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Abstrak  

Koinfeksi antara penyakit Flu Babi dan Flu Burung merupakan tantangan dalam dunia medis yang 

membutuhkan perhatian serius. Flu Babi dan Flu Burung berdampak besar pada peternakan unggas serta 

menyebabkan epidemik pada manusia. Menurut Depkes RI, 2014, jumlah kasus di indonesia sebanyak 197 kasus 

Flu Burung dan 165 diantaranya meninggal dunia, sementara pada tahun 2009, terjadi pandemi Flu Babi global 

yang disebabkan oleh virus HINI. Penelitian ini akan menganalisis model koinfeksi Flu Babi dan Flu Burung untuk 

memahami intraksi antar penyakit pada dinamika penyebaran infeksi pada populasi. Hasil penelitian menunjukan 

bahwa terdapat empat titik kesetimbangan, yaitu titik kesetimbangan bebas penyakit, titik kesetimbangan endemik 

Flu Babi, titik kesetimbangan endemik Flu Burung, serta titik kesetimbangan endemik koinfeksi. Bilangan 

reproduksi dasar ditentukan menggunakan Next Generation Matrix untuk kasus titik kesetimbangan bebas 

penyakit menghasilkan dua bilangan reproduksi dasar, yaitu bilangan reproduksi dasar Flu Babi  (𝑅01)  dan 

bilangan reproduksi dasar Flu Burung (𝑅02). Ketika 𝑅01 < 1 dan 𝑅02 < 1, titik kesetimbangan bebas penyakit akan 

stabil, yang berarti kedua penyakit akan hilang dari populasi dalam jangka waktu tertentu. Jika 𝑅01  >  1 dan 𝑅02 <

 1, menunjukkan bahwa penyakit Flu Babi akan tetap ada dalam populasi. Sebaliknya, jika 𝑅01  <  1 dan 𝑅02 >  1, 

penyakit Flu Burung akan tetap ada dalam populasi. Jika 𝑅01 >  1 dan 𝑅02 >  1, keduanya akan tetap ada dalam 

populasi. Diperoleh 2 bilangan reproduksi dasar yaitu, 𝜆1 = 𝑅0,1 =
Λ𝛽1

𝜇(𝛼+𝜇)
 sebagai bilangan reproduksi dasar untuk 

penyakit Flu Babi sedangkan 𝜆2 = 𝑅0,2 =
Λ𝛽2

𝜇(𝛿2+𝜇)
 sebagai bilangan reproduksi dasar untuk penyakit Flu Burung. 

Hasil dari simulasi numerik yang dilakukan menggunakan MATLAB juga mendukung hasil analisis tersebut.  

Kata Kunci: Flu Babi (H1N1), Flu Burung (H5N1), Koinfeksi, Pemodelan Matematika 
  

Abstract  

Coinfection between Swine Flu and Bird Flu is a challenge in the medical world that requires serious attention. Swine 

Flu and Bird Flu have a major impact on poultry farming and cause epidemics in humans. According to the Indonesian 

Ministry of Health, 2014, the number of cases in Indonesia was 197 cases of Bird Flu and 165 of them died, while in 2009, 

there was a global Swine Flu pandemic caused by the HINI virus. This study will analyze the Swine Flu and Bird Flu 

coinfection model to understand the interaction between diseases in the dynamics of infection spread in the population. The 

results of the study showed that there were four equilibrium points, namely the disease-free equilibrium point, the endemic 

equilibrium point of Swine Flu, the endemic equilibrium point of Bird Flu, and the endemic equilibrium point of coinfection. 

The basic reproduction number is determined using the Next Generation Matrix for the case of a disease-free equilibrium point 

producing two basic reproduction numbers, namely the basic reproduction number of Swine Flu  (𝑅01)  and the basic 

reproduction number of Bird Flu  (𝑅02) When 𝑅01 < 1 and 𝑅02 < 1, the disease-free equilibrium point will be stable, which 

means that both diseases will disappear from the population within a certain period of time. If 𝑅01 > 1 and 𝑅02 < 1, it indicates 

that Swine Flu disease will remain in the population. Conversely, if 𝑅01 < 1 and𝑅02 > 1, Bird Flu disease will remain in the 

population. If 𝑅01 > 1and𝑅02 > 1, both will remain in the population. 2 basic reproduction numbers are obtained, namely, 

𝜆1 = 𝑅0,1 =
Λ𝛽1

𝜇(𝛼+𝜇)
as the basic reproduction number for Swine Flu disease while𝜆2 = 𝑅0,2 =

𝛬𝛽2

𝜇(𝛿2+𝜇)
 as the basic reproduction 

number for Bird Flu disease. The results of the numerical simulation carried out using MATLAB also support the results of 

the analysis. 
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PENDAHULUAN  

Influenza atau biasa disebut “flu” merupakan 

salah satu penyakit menular yang saat ini ditemukan 

tidak hanya di daerah tropis tetapi juga di daerah non 

tropis. Penyakit ini merupakan penyakit pernapasan 

menular yang disebabkan oleh virus influenza. 

Penyakit ini dapat tergolong ke dalam penyakit 

ringan hingga penyakit berat yang dapat 

mengakibatkan kematian. Virus penyebab 

penyebaran penyakit influenza merupakan virus 

RNA yang termasuk dalam familia ortormyxoviridae 

dan memiliki diameter 90-120 nonameter. Penyakit 

ini terdiri atas 3 tipe yaitu influenza tipe A (H1N1, 

H5N1), tipe B (Flu Perut) dan tipe C (Flu Ringan). 

(Abelson, 2009). 

Di antara ketiga tipe penyakit tersebut influenza 

tipe A merupakan penyakit influenza yang dapat 

menyerang semua kelompok umur manusia dan 

hewan. Virus ini dapat ditularkan pada spesies lain 

dan dapat menimbulkan wabah yang berdampak 

besar pada peternakan unggas. Hal ini menimbulkan 

suatu wabah influenza manusia sehingga 

menyebabkan suatu epidemik. Sedangkan influenza 

tipe B merupakan penyakit influenza yang hanya 

menyerang manusia khususnya anak-anak dimana 

tingkat bahaya dari penyakit ini lebih rendah dari 

tipe A. Virus dari tipe B memiliki keragaman 

antigenetik yang relatif lebih sedikit. Oleh sebab itu, 

Influenza tipe B tidak menyebabkan suatu epidemik. 

Meskipun jarang terjadi, influenza tipe B seringkali 

disebut flu perut (stomach flu) oleh berbagai kalangan 

(Rendell, 2006). Selanjutnya influenza tipe C 

merupakan penyakit influenza yang paling ringan 

dari pada tipe A dan tipe B karena tidak 

menimbulkan kerusakan serius pada sistem 

pernapasan sehingga tidak menyebabkan wabah 

(Bedada, dkk., 2015)  

Menyebarnya virus dari penyakit influenza tipe A 

(H1N1) ini telah menjadi wabah internasional yang 

mencemaskan warga di berbagai negara. Salah satu 

influenza tipe A  Flu babi (swine flu) merupakan virus 

influenza baru yang menyebabkan penyakit di 

manusia. Virus ini telah menyebar ke berbagai 

penjuru dunia. Dahulu penyakit ini ditularkan 

melalui binatang, terutama babi namun kini terjadi 

penularan antar manusia sehingga yang penyakit 

digolongkan dalam public health emergency of 

international concern (PHEIC). Gejala flu babi pada 

manusia berupa demam, batuk, nyeri tenggorokan, 

hidung berair, nyeri otot dan sendi, sakit kepala, 

menggigil, lesu, napas cepat, atau sesak nafas. Pada 

flu babi terlihat bahwa seseorang dapat menularkan 

virus sejak satu hari sebelum muncul gejala hingga 7 

hari setelah orang tersebut merasakan gejala. 

(Wardhani, P. dkk, 2010) 

Sampai saat ini belum ada vaksin yag tersedia 

untuk perlindungan terhadap virus flu babi (H1N1). 

Hal yang terbaik yang dapat dilakukan untuk 

mencegah penyebaran virus di antaranya yaitu 

menghindari bersentuhan atau kontak langsung 

dengan penderita flu babi, bila bersentuhan tidak 

dapat dihindari maka gunakan masker, mencuci 

tangan dengan sabun, hindari menyentuh mata, 

mulut dan hidung karena virus dapat masuk melalui 

bagian tubuh tersebut. Untuk masa inkubasi pada 

virus flu babi ini 3 sampai 5 hari meskipun ada yang 

menyebut 2 sampai dengan 3 hari, namun untuk 

penderita anak-anak dapat menularkan virus dengan 

masa waktu yang lebih lama. 

Virus Flu Babi dan Flu Burung merupakan 

tantangan dalam dunia medis yang membutuhkan 

perhatian serius. Virus Flu Burung menyebar di 

antara populasi burung dan memiliki potensi 

penularan ke manusia. Sebagian besar penderita 

gejala flu burung (H5N1) pada manusia sama dengan 

influenza lainya yaitu demam lebih dari 38°C dan 

gejala saluran pernafasan, diare, muntah-muntah, 

nyeri perut, nyeri dada. Tanda dan gejala pada 

unggas saat terinfeksi virus H5N1 sanggat beragam, 

mulai dari gejala ringan hingga berat. Hal ini 

tergantung keganasan virus, lingkungan, dan 

keadaan unggas sendiri, gejala awal yang akan di 

timbulkan yaitu kuranya akan produksi telur, 

perubahan warna jengger yang menjadi biru, kepala 

dan sekitar mata bengkak, diare, bersin, depresi dan 

kurangnya nafsu makan. Di beberapa kasus unggas 

mati tanpa gejala kematian terjadi setelah 24 jam 

timbul gejala.( A.A. Wiradewi Lestari, dkk,2008) 

Kasus pertama flu burung di temukan di China 

pada tahun 2003 dan meluas ke beberapa negara 

termasuk indonesia pada tahun 2003. Mulai tahun 

2003 hingga juni 2014, jumlah kasus di indonesia 

sebanyak 197 kasus flu burung dan 165 diantaranya 
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meninggal dunia (Depkes RI, 2014). Saat ini di 

Indonesia banyak faktor yang mempengaruhi 

terjadinya kasus penyakit flu burung, diantaranya 

kebersihan lingkungan yang sangat kurang, 

banyaknya rumah yang berdekatan dengan kandang 

hewan atau unggas yang selama ini merupakan 

pembawa virus tersebut. Manusia yang kontak 

langsung dengan unggas sangat beresiko terkena 

virus flu burung jika tidak ada antisipasi yang tepat 

oleh pemerintah maupun masyarakat itu sendiri. 

Virus flu burung mulai menyebar sejak 2003 dan 

telah menyebar hingga ke 31 provinsi. Oleh karna itu 

sejak tahun 2004 pemerintah mengeluarkan 

kebijakan strategi guna mencegah penyebaran 

penyakit virus (Martindah, 2008). Penyakit ini tidak 

hanya menginfeksi manusia tetapi juga beberapa 

jenis unggas misalnya ayam, bebek, angsa, dan itik. 

Sementara komponen lingkungan juga 

mempengaruhi penyebaran virus ini seperti udara, 

air, kebersihan kandang dan lain lain. 

Beberapa penelitian sebelumnya telah dilakukan 

mengenai  model koinfeksi, antara lain oleh 

Rezanissa P. dan Rudianto A. (2021) yang melakuakn 

analisi dinamik model koinfeksi penyakit Rubella 

dan Covid-19. Selanjutnya Sukma N.S dan Rudianto 

A. (2021), dalam penelitiannya melakukan analisis 

matematika untuk model koinfeksi Campak dan 

Covid-19. Selain itu A.F Anwar, dkk(2019), telah 

melakukan analisis matematika terkait koinfeksi 

influenza A dan Pneumokokus. 

 Berdasarkan latar belakang di atas peneliti akan 

membahas tentang penyebaran penyakit influenza 

flu babi dan flu burung. Virus  penyebab flu burung 

angka kematian yang tinggi, sedangkan virus flu babi 

memiliki angka kematian yang rendah penularannya 

pada manusia. 

KAJIAN TEORI (GUNAKAN STYLE SECTION) 

FLU BABI 

Influenza Flu Babi adalah penyakit yang di 

sebabkan oleh virus influenza tipe A yang umumnya 

menyerang babi. Virus ini dapat bermutasi ke 

manusia yang menyebabkan infeksi pada manusia. 

Saat ini masih belum tersedia vaksin untuk 

melindungi penyebaran virus ini, hal yang terbaik 

yang dapat dilakukan untuk mencegah penyebaran 

virus di antaranya yaitu menghindari bersentuhan 

atau kontak langsung dengan penderita Flu Babi, bila 

bersentuhan tidak dapat dihindari maka gunakan 

masker, mencuci tangan dengan sabun, hindari 

menyentuh mata, mulut dan hidung karena virus 

dapat masuk melalui bagian tubuh tersebut. World 

Health Organization pada tahun 2016 menyatakan 

bahwa penyebaran virus ini tidak lagi dari hewan ke 

manusia melainkan manusia ke manusia. 

FLU BURUNG 

Influenza Flu Burung adalah penyakit yang di 

sebabkan oleh virus influenza tipe A, yang umumnya 

menjangkit burung. Virus ini dapat menimbulkan 

berbagai gejala pada burung, mulai dari ringan 

hingga parah dan dapat menyebabkan kematian 

pada beberapa kasus. Kejadian penularan langsung 

dari burung ke manusia relatif jarang terjadi, tetapi 

resiko meningkat jika terjadi mutasi virus yang 

memungkinkan penularan lebih efisien antar 

manusia. (Ghozali, 2016). 

HUBUNGAN VIRUS FLU BABI DAN FLU BURUNG 

Koinfeksi antara kedua jenis virus Flu Babi dan 

Flu Burung terutama terkait dengan fakta bahwa 

keduanya merupakan penyakit zoonosis, artinya 

mereka dapat menginfeksi baik hewan maupun 

manusia. Selain itu, baik flu babi maupun flu burung 

memiliki potensi untuk menyebabkan wabah atau 

bahkan pandemi di antara populasi manusia jika 

tidak dikendalikan dengan baik. Oleh karena itu, 

penting untuk mengambil langkah-langkah 

pencegahan yang tepat, pengawasan hewan, dan 

kebersihan lingkungan, untuk mengurangi risiko 

penyebaran kedua jenis virus ini. (Darmawan, R. 

2009) 

MODEL EPIDEMIK SIR 

Model SIR (Susceptibel, Infected, Recovered) 

merupakan salah satu metode yang dapat digunakan 

untuk memodelkan penyebaran penyakit dan 

menggambarkan dinamika penyebaran penyakit 

menular dengan membagi menjadi tiga kelompok, 

yaitu kelompok individu Susceptibel (rentan terhadap 

penyakit), kelompok individu Infected (terinfeksi 

penyakit), dan kelompok individu Recovered (sembuh 

dari penyakit). Model SIR dinyatakan dalam 

kompertemen model sebagai berikut. (Toaha, S., & 

Khaeruddin, K. 2014). 
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Gambar 1. Model SIR 

sehingga, sistem persamaan model tersebut adalah : 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼  

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 −  𝛿𝐼     (1) 

𝑑𝑅

𝑑𝑡
= 𝛿𝐼  

dimana, 𝑁 = 𝑆 + 𝐼 + 𝑅 adalah total populasi 
𝑑𝑆

𝑑𝑡
 : Laju transmisi individu rentan pada saat t 

𝑑𝐼

𝑑𝑡
 : Laju transmisi individu terinfeksi pada saat t 

𝑑𝑅

𝑑𝑡
 : Laju transmisi individu sembuh pada saat t 

𝑆 : Populasi individu rentan 

𝐼 : Populasi individu terinfeksi 

𝑅 : Populasi individu sembuh  

𝛽 : Laju infeksi S ke I 

𝛿 : Laju kesembuhan  

 

MODEL EPIDEMIK SEIR 

Model epidemik SEIR dibagi menjadi empat 

kondisi yaitu Susceptibel (S) atau individu yang 

rentan terhadap penyakit, Exposed (E) atau individu 

yang terpapar akan terinfeksi virus (akan terinfeksi 

penyakit), Infected (I) atau individu yang terinfeksi 

dan dapat menyebarkan penyakit tersebut kepada 

individu yang rentan, dan Removed (R) atau 

individu yang diasumsikan telah sembuh atau kebal 

terhadap penyakit sehingga terhindar dari kematian 

(Shahnaz, A. Yani, R., 2023). 

SISTEM PERSAMAAN DIFERENSIAL 

Sistem persamaan diferensial merupakan sistem 

yang memuat n persamaan diferensial dengan n 

fungsi yang tidak diketahui dan n merupakan 

bilangan bulat positif yang lebih besar dari atau sama 

dengan dua (Rizal, M., & Artiono, R., 2021). Bentuk 

umum dari sistem persamaan diferensial adalah 

sebagai berikut : 
𝑑𝑥1

𝑑𝑡
= 𝑓1(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)  

𝑑𝑥2

𝑑𝑡
= 𝑓2(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)    (2) 

⋮   
𝑑𝑥𝑛

𝑑𝑡
= 𝑓𝑛(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)  

dengan 𝑥̇(𝑡) = [

𝑥1

𝑥2

⋮
𝑥𝑛

] ∈ ℝ𝑛 , 𝑓(𝑥, 𝑡) = [

𝑓1
𝑓2
⋮
𝑓𝑛

] ∈ ℝ𝑛 , 

merupakan fungsi t dan x pada selang waktu t. 

 

TITIK KESTABILAN 

Analisis titik kesetimbangan dilakukan untuk 

menggambarkan perilaku sistem pada titik 

kesetimbangan. Keadaan setimbang dianggap stabil 

jika solusi-solusi yang berdekatan dengan titik 

ekuilibrium cenderung menuju ke titik tersebut. 

Definisi titik ekuilirium yaitu : 

Titik 𝑥̅ ∈ ℝ𝑛  disebut titik kesetimbangan jika 𝑓(𝑥̅) =

0 (Perko L, 2001). 

Nilai eigen atau 𝜆  diperoleh dari persamaan 

karakteristik, nilai dari 𝜆  dapat berupa nilai real 

berbeda atau kompleks dan disebut nilai eigen. Hal 

tersebut menyebabkan hasil kesimpulan dati titik 

ekuilibium yang berbeda-beda. Tabel berikut 

menunjukkan jenis titik serta kestabilan titik 

kesetimbangan pada sistem dinamik (Boyce dkk., 

2017). 

BILANGAN REPRODUKSI DASAR 𝑹𝟎 

Bilangan reproduksi dasar ( 𝑅0 ) 

merepresentasikan suatu bilangan sebagai ambang 

batas penularan penyakit yang diakibatkan oleh 

individu terinfeksi pada populasi yang rentan. 

(Driessche, 2017). Bilangan reproduksi dasar dari 

sistem persamaan dapat diperoleh dengan nilai eigen 

matriks Jacobian yang dihitung pada titik kritis bebas 

penyakit. Karakteristik 𝑅0 , yaitu: 

1. Ketika 𝑅0 < 1, maka penyakit akan 

hilang, sehingga jumlah individu yang 

rentan maupun sembuh lebih banyak 

daripada populasi individu yang 

terinfeksi.  

2. Ketika 𝑅0 = 1, maka penyakit akan tetap ada 

dan stabil, namun tidak menimbulkan 

wabah.  

3. Ketika 𝑅0  > 1, maka penyakit akan terus 

meningkat menjadi epidemi sehingga 

jumlah individu yang rentan maupun 

sembuh lebih sedikit daripada populasi 

individu yang terinfeksi (Diekmann dkk, 

2009) 

NILAI EIGEN DAN VAKTOR EIGEN 

“Misalkan H adalah matriks dengan ukuran 𝑛 𝑥 𝑛, 

ada satu vektor bukan 0 pada ℝ𝑛  disebut vektor 

eigen dari H, sehingga 𝐻𝑥 adalah kelipatan skalar 𝑥. 

𝐻𝑥 =  𝜆𝑥.    (3) 

𝜆  merupakan skalar yang disebut nilai eigen 𝐻 

dan 𝑥 merupakan vektor eigen 𝐻 relatif terhadap 𝜆.” 
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Nilai eigen dari matriks H dapat dijabarkan 

melalui persamaan berikut : 

𝐻𝑥 =  𝜆𝐼𝑥.     (4) 

Atau  

(𝜆𝐼 − 𝐻)𝑥 = 0,     (5) 

dimana 𝐼 merupakan matriks identitas. 𝜆 harus 

memiliki satu solusi tak nol dari persamaan (𝜆𝐼 −

𝐻)𝑥 = 0 untuk menjadi nilai eigen, jika 

𝑑𝑒𝑡(𝜆𝐼 − 𝐻)𝑥 = 0.    (6) 

Persamaan 𝑑𝑒𝑡(𝜆𝐼 − 𝐻)𝑥 = 0  disebut persamaan 

karakteristik matriks H (Anton dan Rorres, 2004). 

 

NEXT GENERATION MATRIX (NGM) 

Model ini dilakukan untuk menentukan bilangan 

reproduksi dasar. Misalkan ℱ merupakan matriks 

dengan entri nilai parameter yang menyebabkan 

munculnya penyakit, dan 𝒱 merupakan matriks 

dengan entri nilai parameter tingkat perpindahan 

dari subpopulasi terinfeksi ke subpopulasi yang 

lainnya, dimana ℱ dan 𝒱 merupakan matriks 𝑛 × 𝑛 

(Driessche & Watmough, 2002). Sehingga dapat 

diperoleh  𝐹 = [
𝜕ℱ1

𝜕𝑥𝑗
 (𝑥0)]  dan 𝑉 = [

𝜕𝒱 1

𝜕𝑥𝑗
 (𝑥0)] (7) 

dengan 1 ≤ 𝑖, 𝑗 ≤ 𝑚, dimana 𝑥𝑗  merupakan populasi 

infeksi dan 𝑥0  merupakan titik ekuilibrium bebas 

penyakit (Driessche & Watmough, 2002). Selanjutnya 

di definisikan bahwa K merupakan next generation 

matrix, sehingga 𝑅0 didapatkan dengan mencari nilai 

maksimum modulus dari nilai eigen  (Diekmann, 

Heesterbeek, & Roberts, 2010). 

 

METODE  

Penelitian ini merupakan studi literatur yang 

mengkaji konsep dan teori mengenai analisis 

matematika model koinfeksi penyakit Hepatitis B 

dan Demam Berdarah Dengue dengan menggunakan 

berbagai sumber literature yang dilakukan dengan 

tahapan sebagai berikut : (1) studi literatur; (2) 

menyusun asumsi; (3) merekonstruksi model 

matematika dari penyebaran penyakit; (4) 

menentukan titik kesetimbangan; (5) menganalisa 

jenis kestabilan; (6) simulasi; (7) menarik kesimpulan. 

 

HASIL DAN PEMBAHASAN 

KONSTRUKSI MODEL MATEMATIKA  

Proses pemodelan untuk kedua penyakit 

dikembangkan dari model dasar penyebaran 

penyakit SIR dan SEIR yang diperkenalkan oleh 

Kermack-Mckendrick pada tahun 1927, dengan 

memodifikasi jumlah populasi sesuai dengan 

karakteristik penyakit (Kermack-Mckendrick, 1927). 

Model yang dikembangkan merupakan hasil 

modifikasi dari model ko-infeksi yang telah 

dikembangkan oleh Rezanissa Purnamandaru dan 

Rudianto Artiono pada tahun 2021 (Rezanissa P. dan 

Rudianto A. 2021). Pada penyebaran penyakit 

influenza tipe A ini, melibatkan populasi manusia 

dengan delapan kondisi yaitu: 

1. Susceptible (S) merupkan jumlah individu 

yang rentan terinfeksi penyakit. 

2. Eksposed pada flu babi ( 𝐸𝑏 ) merupakan 

jumlah individu yang terpapar akan terkena 

virus atau terinveksi penyakit. 

3. 𝐼𝑏  menyatakan populasi manusia terinfeksi 

penyakit Flu Babi. 

4. 𝐼𝑟  menyatakan populasi manusia terinfeksi 

penyakit Flu Burung. 

5. 𝐼𝑏𝑟 menyatakan populasi manusia terinfeksi 

penyakit Flu Babi dan Flu Burung. 

6. 𝑅𝑏  menyatakan populasi manusia sembuh 

dari penyakit Flu Babi. 

7. 𝑅𝑟  menyatakan populasi manusia sembuh 

dari penyakit Flu Burung. 

8. 𝑅𝑏𝑟  menyatakan populasi manusia sembuh 

dari penyakit Flu Babi dan Flu Burung. 

Berikut ini adalah beberapa asumsi yang 

diterapkan untuk menghasilkan kondisi ideal dan 

memberikan batasan dalam pembentukan model. 

a. Angka kelahiran dan angka kematian yang 

sama. 

b. Populasi bersifat tertutup (tidak terjadinya 

migrasi). 

c. Tidak terjadi re-infeksi dari Flu Babi 

maupun Flu Burung. 

d. Populasi manusia terinfeksi penyakit Flu 

Babi dan Flu Burung sembuh pada waktu 

yang bersamaan. 

e. Populasi manusia rentan dapat terinfeksi 

penyakit Flu Babi dan Flu Burung pada 

waktu yang bersamaan  
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Berdasarkan asumsi di atas dapat dibaut diagram 

kompertemen SEIR pada penyakit Flu Babi dan SIR 

pada penyakit Flu Burung sebagai berikut : 

 
Gambar 2. Diagram Model Kompartemen 

Koinfeksi Penyakit Influenza Flu Babi 

(H1N1) dan Flu Burung (H5N1). 

 

 Tabel 1 : Keterangan Variabel 

 

Tabel 2 : Parameter Pada Model SEIR dan SIR 

 
 

Berdasarkan persamaan gambar 2 dapat 

diperoleh model SEIR dan SIR sebagai berikut : 

 
𝑑𝑆

𝑑𝑡
= Λ − 𝛽1𝑆𝐼𝑏 − 𝛽2𝑆𝐼𝑟 − 𝜇𝑆,  

𝑑𝐸𝑏 

𝑑𝑡
= 𝛽1𝑆𝐼𝑏 − 𝛼𝐸𝑏 − 𝜇𝐸𝑏 ,   

𝑑𝐼𝑟 

𝑑𝑡
= 𝛽2𝑆𝐼𝑟 − 𝛽4𝐼𝑏𝐼𝑟 − 𝛿2𝐼𝑟 − 𝜇𝐼𝑟 , (8)  

 
𝑑𝐼𝑏 

𝑑𝑡
= 𝛼𝐸𝑏 − 𝛽3𝐼𝑏𝐼𝑟 − 𝛿1𝐼𝑏 − 𝜇𝐼𝑏 ,  

 
𝑑𝐼𝑏𝑟 

𝑑𝑡
= 𝛽3𝐼𝑏𝐼𝑟 + 𝛽4𝐼𝑏𝐼𝑟 − 𝛿3𝐼𝑏𝑟 − 𝜇𝐼𝑏𝑟 ,  

𝑑𝑅𝑏 

𝑑𝑡
= 𝛿1𝐼𝑏 − 𝜇𝑅𝑏 ,  

𝑑𝑅𝑟 

𝑑𝑡
= 𝛿2𝐼𝑟 − 𝜇𝑅𝑟 ,  

𝑑𝑅𝑏𝑟 

𝑑𝑡
= 𝛿3𝐼𝑏𝑟 − 𝜇𝑅𝑏𝑟 .  

TITIK KESETIMBANGAN  

Titik kesetimbangan pada model penyebaran 

koinfeksi penyakit Hepatitis B dan Demam Berdarah 

Dengue dapat ditentukan dengan membuat ruas 

kanan pada setiap persamaan sama dengan nol  

1. Titik Kesetimbangan Bebas Penyakit  

Titik Kritis 1 = {𝑆 =
Λ

𝜇
, 𝐸𝑏 = 0, 𝐼𝑏 = 0, 𝐼𝑟 =

0, 𝐼𝑏𝑟 = 0,𝑅𝑏 = 0, 𝑅𝑟 = 0, 𝑅𝑏𝑟 = 0}. 

2. Titik Kesetimbangan Endemik Penyakit Flu 

Babi (H1N1)  

Titik Kritis 2 = {𝑆 =
𝛼𝛿1+𝛼𝜇+𝛿1𝜇+𝜇2

𝛼𝛽1
, 𝐸𝑏 =

Λ𝛼𝛽1−𝛼𝛿1𝜇−𝛼𝜇2−𝛿1𝜇2−𝜇3

𝛼(𝛼+𝜇)𝛽1
, 𝐼𝑏 =

Λ𝛼𝛽1−𝛼𝛿1𝜇−𝛼𝜇2−𝛿1𝜇2−𝜇3

𝛽1(𝛼𝛿1+𝛼𝜇+𝛿1𝜇+𝜇2)
 , 𝐼𝑟 = 0, 𝐼𝑏𝑟 = 0, 𝑅𝑏 =

 
𝛿1(Λ𝛼𝛽1−𝛼𝛿1𝜇−𝛼𝜇2−𝛿1𝜇2−𝜇3)

𝛽1(𝛼𝛿1+𝛼𝜇+𝛿1𝜇+𝜇2)𝜇
𝑅𝑟 = 0, 𝑅𝑏𝑟 = 0}. 

3. Titik Kesetimbangan Endemik Penyakit Flu 

Burung (H5N1)  

Titik Kritis 3 = {𝑆 =
𝛿2+𝜇

𝛽2
, 𝐸𝑏 = 0, 𝐼𝑏 =  0, 𝐼𝑟 =

Λ𝛽2−𝛿2𝜇−𝜇2

𝛽2(𝛿2+𝜇)
, 𝐼𝑏𝑟 = 0,𝑅𝑏 = 0 𝑅𝑟 =

𝛿2+(Λ𝛽2−𝛿2𝜇−𝜇2)

𝛽2(𝛿2+𝜇)𝜇
, 𝑅𝑏𝑟 =  0}. 

4. Titik Kesetimbangan Endemik Ko-Infeksi 

Penyakit Flu Babi dan Flu Burung  

Titik Kritis 4 =  {𝑆 =
Λ

𝛽1𝐼𝑏 
∗ +𝛽2𝐼𝑟

∗+𝜇
, 𝐸𝑏 =

𝛽1(
Λ

𝛽1𝐼𝑏
∗ −𝛽2𝐼𝑟

∗−𝜇
)𝐼𝑏

∗

𝛼+𝜇
, 𝐼𝑏 = 𝐼𝑏

∗ , 𝐼𝑟 = 𝐼𝑟
∗, 𝐼𝑏𝑟 =

𝐼𝑏 
∗ 𝐼𝑟 

∗ (𝛽3+𝛽4)

𝛿3+𝜇
, 𝑅𝑏 =

𝛿1𝐼𝑏 
∗

𝜇
, 𝑅𝑟 =

𝛿2𝐼𝑟 
∗

𝜇
, 𝑅𝑏𝑟 =

𝛿3𝐼𝑏
∗𝐼𝑟

∗(𝛽3+𝛽4)

𝜇(𝛿3+𝜇)
}. 

BILANGAN REPRODUKSI DASAR (𝑹𝟎) 

Tahap selanjutnya yaitu menentukan bilangan 

reproduksi dasar. Bilangan reproduksi dasar 

digunakan sebagai parameter dan menetukan 

tingkat penyebaran suatu penyakit. Perhitungan 

𝑅0 hanya menganggap pada populasi yang terinfeksi 

sedangkan populasi yang rentan diabaikan 

(Diekman, et al. 2009). 

Bilangan reproduksi dasar (𝑅0) akan ditentukan 

menggunakan Next Generation Matrix (NGM). 
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Konstruksi NGM dilakukan pada individu yang 

terinfeksi saja.  

Diperoleh nilai 𝑅0  adalah nilai eigen terbesar dari 

𝑵𝑮𝑴. Dari elemen diagonal utama, diperoleh dua 

nilai 𝑅0: 

𝑅0,1 =

Λ

𝜇
𝛽1

𝛼+𝜇
=

Λ𝛽1

𝜇(𝛼+𝜇)
, 𝑅0,2 =

Λ

𝜇
𝛽2

𝛿2+𝜇
=

Λ𝛽2

𝜇(𝛿2+𝜇)
  (9) 

𝜆1 dan 𝜆2 merupakan nilai eigen dominan sehingga 

diperoleh 2 bilangan reproduksi dasar yaitu, 𝜆1 =

𝑅0,1 =
Λ𝛽1

𝜇(𝛼+𝜇)
 sebagai bilangan reproduksi dasar 

untuk penyakit Flu Babi sedangkan 𝜆2 = 𝑅0,2 =
Λ𝛽2

𝜇(𝛿2+𝜇)
 sebagai bilangan reproduksi dasar untuk 

penyakit Flu Burung. 

Nilai 𝑅0  ini menentukan potensi penyebaran 

penyakit dalam populasi. Jika 𝑅0 > 1 , penyakit 

berpotensi menyebar dalam populasi. Jika 𝑅0 < 1 

penyakit cenderung tidak menyebar dan bisa 

menghilang dari populasi. 

 

ANALISIS KESTABILAN TITIK KESETIMBANGAN  

Untuk mengetahui kestabilan titik 

kesetimbangan dari sistem maka terlebih dahulu 

dilakukan proses linierisasi. Substitusi titik kritis ini 

dalam bentuk matriks Jacobi sehingga dari 

persamaan di peroleh: 

 

𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑑𝑆

𝜕𝑆

𝜕𝑑𝑆

𝜕𝐸𝑏

𝜕𝑑𝑆

𝜕𝐼𝑟

𝜕𝑑𝑆

𝜕𝐼𝑏

𝜕𝑑𝑆

𝜕𝐼𝑏𝑟

𝜕𝑑𝑆

𝜕𝑅𝑏

𝜕𝑑𝑆

𝜕𝑅𝑟

𝜕𝑑𝑆

𝜕𝑅𝑏𝑟

𝜕𝑑𝐸𝑏

𝜕𝑆

𝜕𝑑𝐸𝑏

𝜕𝐸𝑏

𝜕𝑑𝐸𝑏

𝜕𝐼𝑟

𝜕𝑑𝐸𝑏

𝜕𝐼𝑏

𝜕𝑑𝐸𝑏

𝜕𝐼𝑏𝑟

𝜕𝑑𝐸𝑏

𝜕𝑅𝑏

𝜕𝑑𝐸𝑏

𝜕𝑅𝑟

𝜕𝑑𝐸𝑏

𝜕𝑅𝑏𝑟

𝜕𝑑𝐼𝑟

𝜕𝑆

𝜕𝑑𝐼𝑟

𝜕𝐸𝑏

𝜕𝑑𝐼𝑟

𝜕𝐼𝑟

𝜕𝑑𝐼𝑟

𝜕𝐼𝑏

𝜕𝑑𝐼𝑟

𝜕𝐼𝑏𝑟

𝜕𝑑𝐼𝑟

𝜕𝑅𝑏

𝜕𝑑𝐼𝑟

𝜕𝑅𝑟

𝜕𝑑𝐼𝑟

𝜕𝑅𝑏𝑟

𝜕𝑑𝐼𝑏

𝜕𝑆

𝜕𝑑𝐼𝑏

𝜕𝐸𝑏

𝜕𝑑𝐼𝑏

𝜕𝐼𝑟

𝜕𝑑𝐼𝑏

𝜕𝐼𝑏

𝜕𝑑𝐼𝑏

𝜕𝐼𝑏𝑟

𝜕𝑑𝐼𝑏

𝜕𝑅𝑏

𝜕𝑑𝐼𝑏

𝜕𝑅𝑟

𝜕𝑑𝐼𝑏

𝜕𝑅𝑏𝑟

𝜕𝑑𝐼𝑏𝑟

𝜕𝑆

𝜕𝑑𝐼𝑏𝑟

𝜕𝐸𝑏

𝜕𝑑𝐼𝑏𝑟

𝜕𝐼𝑟

𝜕𝑑𝐼𝑏𝑟

𝜕𝐼𝑏

𝜕𝑑𝐼𝑏𝑟

𝜕𝐼𝑏𝑟

𝜕𝑑𝐼𝑏𝑟

𝜕𝑅𝑏

𝜕𝑑𝐼𝑏𝑟

𝜕𝑅𝑟

𝜕𝑑𝐼𝑏𝑟

𝜕𝑅𝑏𝑟

𝜕𝑑𝑅𝑏

𝜕𝑆

𝜕𝑑𝑅𝑏

𝜕𝐸𝑏

𝜕𝑑𝑅𝑏

𝜕𝐼𝑟

𝜕𝑑𝑅𝑏

𝜕𝐼𝑏

𝜕𝑑𝑅𝑏

𝜕𝐼𝑏𝑟

𝜕𝑑𝑅𝑏

𝜕𝑅𝑏

𝜕𝑑𝑅𝑏

𝜕𝑅𝑟

𝜕𝑑𝑅𝑏

𝜕𝑅𝑏𝑟

𝜕𝑑𝑅𝑟

𝜕𝑆

𝜕𝑑𝑅𝑟

𝜕𝐸𝑏

𝜕𝑑𝑅𝑟

𝜕𝐼𝑟

𝜕𝑑𝑅𝑟

𝜕𝐼𝑏

𝜕𝑑𝑅𝑟

𝜕𝐼𝑏𝑟

𝜕𝑑𝑅𝑟

𝜕𝑅𝑏

𝜕𝑑𝑅𝑟

𝜕𝑅𝑟

𝜕𝑑𝑅𝑟

𝜕𝑅𝑏𝑟

𝜕𝑑𝑅𝑏𝑟

𝜕𝑆

𝜕𝑑𝑅𝑏𝑟

𝜕𝐸𝑏

𝜕𝑑𝑅𝑏𝑟

𝜕𝐼𝑟

𝜕𝑑𝑅𝑏𝑟

𝜕𝐼𝑏

𝜕𝑑𝑅𝑏𝑟

𝜕𝐼𝑏𝑟

𝜕𝑑𝑅𝑏𝑟

𝜕𝑅𝑏

𝜕𝑑𝑅𝑏𝑟

𝜕𝑅𝑟

𝜕𝑑𝑅𝑏𝑟

𝜕𝑅𝑏𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

                     (10) 

 

Analisis titik kesetimbangan bebas penyakit 

diperoleh dengan mensubstitusikan titik 

kesetimbangan bebas penyakit ke dalam matriks 

Jacobian (4.51), sehingga diperoleh sebagai berikut:  

𝐽 =

[
 
 
 
 
 
 
 
 
 
 −𝜇 0 −

𝛽2Λ

𝜇
−

𝛽1Λ

𝜇
0 0 0 0

0 −𝛼 − 𝜇 0 −
𝛽1Λ

𝜇
0 0 0 0

0 0
𝛽2Λ

𝜇
− 𝛿2 − 𝜇 0 0 0 0 0

0 𝛼 0 −𝛿1 − 𝜇 0 0 0 0
0 0 0 0 −𝛿3 − 𝜇 0 0 0
0 0 0 𝛿1 0 −𝜇 0 0
0 0 𝛿2 0 0 0 −𝜇 0
0 0 0 0 𝛿3 0 0 −𝜇]

 
 
 
 
 
 
 
 
 
 

    (11) 

 

Analisis kestabilan diperoleh dengan menganalisis 

nilai eigen pada titik kesetimbangan bebas penyakit. 

Berdasarkan matriks Jacobian di atas, diperoleh 8 

nilai eigen sebagai berikut : 

a. 𝜆01 =  −𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆01 akan 

selalu bernilai negatif. 

b. 𝜆02 = −𝛼 − 𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆02 akan selalu 

bernilai negatif. 

c. 𝜆03 =
𝛽2Λ

𝜇
− 𝛿2 − 𝜇 , nilai eigen 𝜆03  akan 

berniali negatif jika di penuhi syarat berikut 

: 
𝛽2Λ

𝜇
− 𝛿2 − 𝜇 < 0 

𝛽2Λ

𝜇
< 𝛿2 + 𝜇 

𝛽2Λ

𝜇(𝛿2+𝜇)
< 1           (12) 

𝛽2Λ

𝜇𝛿2+𝜇2 < 1  

d. 𝜆04 = −𝛿1 − 𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆04 akan selalu 

bernilai negatif. 

e. 𝜆05 = −𝛿3 − 𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆05 akan selalu 

bernilai negatif. 

f. 𝜆06 = −𝜇 , karena setiap parameter pada 

model bernilai positif, maka 𝜆06  akan selalu 

bernilai negatif. 

g. 𝜆07 = −𝜇 , karena setiap parameter pada 

model bernilai positif, maka 𝜆07  akan selalu 

bernilai negatif. 

h. 𝜆08 = −𝜇 , karena setiap parameter pada 

model bernilai positif, maka 𝜆08  akan selalu 

bernilai negatif. 

Titik kesetimbangan bebas penyakit akan stabil 

jika di penuhi syarat untuk 𝜆03 . Selanjutnya akan 

ditunjukan analisis titik kesetimbangan endemik 

penyakit Flu Babi diperoleh dengan 

mensubstitusikan titik kesetimbangan endemik 

penyakit Flu Babi ke dalam matriks Jacobian, 

sehingga diperoleh 8 nilai eigen sebagai berikut : 
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(13) 

a. 𝜆11 = −𝛿3 − 𝜇,  karena setiap parameter 

pada model bernilai positif, maka 

𝜆11 akan selalu bernilai negatif. 

b. 𝜆12 = −𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆12  akan 

selalu bernilai negatif. 

c. 𝜆13 = −𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆13  akan 

selalu bernilai negatif. 

d. 𝜆14 = −𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆14  akan 

selalu bernilai negatif. 

e. 𝜆15 = −
1

2

1

𝛿1+𝜇
(Λ𝛽1 −

√
Λ2𝛽1

2 − 4Λβ1
2 − 8Λβ1𝛿1𝜇 − 4Λβ1𝜇

2 + 4𝛿1
3𝜇

+12𝛿1
2𝜇2 + 12𝛿1𝜇

3 + 4𝜇4) 
 

f. 𝜆16 = −
1

2

1

𝛿1+𝜇
(Λ𝛽1 +

√
Λ2𝛽1

2 − 4Λβ1
2 − 8Λβ1𝛿1𝜇 − 4Λβ1𝜇

2 + 4𝛿1
3𝜇

+12𝛿1
2𝜇2 + 12𝛿1𝜇

3 + 4𝜇4) 
 

Analisi kestabilan untuk dua nilai eigen dapat 

diperoleh dari persamaan kuadrat 𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0 

dengan syarat 𝜆15 < 0 dan 𝜆16 < 0. Kondisi ini dapat 

terjadi ketika −
𝑏

𝑎
< 0 dan 

𝑐

𝑎
< 0  

Dengan menggunakan rumus akar persamaan 

kuadrat diperoleh : 

𝜆15 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝜆16 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

Dari persamaan diatas diperoleh nilai : 

𝑎 = 𝛿1 + 𝜇 

𝑏 = Λ2β1
2 − Λβ1𝛿1

2 + 2Λβ1δ1𝜇 + Λβ1𝜇
2 − 𝛿1

3𝜇 +

3𝛿1
2𝜇2 + 3𝛿1𝜇

3 + 𝜇4   

𝑐 = Λ𝛽1   

Sehingga, 

−
𝑏

𝑎
< 0  

−
Λ2β1

2 − Λβ1𝛿1
2 + 2Λβ1δ1𝜇 + Λβ1𝜇

2 − 𝛿1
3𝜇 + 3𝛿1

2𝜇2 + 3𝛿1𝜇
3 + 𝜇4  

𝛿1 + 𝜇

< 0 

−
Λ2β1

2−Λβ1(−𝛿1
2+2δ1𝜇+𝜇2)+(−𝛿1

3𝜇+3𝛿1
2𝜇2+3𝛿1𝜇3+𝜇4)

𝛿1+𝜇
< 0, 

dan  

 

𝑐

𝑎
< 0 

Λ𝛽1

𝜇𝛼+𝜇
< 0, dan  

Nilai eigen 𝜆15  dan 𝜆16  akan bernilai negatif jika 

dipenuhi syarat berikut 

−
Λ2β1

2−Λβ1(−𝛿1
2+2δ1𝜇+𝜇2)+(−𝛿1

3𝜇+3𝛿1
2𝜇2+3𝛿1𝜇3+𝜇4)

𝛿1+𝜇
< 0 dan 

Λ𝛽1

𝜇𝛼+𝜇
< 0 

 

g. 𝜆17 =
1

𝛽1(𝛿1+𝜇)
(Λβ1 + 𝛿1𝛽1𝛼 + 𝛼𝛽1𝜇 + 𝛿1𝛽1 +

𝛿1𝛽1𝜇 + 2𝜇𝛽1 + 2𝜇2𝛽1 − 𝛿1𝜇 − 𝜇2 − (Λ2𝛽1
2 −

2Λαβ1
2𝛿1 − 2Λαβ1

2𝜇 + 2Λβ1
2𝛿1 + 2Λβ1

2 𝛿1𝜇 −

2Λβ1𝛿1𝜇 − 2Λβ1𝜇
2 + 𝛼2𝛽1

2𝛿1
2 + 2𝛼2𝛽1

2𝛿1𝜇 +

𝛼2𝛽1
2𝜇2 + 4𝛼𝛽1𝛿1

3 + 12𝛼𝛽1𝛿1
2𝜇 +

12𝛼𝛽1𝛿1𝜇
2 + 4𝛼𝛽1

2𝜇3 − 2𝛼𝛽1
2𝛿1

2 − 4𝛼𝛽1
2𝛿1𝜇 −

2𝛼𝛽1
2𝛿1𝜇

2 + 2𝛼𝛽1𝛿1𝜇 + 4𝛼𝛽1𝛿1𝜇
2 +

2𝛼𝛽1𝜇
3 + 𝛽1

2𝛿1
2 + 2𝛽1

2𝛿1
2𝜇 + 𝛽1

2𝛿1
2𝜇2 −

2𝛽1𝛿1𝜇 − 4𝛽1𝛿1𝜇
2 − 2𝛽1𝛿1𝜇

3 − 𝛿1
2𝜇2 +

2𝛿1𝜇
3 + 𝜇4)

1

2)  

h. 𝜆18 =
1

𝛽1(𝛿1+𝜇)
(Λβ1 + 𝛿1𝛽1𝛼 + 𝛼𝛽1𝜇 + 𝛿1𝛽1 +

𝛿1𝛽1𝜇 + 2𝜇𝛽1 + 2𝜇2𝛽1 − 𝛿1𝜇 − 𝜇2 + (Λ2𝛽1
2 −

2Λαβ1
2𝛿1 − 2Λαβ1

2𝜇 + 2Λβ1
2𝛿1 + 2Λβ1

2 𝛿1𝜇 −

2Λβ1𝛿1𝜇 − 2Λβ1𝜇
2 + 𝛼2𝛽1

2𝛿1
2 + 2𝛼2𝛽1

2𝛿1𝜇 +

𝛼2𝛽1
2𝜇2 + 4𝛼𝛽1𝛿1

3 + 12𝛼𝛽1𝛿1
2𝜇 +

12𝛼𝛽1𝛿1𝜇
2 + 4𝛼𝛽1

2𝜇3 − 2𝛼𝛽1
2𝛿1

2 − 4𝛼𝛽1
2𝛿1𝜇 −

2𝛼𝛽1
2𝛿1𝜇

2 + 2𝛼𝛽1𝛿1𝜇 + 4𝛼𝛽1𝛿1𝜇
2 +

2𝛼𝛽1𝜇
3 + 𝛽1

2𝛿1
2 + 2𝛽1

2𝛿1
2𝜇 + 𝛽1

2𝛿1
2𝜇2 −

2𝛽1𝛿1𝜇 − 4𝛽1𝛿1𝜇
2 − 2𝛽1𝛿1𝜇

3 − 𝛿1
2𝜇2 +

2𝛿1𝜇
3 + 𝜇4)

1

2)  

nilai eigen 𝜆17  dan 𝜆18  akan bernilai negatif jika di 

penuhi dengan syarat berikut: 

Analisi kestabilan untuk dua nilai eigen dapat 

diperoleh dari persamaan kuadrat 𝑎𝜆2 + 𝑏𝜆 + 𝑐 =

0, dengan syarat 𝜆17 < 0  dan 𝜆18 < 0.  Kondisi ini 

dapat terjadi ketika −
𝑏

𝑎
< 0 dan 

𝑐

𝑎
< 0  

Dengan menggunakan rumus akar persamaan 

kuadrat diperoleh : 

𝜆17 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝜆18 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

Dari persamaan diatas diperoleh nilai : 

𝑎 = 𝛽1(𝛿1 + 𝜇) 

𝑏 = Λ𝛽1 + 𝛽1𝛼(𝛿1 + 2𝜇) + 𝛽1𝛿1(𝛿1 + 2𝜇) + 2𝜇2𝛽1 −

𝜇(𝛿1 + 𝜇)  

𝑐 = Λ𝛽1
2 − Λβ1𝛿1

2 + 2Λβ1𝛿1𝜇 − Λβ1𝜇
2 + 𝛿1

3𝜇 +

3𝛿1
2𝜇2 + 3𝛿1𝜇

3 + 𝜇4  
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Sehingga, 

−
𝑏

𝑎
< 0  

 

−
 Λ𝛽1+𝛽1𝛼(𝛿1+2𝜇)+𝛽1𝛿1(𝛿1+2𝜇)+2𝜇2𝛽1−𝜇(𝛿1+𝜇) 

𝛽1(𝛿1+𝜇)
< 0, dan  

𝑐

𝑎
< 0 

 

Λ𝛽1
2 − Λβ1𝛿1

2 + 2Λβ1𝛿1𝜇 − Λβ1𝜇
2 + 𝛿1

3𝜇 + 3𝛿1
2𝜇2 + 3𝛿1𝜇

3 + 𝜇4 

𝛽1(𝛿1 + 𝜇)

< 0 

Λ𝛽1
2 − Λβ1(𝛿1

2 + 2𝛿1𝜇 + 𝜇2) + 𝛿1
3 + 3𝛿1

2𝜇2 + 3𝛿1𝜇
3 + 𝜇4 

𝛽1(𝛿1 + 𝜇)

< 0 

 

Nilai eigen 𝜆17  dan 𝜆18  akan bernilai negatif jika 

dipenuhi syarat berikut  

 

−
 (Λ𝛽1+𝛽1𝛼(𝛿1+2𝜇)+𝛽1𝛿1(𝛿1+2𝜇)+2𝜇2𝛽1−𝜇(𝛿1+𝜇)) 

𝛽1(𝛿1+𝜇)
< 0 , dan 

Λ𝛽1
2−Λβ1(𝛿1

2+2𝛿1𝜇+𝜇2)+𝛿1
3+3𝛿1

2𝜇2+3𝛿1𝜇3+𝜇4 

𝛽1(𝛿1+𝜇)
 

Titik kesetimbangan endemik penyakit Flu Babi 

akan stabil jika dipenuhi syarat untuk 

𝜆15, 𝜆16, 𝜆17, dan 𝜆18 . Selanjutnya akan ditunjukan 

analisis titik kesetimbangan endemik penyakit Flu 

Burung Dari matriks Jacobian di atas, diperoleh 8 

nilai eigen sebagai berikut:  

 

 

 

(14) 

 

a. 𝜆21 = −𝛿3 − 𝜇, karena setiap parameter pada 

model bernilai positif, maka 𝜆21 akan selalu 

bernilai negatif. 

b. 𝜆22 = −𝜇 , karena setiap parameter pada 

model bernilai positif, maka 𝜆22 akan selalu 

bernilai negatif. 

c. 𝜆23 = −𝜇 , karena setiap parameter pada 

model bernilai positif, maka 𝜆23 akan selalu 

bernilai negatif. 

d. 𝜆24 = −𝜇 , karena setiap parameter pada 

model bernilai positif, maka 𝜆24 akan selalu 

bernilai negatif. 

e. 𝜆25 = −
1

2

1

𝛿2+𝜇
(Λ𝛽1 −

√
(Λ2𝛽2

2 − 4Λβ2
2 − 8Λβ2𝛿2𝜇 − 4Λβ2𝜇

2 + 4𝛿2
3𝜇

+12𝛿2
2𝜇2 + 12𝛿2𝜇

3 + 4𝜇4) 
) 

   

f. 𝜆26 = −
1

2

1

𝛿2+𝜇
(Λ𝛽1 +

√
(Λ2𝛽2

2 − 4Λβ2
2 − 8Λβ2𝛿2𝜇 − 4Λβ2𝜇

2 + 4𝛿2
3𝜇 + 12𝛿2

2𝜇2

+12𝛿2𝜇
3 + 4𝜇4) 

) 

 

Analisis kestabilan untuk dua nilai eigen dapat 

diperoleh dari persamaan kuadrat 𝑎𝜆2 + 𝑏𝜆 + 𝑐 =

0, dengan syarat 𝜆25 < 0  dan 𝜆26 < 0.  Kondisi ini 

dapat terjadi ketika −
𝑏

𝑎
< 0 dan 

𝑐

𝑎
< 0  

Dengan menggunakan rumus akar persamaan 

kuadrat diperoleh : 

 

𝜆25 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝜆26 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

 

Dari persamaan diatas diperoleh nilai :   

 

𝑎 = 𝛿2 + 𝜇 

𝑏 = Λ2β2
2 − Λβ2𝛿2

2 + 2Λβ2δ2𝜇 + Λβ2𝜇
2 − 𝛿2

3𝜇 + 3𝛿2
2𝜇2

+ 3𝛿2𝜇
3 + 𝜇4 

𝑐 = Λ𝛽2   

Sehingga, 

−
𝑏

𝑎
< 0  

−
Λ2β2

2−Λβ2𝛿2
2+2Λβ2δ2𝜇+Λβ2𝜇2−𝛿2

3𝜇+3𝛿2
2𝜇2+3𝛿2𝜇3+𝜇4

𝛿2+𝜇
<

0, dan  

 
𝑐

𝑎
< 0 

 Λ𝛽2 

𝛿2 + 𝜇
< 0 

 

Nilai eigen 𝜆25  dan 𝜆26  akan bernilai negatif jika 

dipenuhi syarat berikut  

 

−
Λ2β2

2−Λβ2(−𝛿2
2+2δ2𝜇+𝜇2)+(−𝛿2

3𝜇+3𝛿2
2𝜇2+3𝛿2𝜇3+𝜇4)

𝛿2+𝜇
< 0 dan 

 Λ𝛽2 

𝛿2+𝜇
< 0 
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g. 𝜆27 =
1

𝛽2(𝛿2+𝜇)
(Λβ2 + 𝛿2𝛽2𝛼 + 𝛼𝛽2𝜇 + 𝛽2𝛿2 +

𝛿2𝛽2𝜇 + 2𝜇𝛽2 + 2𝜇2𝛽2 − 𝛽3𝛿2𝜇 − 𝜇2 −

(Λ2𝛽2
2 − 2Λαβ2

2𝛿2 − 2Λαβ2
2𝜇 + 2Λβ2

2𝛿2 +

2Λβ2
2 𝛿2𝜇 − 2Λβ2𝛿2𝜇 − 2Λβ2𝜇

2 + 𝛼2𝛽2
2𝛿2

2 +

2𝛼2𝛽2
2𝛿2𝜇 + 𝛼2𝛽2

2𝜇2 + 4𝛼𝛽2𝛿2
3 + 12𝛼𝛽2𝛿2

2𝜇 +

12𝛼𝛽2𝛿2𝜇
2 + 4𝛼𝛽2𝜇

3 − 2𝛼𝛽2
2𝛿2

2 − 4𝛼𝛽2
2𝛿2𝜇 −

2𝛼𝛽2
2𝜇2 + 2𝛼𝛽2𝛿2

2𝜇 + 4𝛼𝛽2𝛿2𝜇
2 + 2𝛼𝛽2𝜇

3 +

𝛽2
2𝛿2

2 + 2𝛽2
2𝛿2𝜇 + 𝛽2

2𝛿2
2𝜇2 − 2𝛽2𝛿2

2𝜇 −

4𝛽2𝛿2𝜇
2 − 2𝛽2𝛿1𝜇

3 − 𝛽3𝛿2
2𝜇2 + 2𝛿2𝜇

3 +

𝜇4)
1

2)  

h. 𝜆28 =
1

𝛽2(𝛿2+𝜇)
(Λβ2 + 𝛿2𝛽2𝛼 + 𝛼𝛽2𝜇 + 𝛽2𝛿2 +

𝛿2𝛽2𝜇 + 2𝜇𝛽2 + 2𝜇2𝛽2 − 𝛽3𝛿2𝜇 − 𝜇2 +

(Λ2𝛽2
2 − 2Λαβ2

2𝛿2 − 2Λαβ2
2𝜇 + 2Λβ2

2𝛿2 +

2Λβ2
2 𝛿2𝜇 − 2Λβ2𝛿2𝜇 − 2Λβ2𝜇

2 + 𝛼2𝛽2
2𝛿2

2 +

2𝛼2𝛽2
2𝛿2𝜇 + 𝛼2𝛽2

2𝜇2 + 4𝛼𝛽2𝛿2
3 + 12𝛼𝛽2𝛿2

2𝜇 +

12𝛼𝛽2𝛿2𝜇
2 + 4𝛼𝛽2𝜇

3 − 2𝛼𝛽2
2𝛿2

2 − 4𝛼𝛽2
2𝛿2𝜇 −

2𝛼𝛽2
2𝜇2 + 2𝛼𝛽2𝛿2

2𝜇 + 4𝛼𝛽2𝛿2𝜇
2 + 2𝛼𝛽2𝜇

3 +

𝛽2
2𝛿2

2 + 2𝛽2
2𝛿2𝜇 + 𝛽2

2𝛿2
2𝜇2 − 2𝛽2𝛿2

2𝜇 −

4𝛽2𝛿2𝜇
2 − 2𝛽2𝛿1𝜇

3 − 𝛽3𝛿2
2𝜇2 + 2𝛿2𝜇

3 +

𝜇4)
1

2)  nilai eigen 𝜆28  akan bernilai negatif 

jika di penuhi dengan syarat berikut: 

Analisi kestabilan untuk dua nilai eigen dapat 

diperoleh dari persamaan kuadrat 𝑎𝜆2 + 𝑏𝜆 + 𝑐 =

0, dengan syarat 𝜆27 < 0  dan 𝜆28 < 0.  Kondisi ini 

dapat terjadi ketika −
𝑏

𝑎
< 0 dan 

𝑐

𝑎
< 0  

Dengan menggunakan rumus akar persamaan 

kuadrat diperoleh : 

 

𝜆27 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝜆28 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

 

Dari persamaan diatas diperoleh nilai : 

 

𝑎 = 𝛽2(𝛿2 + 𝜇) 

𝑏 = Λ𝛽2 + 𝛽2𝛼(𝛿2 + 2𝜇) + 𝛽2(𝛿2 + 2𝜇) + 2𝜇2𝛽2 −

𝜇(𝛿2 + 𝜇)  

𝑐 = Λ𝛽2
2 − Λβ2𝛿2

2 + 2Λβ2𝛿2𝜇 − Λβ2𝜇
2 + 𝛿2

3𝜇 +

3𝛿2
2𝜇2 + 3𝛿2𝜇

3 + 𝜇4  

Sehingga, 

−
𝑏

𝑎
< 0  

−
 (Λ𝛽2+𝛽2𝛼(𝛿2+2𝜇)+𝛽2(𝛿2+2𝜇)+2𝜇2𝛽2−𝜇(𝛿2+𝜇)) 

𝛽2(𝛿2+𝜇)
< 0, dan  

 
𝑐

𝑎
< 0 

 

Λ𝛽2
2 − Λβ2𝛿2

2 + 2Λβ2𝛿2𝜇 − Λβ2𝜇
2 + 𝛿2

3𝜇 + 3𝛿2
2𝜇2 + 3𝛿2𝜇

3 + 𝜇4 

𝛽2(𝛿2 + 𝜇)

< 0 

 

Λ𝛽2
2 − Λβ2(𝛿2

2 − 2𝛿2𝜇 + 𝜇2) + 𝜇𝛿2
3 + 3𝛿2

2𝜇2 + 3𝛿2𝜇
3 + 𝜇4 

𝛽2(𝛿2 + 𝜇)

< 0 

Nilai eigen 𝜆26  dan 𝜆27  akan bernilai negatif jika 

dipenuhi syarat berikut.  

 

−
 (Λ𝛽2+𝛽2𝛼(𝛿2+2𝜇)+𝛽2(𝛿2+2𝜇)+2𝜇2𝛽2−𝜇(𝛿2+𝜇)) 

𝛽2(𝛿2+𝜇)
< 0, dan 

Λ𝛽2
2−Λβ2(𝛿2

2−2𝛿2𝜇+𝜇2)+𝜇𝛿2
3+3𝛿2

2𝜇2+3𝛿2𝜇3+𝜇4 

𝛽2(𝛿2+𝜇)
< 0 

Titik kesetimbangan endemik penyakit Flu Burung 

akan stabil jika dipenuhi syarat untuk 

𝜆25, 𝜆26, 𝜆27, dan 𝜆28 . Selanjutnya akan ditunjukan 

analisis titik kesetimbangan endemik koinfeksi 

penyakit Flu Babi dan Flu Burung diperoleh matriks 

Jacobian sebagai berikut : 

(15) 

 

Jika semua kondisi di atas terpenuhi, yaitu 𝛽1𝐼𝑏
∗ −

𝐼𝑟
∗𝛽2 < 𝜇  dan −𝛽4𝐼𝑏

∗ + 𝛽2𝑆 < 𝛿2 − 𝜇 , maka titik 

kesetimbangan endemik ko-infeksi adalah stabil. 

Namun apabila kondisi tersebut tidak terpenuhi, 

maka sistem tidak akan stabil pada titik 

kesetimbangan endemik tersebut. 

Analisis kestabilan diperoleh dengan 

menganalisis nilai eigen pada titik kesetimbangan 

endemik koinfksi penyakit Flu Babi dan Flu Burung. 

Dari matriks Jacobian di atas, diperoleh 8 nilai eigen. 

Namun, analisis nilai eigen ini tidak dapat dijabarkan 

karena kompleksitasi analisis ini, perhitungan nilai 

eigen dilakukan dengan bantuan aplikasi Maple.  

 

SIMULASI NUMERIK 

Simulasi ini bertujuan untuk memahami perilaku 

dari setiap populasi pada model saat terjadi 

penyebaran penyakit influenza tipe A H1N1 dan 

H5N1. Simulasi ini  dilakukan  dengan 

menggunakan program MATLAB Online R2020b. 

Nilai parameter diperoleh dari berbagai referensi 

sarta asumsi yang di sajikan pada tabel berikut 
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Parameter Nilai  Sumber  

Λ 1 Asumsi 

𝛽1 0.25 Atkins,2010 

𝛽2 0.2 Baleuna dkk,2020 

𝛽3 0.05 Asumsi 

𝛽4 0.1 Asumsi 

𝛼 0.15 Asumsi 

𝛿1 0.5 Baleuna dkk,2020 

𝛿2 0.001 Libotte dkk, 2020 

𝛿3 0.1 Asumsi 

𝜇 0.5 Asumsi 

Dengan nilai awal  𝑆(0) = 0,1; 𝐼𝑏(0) =

0.05; 𝐼𝑟(0) = 0,01; 𝐸𝑏(0) = 0.05; 𝐼𝑏𝑟(0) =

0,05; 𝑅𝑏(0) = 0;𝑅𝑟(0) = 0; 𝑅𝑏𝑟 = (0).  

Berikut merupakan simulasi yang dilakukan 

menggunakan software MATLAB Online dengan 

menggunakan ODE45.  

diperoleh 𝑅01 = 0,5  dan 𝑅02 = 0,79  serta pada 

analisis kestabilan diperoleh 𝜆01 = −0,5; 𝜆02 =

−0,5; 𝜆03 = −0,5;  𝜆04 = −1,15; 𝜆05 = −0,5; 𝜆06 =

−0,1; 𝜆07 = −0,5;  𝜆08 = −0,6 . Berdasaakan nilai 

eigen, maka jenis kesetimbangan adalah stabil 

asimtotik pada Titik Kritis 1 = (2; 0; 0; 0; 0; 0; 0; 0) 

dan akan menghasilkan simualsi sebagai berikut : 

 

 
Gambar 3. Grafik Simulasi Model Bebas Penyakit 

pada saat 𝑡 ≤  50 

Berdasarkan gambar 3 di atas menunjukan bahwa 

pada hari ke-10 dan seterusnya, populasi manusia 

yang terinfeksi penyakit Flu Babi dan Flu Burung 

semakin menurun ke angka nol sehingga tidak lagi 

ditemukan kedua penyakit tersebut pada populasi 

manusia. Hasil ini menunjukan bahwa eksistensi titik 

kesetimbangan bebas penyakit yang stabil. Semua 

populasi akan menuju titik nol kecuali populasi 

manusia rentan. Selanjutnya dilakukan modifikasi 

nilai 𝛽1 = 4,6  dan diperoleh  𝑅01 = 9,2 dan 𝑅02 =

0,79  serta pada analisis kestabilan diperoleh 𝜆11 =

−0,5; 𝜆12 = −0,4; 𝜆13 = −0,4; 𝜆14 = −1.88;  𝜆15 =

−0.6  𝜆16 = −0.5  𝜆17 = −0.5  dan 𝜆18 = −0.3 . 

Berdasarkan nilai eigen tersebut, maka jenis 

kesetimbangan adalah stabil asimtotik pada Titik 

Kritis 2 (2,6; 0,25; 0,0386;0; 0; 0,0385;0; 0) dan akan 

menghasilkan simulasi sebagai berikut : 

 
Gambar 4. Grafik Simulasi Model Penyakit Flu Babi 

pada saat 𝑡 ≤ 50 

 

Berdasarkan gambar 4. Menunjukan bahwa 

eksistensi titik kesetimbangan endemik penyakit Flu 

Babi yang stabil. Semua populasi akan menuju titik 

nol kecuali populasi manusia rentan, populasi 

manusia yang terinfeksi Flu Babi dan populasi 

manusia yang sembuh dari Flu Babi. Selanjutnya 

dilakukan modifikasi nilai 𝛽2 = 0,5  dan diperoleh 

𝑅01 = 0,038  dan 𝑅02 = 1,097  serta pada analisis 

kestabilan diperoleh 𝜆21 = −0,5; 𝜆22 = −0,5; 𝜆23 =

−0,5; 𝜆24 = −0,6; 𝜆25 = −1.15  𝜆26 = −0.5  𝜆27 =

−0.02  dan 𝜆28 = −0.5 . Berdasarkan nilai eigen 

tersebut, maka jenis kesetimbangan adalah stabil 

asimtotik pada Titik Kritis 3 

( 0,835;0; 0; 1,163; 0; 0; 2,334; 0)  dan akan 

menghasilkan simulasi sebagai berikut : 
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Gambar 5. Simulasi Model Penyakit Flu Burung 

pada saat 𝑡 ≤ 50 

 

Berdasarkan gambar 4.4 di atas menunjukan bahwa 

populasi manusia rentan awalnya berada di titik 0,1 

kemudian mengalami kenaikan pada minggu 

pertama ke titik 1,84 hingga minggu selanjutnya 

mengalami penurunan secara bertahap ke titik 0,85. 

Penurunan populasi manusia rentan dapat terjadi 

akibat berkurangnya populasi karena terdapat 

populasi yang terpapar oleh penyakit Flu Burung. 

Sementara itu, populasi yang terinfeksi penyakit Flu 

Burung pada awalnya berada di titik 0,01, namun 

kemudian naik secara bertahap menuju titik 1,13, 

yang menunjukan bahwa penyakit Flu Burung akan 

tetap di temuka di dalam populasi. Hal serupa 

terjadi pada populasi manusia sembuh dari penyakit 

Flu Burung yang mengalami kenaikan secara 

bertahap menuju titik 0,01, yang menunjukan bahwa 

sebagian besar individu yang terinfeksi mampu 

pulih dan memangun kekebalan terhadap penyakit 

Flu Burung. Hasil ini menunjukan bahwa eksistensi 

titik kesetimbangan endemik penyakit Flu Burung 

yang stabil. Semua populasi akan menuju titik nol 

kecuali populasi manusia rentan, populasi manusia 

yang terinfeksi Flu Burung dan populasi manusia 

yang sembuh dari Flu Burung. Selanjutnya 

dilakukan modifikasi nilai 𝛽1 = 4,6 dan 𝛽2 = 0,5 dan 

diperoleh 𝑅01 = 0,038  dan 𝑅02 = 1,097  serta pada 

analisis kestabilan diperoleh nilai eigen dengan 

memodifikasi nilai akan mengahasilkan simulasi 

maka jenis kesetimbangan adalah stabil asimtotik 

pada Titik Kritis 4 dan akan menghasilkan simulasi 

sebagai berikut : 

 
Gambar 6. Grafik Simulasi Model Penyakit Flu Babi 

dan Flu Burung pada saat 𝑡 ≤ 100 

 
Gambar 7. Grafik Simulasi Model Penyakit Flu Babi 

dan Flu Burung pada saat 𝑡 ≤ 400 

 

Pada gambar 6. dan 7. di atas menunjukan bahwa 

populasi manusia rentan awalnya berada di titik 0,1 

mengalami kenaikan pada minngu pertama ke titik 

1,6, namun pada minggu selanjutnya mengalami 

penurunan secara bertahap ke titik 0,93. Penurunan 

populasi manusia rentan dapat terjadi akibat 

berkurangnya populasi karena terdapat populasi 

yang terpapar oleh penyakit Flu babi dan Flu Burung 

serta kematian alami pada populasi rentan. 

Sementara itu, populasi manusia yang terinfeksi 

penyakit Flu Babi pada awalnya berada di titik 0,05 

kemudian mengalami kenaikan pada hari ke-10 

menuju titik 0,08 hingga hari berikutnya mengalami 

penurunan secara bertahap ke titik 0,002 . Hal ini 

menunjukan bahwa penyakit Flu Babi akan tetap 

ditemukan di dalam populasi. Demikian pula, 

populasi manusia sembuh dari penyakit Flu babi 

yang mengalami kenaikan pada hari kepada hari ke-

20 menuju titik 0,09 hingga hari berikutnya 

mengaami penurunan secara bertahap ke titik 0,0002. 
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Hal ini menunjukan bahwa sebagian besar individu 

yang terinfeksi mampu pulih dan membangun 

kekebalan terhadap penyakit Flu Babi. Selanjutnya, 

populasi manusia yang terinfeksi penyakit Flu 

Burung pada awalnya berada di titik 0,01 dan 

mengalami kenaikan dan menuju ke titik 1,2, yang 

menunjukan bahwa penyakit Flu Burung akan tetap 

ditemukan di dalam populasi. Hal serupa terjadi 

pada populasi manusia sembuh dari penyakit Flu 

Burung yang mengalami kenaikan secara bertahap 

menuju titik 0,6, yang menunjukan bahwa sebagian 

besar individu yang terinfeksi mampu pulih dan 

membangun kekebalan terhadap penyakit Flu 

Burung. Selain itu, populasi manusia terinfeksi 

penyakit Flu Babi dan  Flu burung pada awalnya 

berada di titik 0.05  mengalami kenaikan secara 

bertaap menuju titik 0,00002, yang menunjukan 

bahwa koinfeksi penyakit Flu Babi dan Flu Burung 

akan tetap ditemukan di dalam populasi. Hasil ini 

menunjukan bahwa eksistensi titik kesetimbangan 

endemik koinfeksi Flu Babi dan Flu Burung yang 

stabil. Semua populasi tidak akan mencapai titik nol, 

yang menegaskan bahwa penyakit - penyakit ini 

dapat terus bertahan dalam populasi manusia. 

  

PENUTUP 

SIMPULAN 

Penelitian ini membahas mengenai model 

koinfeksi penyakit Flu Babi dan Flu Burung yang 

menghasilkan model berdasarkan karakteristik dari 

kedua penyakit. Terdapat empat titik kesetimbangan, 

yaitu titik kesetimbangan bebas penyakit, titik 

kesetimbangan endemic Flu Babi, titik 

kesetimbangan endemic Flu Burung, serta titik 

kesetimbangan endemik koinfeksi. Bilangan 

reproduksi dasar ditentukan menggunakan Next 

Generation Matrix, untuk kasus titik kesetimbangan 

bebas penyakit menghasilkan dua bilangan 

reproduksi dasar, yaitu bilangan reproduksi dasar 

Flu Babi yaitu 𝑅01 =
Λ𝛽1

𝜇(𝛼+𝜇)
   dan bilangan reproduksi 

dasar Flu Burung yaitu 𝑅02 =
Λβ2

𝜇(𝛿2+𝜇)
. Ketika 𝑅01  <  1 

dan 𝑅02  <  1 , titik kesetimbangan bebas penyakit 

akan stabil, yang berarti kedua penyakit akan hilang 

dari populasi dalam jangka waktu tertentu. Jika 

𝑅01  >  1  dan 𝑅02 <  1 , menunjukkan bahwa 

penyakit Flu Babi akan tetap ada dalam populasi. 

Sebaliknya, jika 𝑅01  <  1 dan 𝑅02 >  1, penyakit Flu 

Burung akan tetap ada dalam populasi. Jika 𝑅01 >  1 

dan 𝑅02 >  1 , keduanya akan tetap ada dalam 

populasi. Hasil dari simulasi numerik yang 

dilakukan menggunakan MATLAB juga mendukung 

hasil analisis tersebut. 

 

SARAN 

Apabila skripsi ini dilanjutkan dengan membahas 

model matematika penyebaran penyakit influenza 

tipe A H1N1 dan H5N1, disarankan untuk 

mendapatkan variabel kontrol berupa vaksinasi. 

Tujuannya adalah untuk memahami efek vaksinasi 

dalam menurangi penyebaran penyakit inluenza tipe 

A H1N1 dan H5N1 .  
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