be reused with modifications. 
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Abstraction Capability 

Subject S3 demonstrated particular difficulty with abstraction, showing an inability to 

distinguish between relevant and irrelevant information in the problem context. This was 

evident in how S3 approached the profit modelling task, as shown in Figure 13. 

 
Figure 13. Abstraction Difficulties by Subject S3 

Source: VSCode Text Editor 

From the interview results, subject S3 explained their abstraction process: 

"I thought I needed to include information about the company and the products because it was mentioned in the 
problem. I spent time trying to make the program look realistic with company details. I wasn't sure which parts of the 
problem were important for the math and which parts were just story context."  

This difficulty with abstraction reveals that S3 cannot effectively filter information to focus 

on the essential mathematical relationships. The student becomes overwhelmed by 

contextual details rather than extracting the core computational problem that needs to be 

solved. 

Algorithm Capability 

Subject S3 showed the most significant struggles with algorithmic thinking, 

demonstrating an inability to develop systematic, sequential steps for problem-solving. The 

student's attempt at creating a solution algorithm is shown in Figure 14. 

 
Figure 14. Algorithm Development Struggle by Subject S3 

Source: VSCode Text Editor 

In the interview, subject S3 explained their algorithmic challenges: 

"I knew I needed to make steps to solve the problem, but I couldn't figure out the right order. I tried to copy what I 
saw in examples, like making a graph, but I didn't understand how to make the computer find the exact answer. I 

could see the highest point on the graph, but I couldn't make the program tell me the exact numbers."  

This algorithmic struggle demonstrates that S3 lacks the ability to translate mathematical 

procedures into computational steps. The student cannot bridge the gap between 

understanding that an optimization problem exists and implementing a systematic 

approach to solve it. 

  



 
Volume 14 No. 3 Year 2025, page 780-804 

 

DOI: 10.26740/mathedunesa.v14n3.p780-804  798 
 

Key Areas Where S3 Struggled 

The analysis reveals that S3's difficulties stemmed from several interconnected issues: 

(1) Mathematical-Programming Translation Gap: S3 could not effectively translate 

mathematical concepts (like finding derivatives or using vertex formulas) into 

programming logic. This suggests a need for more scaffolded instruction that explicitly 

connects mathematical procedures to coding implementations; (2) Procedural vs. Conceptual 

Understanding: S3 appeared to rely heavily on memorized procedures without deep 

conceptual understanding. When faced with variations in the problem, the student could 

not adapt because they lacked understanding of underlying principles ; (3) Cognitive Load 

Management: S3 became overwhelmed when trying to handle multiple aspects of the 

problem simultaneously (mathematical concepts, Python syntax, problem context), 

suggesting a need for more structured, step-by-step instruction; (4) Debugging and Iteration 

Skills: Unlike S1 and S2 who could refine their approaches when initial attempts didn't work, 

S3 lacked the metacognitive skills to evaluate and improve their solutions systematically. 

These findings have important implications for educators working with students at 

similar levels, highlighting the need for differentiated instruction that provides additional 

support in connecting mathematical concepts to computational implementation. 

Discussion 

Based on the comprehensive research findings examining all three students (S1, S2, and 

S3), there are significant variations in computational thinking (CT) abilities among tenth-

grade Software Engineering students at vocational high schools when solving quadratic 

function problems using Python. The following discussion compares and contrasts these 

findings while connecting them to relevant theories and previous research. 

Comparative Analysis of Computational Thinking Components 

Decomposition Skills Across Proficiency Levels 

The analysis reveals a clear progression in decomposition abilities across the three 

proficiency levels. Subject S1 demonstrated systematic and comprehensive problem 

breakdown, organizing the quadratic function optimization into distinct, logical steps: 

function definition, derivative calculation, optimization point finding, and result 

verification. This sophisticated approach aligns with (Wing's, 2006) assertion that strong 

decomposition abilities enable more effective complex problem-solving by reducing 

cognitive load through structured problem partitioning. 

Subject S2 showed intermediate decomposition skills, successfully identifying major 

problem components but with less systematic organization than S1. While S2 could 

recognize the need to separate function definition from optimization calculations, their 

approach lacked the comprehensive structure that made S1's solution more robust and 

reusable. 

In stark contrast, Subject S3 demonstrated significant decomposition difficulties, 

attempting to solve the entire problem as a monolithic unit without recognizing the need 

for systematic breakdown. This finding is particularly concerning as it suggests S3 lacks the 

fundamental CT skill that underlies all other computational thinking components. S3's 
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struggle with decomposition appears to stem from an inability to recognize that complex 

problems require systematic partitioning, which (Syari et al., 2024) identifies as a critical gap 

in many Indonesian students' computational thinking abilities. 

The progression from S3's holistic but ineffective approach to S1's systematic 

decomposition illustrates how decomposition skills develop from novice pattern 

recognition to expert systematic analysis. This gradient suggests that decomposition skills  

can be scaffolded through explicit instruction in problem-breaking strategies. 

Pattern Recognition: From Recognition to Strategic Application 

Pattern recognition abilities showed equally dramatic variation across subjects,  

revealing different levels of mathematical and computational pattern awareness. Subject S1 

demonstrated advanced pattern recognition by not only identifying mathematical 

relationships (how coefficient changes affect optimization) but also recognizing 

programming patterns that could be generalized and reused. S1's ability to abstract the 

optimization pattern into a reusable function demonstrates what (Chan et al., 2021) describe 

as recursive thinking capability. 

Subject S2 exhibited good pattern identification but struggled with optimal pattern 

utilization. While S2 could recognize that coefficient changes would affect the optimal point, 

they could not fully leverage this recognition to create more efficient or generalizable 

solutions. This suggests an intermediate stage where students can perceive patterns but lack 

the strategic thinking to fully exploit them. 

Subject S3's pattern recognition difficulties were profound, showing minimal ability to 

identify even basic mathematical relationships between coefficient changes and function 

behavior. This finding aligns with (Maifi et al., 2021) observation that Indonesian students' 

pattern recognition skills need significant improvement. S3's struggles suggest that pattern 

recognition may require explicit instruction in both mathematical relationship identification 

and computational pattern awareness. 

The comparison reveals that pattern recognition in computational contexts requires 

both mathematical understanding and programming fluency, creating a compound  

learning challenge that may explain why this skill varies so dramatically among students.  

Abstraction: Information Filtering and Focus Management 

Abstraction abilities demonstrated perhaps the most educationally significant 

variations among the three subjects. Subject S1 exhibited sophisticated abstraction skills, 

effectively filtering relevant mathematical information while ignoring contextual details 

that didn't contribute to the computational solution. This selective attention aligns with 

(Lester & Cai's, 2016) emphasis on metacognitive awareness in mathematical problem-

solving. 

Subject S2 showed intermediate abstraction abilities, generally identifying relevant 

information but occasionally including unnecessary computational details. This suggests 

developing but not fully mature abstraction skills, where students understand the need to 

focus on relevant information but struggle with consistently applying this principle.  
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Subject S3's abstraction difficulties were particularly revealing for educators. S3 became 

overwhelmed by contextual problem details (company names, product types, currency) 

rather than extracting the essential mathematical relationships. This suggests that S3 lacks 

the metacognitive awareness to distinguish between story context and computational  

requirements, a skill that (Killpatrick et al., 2010) identify as crucial for mathematical 

proficiency. 

The abstraction skill progression illuminates how students develop from being 

overwhelmed by surface details to focusing on underlying mathematical structures, 

suggesting that abstraction instruction should explicitly address information filtering 

strategies. 

Algorithmic Thinking: From Trial-and-Error to Systematic Solutions 

Algorithmic thinking capabilities showed the most dramatic differences across subjects, 

revealing fundamentally different approaches to systematic problem-solving. Subject S1 

demonstrated sophisticated algorithmic development, creating well-structured, sequential, 

and efficient solution pathways that could be easily modified and reused. This systematic 

approach reflects what describe as mathematical modeling capability. 

Subject S2 exhibited developing algorithmic skills, creating sequential solution steps but 

with less comprehensive planning and efficiency than S1. S2's algorithms worked but lacked 

the elegance and reusability that characterized S1's approach, suggesting intermediate 

systematic thinking skills. 

Subject S3's algorithmic difficulties were most pronounced, showing an inability to 

move beyond trial-and-error approaches to systematic problem-solving strategies. S3's 

reliance on random value testing rather than mathematical optimization procedures 

suggests fundamental gaps in understanding how to translate mathematical procedures 

into computational algorithms. 

This algorithmic skill progression reveals how students develop from unsystematic 

problem-solving attempts to sophisticated computational thinking, highlighting the 

importance of explicit algorithm development instruction. 

Cross-Component Interactions and Dependencies 

The comparative analysis reveals important interactions between CT components that 

have significant educational implications. Students with stronger mathematical foundations 

(S1) demonstrated superior performance across all CT components, while students with 

weaker mathematical understanding (S3) struggled with multiple components 

simultaneously. This suggests that CT development may be constrained by mathematical 

conceptual understanding, supporting (Schoenfeld, 2016) assertion that foundational 

knowledge affects problem-solving capabilities. 

Furthermore, the analysis reveals that CT components are not independent but form an 

interconnected skill system. Students who struggle with decomposition (S3) also have 

difficulty with pattern recognition and algorithmic development, suggesting that these  

skills may need to be developed together rather than in isolation. 
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Educational Implications from Comparative Analysis 

The three-student comparison provides crucial insights for mathematics education 

practice. The dramatic differences in CT abilities suggest that one-size-fits-all approaches to 

computational thinking instruction may be ineffective. Instead, the findings support 

differentiated instruction approaches that provide varying levels of scaffolding based on 

student proficiency. 

For students at S3's level, the analysis suggests that CT instruction should begin with 

explicit decomposition training, focusing on problem-breaking strategies before 

progressing to more advanced skills. The findings also indicate that students like S3 need 

more structured connections between mathematical concepts and programming 

implementation, supporting (Gadanidis et al., 2017) recommendation for explicit 

mathematical-computational bridging instruction. 

For students at S2's level, instruction should focus on optimization and strategic 

thinking, helping them leverage their pattern recognition abilities more effectively and 

develop more systematic algorithmic approaches. 

For advanced students like S1, instruction can focus on generalization and abstraction 

refinement, encouraging them to develop increasingly sophisticated and reusable 

computational solutions. 

Implications for Curriculum Development 

This comparative analysis has significant implications for curriculum development in 

mathematics education, particularly for programs integrating computational thinking. The 

findings suggest that curriculum designers should consider creating multiple pathways or 

tracks that accommodate different CT development levels rather than assuming uniform 

student capabilities. 

The research also supports the integration of programming into mathematics education 

but suggests that this integration requires careful scaffolding and explicit instruction in 

mathematical-computational connections. Simply providing programming tools without 

systematic CT skill development may not be sufficient for students at lower proficiency 

levels. 

Finally, the findings suggest that assessment strategies should evaluate CT components 

both individually and in integration, recognizing that these skills develop as interconnected 

systems rather than isolated capabilities. 

Research Limitations 

This study has several limitations that should be considered when interpreting the 

results and for future research consideration. First, this research involved only three 

research subjects, so generalization of research results should be done cautiously. For fu ture 

research, the number of research subjects could be increased to obtain a more 

comprehensive picture of students' computational thinking abilities. 

Second, this research is limited to the context of quadratic function material. Students' 

computational thinking abilities may differ when facing different mathematical material. 
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For future research, exploration of students' computational thinking abilities in more 

diverse mathematical contexts could be conducted. 

Third, this research focuses only on tenth-grade vocational high school students in 

Software Engineering who already have basic knowledge of Python programming. Results 

might differ if applied to students from different majors or educational levels. Future  

research could involve students from various educational backgrounds to gain broader 

understanding of how educational background influences computational thinking abilities. 

Fourth, this research uses a qualitative approach with a case study method, so it cannot 

examine causal relationships between Python use and computational thinking 

development. Future research could use experimental approaches to test the effectiveness 

of Python use in developing students' computational thinking abilities. 

CONCLUSION AND SUGGESTIONS 

Based on the research results and discussion, The authors conclude that the computational 

thinking abilities of tenth-grade vocational high school students in Software Engineering 

when solving quadratic function problems using Python vary significantly, categorized as 

high, medium, and low. Students with high ability (S1) demonstrated excellent 

decomposition, pattern recognition, abstraction, and algorithmic skills, characterized by 

systematic and comprehensive problem decomposition, accurate pattern identification with 

optimal utilization, and efficient structured algorithm development. Meanwhile, students 

with medium ability (S2) showed good capabilities but were less optimal in several aspects, 

such as less systematic decomposition, suboptimal pattern utilization, inclusion of 

unnecessary details in abstraction, and less comprehensive algorithm development. 

Students with low ability (S3) demonstrated difficulties in several computational thinking 

aspects. This research also found that using Python in mathematics education, particularly 

in quadratic function material, can help students develop their computational thinking 

abilities through abstract concept visualization and mathematical concept application in 

more authentic contexts. This indicates that integrating programming into mathematics 

education has potential to enhance students' computational thinking skills, which are 

essential in today's digital era. 

Based on the research results, the authors  recommend that educators integrate 

programming, particularly Python, into mathematics education to develop students' 

computational thinking skills. Teachers should provide adequate scaffolding for students 

with different abilities and design learning activities that encourage development across all 

computational thinking aspects. Schools should facilitate curriculum development that 

integrates computational thinking into mathematics education, including technological 

infrastructure provision and teacher training. For future research, the authors  recommend 

involving more research subjects, exploring more diverse mathematical topics, and using 

different methodological approaches such as experimental research to test the effectiveness 

of various approaches in developing students' computational thinking skills. Curriculum 

developers should consider explicitly integrating computational thinking into the 
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mathematics curriculum, including providing guidelines and resources that support its 

implementation. For students, the authors  recommend utilizing technology, particularly 

Python programming, as a tool to aid mathematical concept understanding and problem-

solving skill development, ultimately increasing their competitiveness in the increasingly 

developing digital era. 
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