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Abstrak 

Kestabilan suatu populasi menunjukkan tingkat keberlangsungan hidup populasi makhluk hidup tersebut. 
Kebijakan hasil penelitian diperlukan untuk memastikan kebermanfaatan terhadap sistem yang diteliti, baik 
terhadap pemangsa maupun mangsa, sekalipun mangsa itu dianggap lemah dihadapan pemangsa. Peneliti 
menformulasikan fungsi respon Holling tipe I pada masing-masing mangsa. Dinamika antar mangsa pun 
terjadi. Untuk mengambil manfaat ekonomi dari sistem, peneliti melakukan usaha pemanenan pada masing-
masing mangsa.  Peneliti  menganalisis  solusi  positifnya, keeksisan  titik  keseimbangannya,  dan  kestabilan  
pada  titik-titik  keseimbangannya  itu. Kondisi kestabilan   lokalnya   diperoleh dengan   pendekatan   kriteria   
Routh-Hurwitz. Peneliti juga mensimulasikan model tersebut.  
Kata Kunci: kestabilan, Holling tipe I, kriteria   Routh-Hurwitz 
  

Abstract 

The stability of a population indicates the level of survival sustainability of that living population. Research-derived 
policies are necessary to ensure benefits to the studied system, for both predators and prey, even if the prey is considered 
weak in the presence of the predator. Researchers formulated the Holling Type I response function for each prey. 
Dynamics between prey also occur. To gain economic benefits from the system, researchers conduct harvesting efforts 
on each prey. Researchers analyzed the positive solutions, the existence of equilibrium points, and the stability at those 
equilibrium points. The local stability conditions were obtained using the Routh-Hurwitz criteria approach. Researchers 
also simulated the model. 
Keywords: stability, Holling type I, Routh-Hurwitz criteria   

 

 

PENDAHULUAN  

Banyak peneliti telah memodelkan interaksi 

mangsa-pemangsa dengan berbagai pendekatan 

untuk memahami dinamika ekosistem. Ikbal meneliti 

model populasi satu mangsa-dua pemangsa dengan 

melibatkan persaingan intraspesifik. (M Ikbal, 2021). 

Penelitian mengenai model populasi dua mangsa-

satu pemangsa juga telah diteliti (Rebelo & Rosa, 

2025). Karena Rebelo meneliti mengenai mangsa 

yang kuat dan lemah, maka pada mangsa yang lemah 

menggunakan Allee Effect. Hal yang sama dilakukan 

oleh (Anggriani et al., 2023), hanya saja sebagai unsur 

tambahan populasi yang berdinamika, peneliti 

menambahkan faktor kompetisi intraspesifik pada 

pemangsa. Peneliti lain, dengan dasar penelitian 

yang sama yakni mengenai model populasi mangsa-

pemangsa, telah diteliti dengan menambahkan 

waktu tunda (R. Yang et al., 2022).  

Penelitian model populasi dengan menfaatkan 

pemanenan telah banyak diteliti, Panigoro telah 

meneliti model populasi mangsa-pemangsa dengan 

memanfaatkan tipe Michelis Menten sebagai fungsi 

pemanenan (Panigoro et al., 2022).  

 Peneliti lain yang menjadi dasar dari penelitian 

ini adalah (Das, 2011), membahas dinamika model 

mangsa-pemangsa di mana pemangsa terinfeksi 

penyakit, mengeksplorasi dampak penyakit pada 

interaksi. Penelitian dasar mengenai model 

pemangsa satu mangsa terhadap dua pemangsa telah 

dilakukan oleh peneliti sebelumnya (Mukhopadhyay 

& Bhattacharyya, 2016). Ikbal dan Riska juga meneliti 

hal yang sama dengan menambahkan unsur 

pemanenan pada pemangsa. (Muhammad Ikbal & 

Riskawati, 2020). Penelitian terbaru yang melibatkan 

dinamika populasi nyamuk telah dilakukan oleh 

Whittaker dan teman-temannya (Whittaker et al., 

2022).  

Penelitian ini akan membahas model populasi 

mangsa-pemangsa. Ada dua mangsa yang saling 

berinteraksi, interaksi ini membuat masing-masing 

populasi berdinamika. Dua mangsa ini kemudian 
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akan dimangsa oleh satu pemangsa dengan 

mengunakan fungsi respon Holling tipe I. Pemangsa 

juga memiliki kematian alami yang membuat sistem 

berdinamika. Untuk mengambil manfaat secara 

ekonomi, dua mangsa dalam sistem diberikan fungsi 

pemanenan. 

Peneliti telah menemukan titik keseimbangan 

sistem, dimana ketiga populasi eksis. Titik 

keseimbangan ini kemudian akan dianlisis 

kestabilannya. 

Setelah menganalisis ketabilan titik 

keseimbangan, peneliti menvisualisasikan sistem 

dengan mensimulasikan nilai awal ketiga populasi 

dan menentukan nilai parameter yang tepat. 

KAJIAN TEORI 

Model populasi satu mangsa-dua pemangsa telah 

banyak diteliti oleh banyak peneliti. Dengan 

memasukkan unsur mangsa kuat dan mangsa lemah, 

juga kompetisi intraspesifik pada pemangsa, Rebelo 

dkk, (Rebelo & Rosa, 2025) telah meliti model berikut: 

 

𝑑𝑥1

𝑑𝑡
= 𝑟1𝑥1 (1 −

𝑥1

𝐾1

) −
𝑎𝑥1𝑦

𝑏 + 𝑥1

− 𝑑1𝑥1𝑥2,

𝑑𝑥2

𝑑𝑡
= 𝑟2𝑥2(1 −

𝑥2

𝐾2

) − 𝑐𝑥2𝑦 − 𝑑2𝑥1𝑥2,

𝑑𝑦

𝑑𝑡
=

𝑒𝑎𝑥1𝑦

𝑏 + 𝑥1

+ 𝑓𝑐𝑥2𝑦 − 𝑚𝑦 − 𝑛𝑦2,

 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑦 ≥ 0 

 

Kedua spesies mangsa diasumsikan mengikuti 

pertumbuhan logistik, dengan laju pertumbuhan 

intrinsik dan kapasitas dukung lingkungan masing-

masing dilambangkan sebagai 𝑟1 dan 𝐾1 untuk 

mangsa yang lebih kuat ( 𝑥1 ) serta 𝑟2 dan 𝐾2 untuk 

mangsa yang lebih lemah (𝑥2). Mengingat 𝑥1adalah 

spesies yang lebih kuat dibandingkan 𝑥2, pemangsa 

memangsa 𝑥1 sesuai dengan fungsi respon Holling 

tipe-II, yang ditandai dengan laju predasi maksimum 

( a ) dan konstanta setengah jenuh ( b ). Sebaliknya, 

𝑥2 adalah spesies yang lebih lemah, dan pemangsa 

memangsa 𝑥2  dengan fungsi respon Holling tipe-I, 

dengan laju predasi maksimum ( c ), karena tidak ada 

waktu penanganan untuk mangsa ini. Fungsi respon 

Holling tipe-II memodelkan bagaimana pemangsa 

mengubah mangsa yang dipanen menjadi biomassa 

mereka sendiri dan mencerminkan perubahan laju 

konsumsi mangsa per pemangsa seiring perubahan 

kepadatan mangsa. Selain itu, diasumsikan bahwa 

fraksi ( e ) dan ( f ) dari biomassa 𝑥1dan 𝑥2masing-

masing berkontribusi pada pertumbuhan pemangsa. 

Kompetisi untuk sumber daya, seperti makanan, 

mendorong interaksi intra- dan antar-spesies. 

Kompetisi terjadi antara mangsa yang lebih kuat dan 

lebih lemah, dengan laju kematian akibat kompetisi 

dilambangkan sebagai 𝑑1 dan 𝑑2 . Model ini juga 

mempertimbangkan kompetisi intra-spesies dalam 

populasi pemangsa y, dengan laju kematian akibat 

kompetisi ( m ) dan laju kematian konstan ( n ).  

 

Dinamika populasi mangsa-pemangsa telah 

diteliti oleh (T. K. Kar & Matsuda, 2007) dengan 

memanfaatkan fungsi respon Holling tipe III. Fungsi 

pemanenan telah diteliti oleh (Xiao & Cao, 2009) 

dengan memanfaatkan pemanenan linier. Kar 

memanfaatkan model stage-structure pada populasi 

pemangsa dalam dinamika populasi mangsa-

pemangsa yang mereka teliti (Tapan Kumar Kar & 

Chattopadhyay, 2010). Peneliti lain telah meneliti 

model populasi mangsa-pemangsa dengan 

memodifikasi skema Leslie-Gower dan Holling tipe 

II pada modelnya (Ji et al., 2011).  

Efek pemanenan dalam dinamika populasi 

mangsa-pemangsa telah banyak dilakukan oleh 

peneliti. Parameter ini dimasukkan untuk 

mengambil manfaat ekonomi dalam model 

(Dumbela & Aldila, 2019; Gupta & Chandra, 2013, 

2017; Muhammad Ikbal & Riskawati, 2020; Lv et al., 

2019; Panigoro et al., 2022; Purnomo et al., 2017; Tang 

& Xiao, 2014) 

 Kajian yang memanfaatkan kriteria Routh-

Hurwitz telah dilakukan oleh peneliti sebelumnya  

(X. Yang, 2002)(Alebraheem & Abu-Hasan, 2012; Das, 

2011; Gupta & Chandra, 2017; M Ikbal, 2021; 

Muhammad Ikbal & Riskawati, 2020; Li et al., 2019; 

Rebelo & Rosa, 2025) 

METODE  

Penelitian ini merupakan penelitian yang berbasis 

studi pustaka. Model populasi yang terbentuk 

diambil dari berbagai model populasi yang sudah 

diteliti sebelumnya. 

Kajian pustaka dilakukan dengan mengkaji 

referensi yang berkaitan erat dengan model dua 

mangsa-satu pemangsa, fungsi respon holling, fungsi 

pemanenan, titik keseimbangan, dan kestabilan lokal 

sistem populasi. 
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Setelah model populasi terbentuk, langkah 

selanjutnya melihat titik keseimbangan sistem. 

Setelah titik keseimbangan dianalisis, selanjutnya 

peneliti menganalisis kestabilan titik tersebut.  

Dengan pertimbangan parameter yang berkelindan 

dalam sistem,  maka dilakukan simulasi numerik 

untuk melihat secara langsung kestabilan sistem. 

Analisis dilakukan dengan memanfaatkan perangkat 

Maple 18.  

Untuk memvisualisasikan kestabilan sistem, 

peneliti memanfaatkan python 3.11.3 dengan modul 

matplotlib, numpy, scipy. 

Sebagai tambahan, peneliti menampilkan data 

dari sistem untuk menunjukkan dinamika populasi 

tahun ke tahun. Data ini dibuat juga menggunakan 

perangkat python. 

 

HASIL DAN PEMBAHASAN 

Bagian ini merupakan bagian utama artikel hasil 

penelitian dan biasanya merupakan bagian 

terpanjang dari suatu artikel. Hasil penelitian yang 

disajikan dalam bagian ini adalah hasil “bersih”. 

Proses analisis data seperti perhitungan statistik dan 

proses pengujian hipotesis tidak perlu disajikan. 

Hanya hasil analisis dan hasil pengujian hipotesis 

saja yang perlu dilaporkan. Tabel dan grafik dapat 

digunakan untuk memperjelas penyajian hasil 

penelitian secara verbal. Tabel dan grafik harus diberi 

komentar atau dibahas. 

 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝐾
) − 𝑎1𝑃𝑄 − 𝑏1𝑃𝑅 − 𝑞1𝐸1𝑃 

 

𝑑𝑄

𝑑𝑡
= 𝑠𝑄 (1 −

𝑄

𝐿
) − 𝛼2𝑃𝑄 − 𝑏2𝑄𝑅 − 𝑞2𝐸2𝑄 

𝑑𝑅

𝑑𝑡
= 𝑛1𝛽

1
𝑃𝑅 + 𝑛2𝛽

2
𝑄𝑅 − 𝑐𝑅 

(1) 

 

dengan nilai awal 

𝑃(0) > 0; 𝑄(0) ≥ 0; 𝑅(0) ≥ 0 

Model di atas terdiri dari tiga variabel, yakni 

𝑃 didefinisikan sebagai pemangsa, 𝑄  dan 𝑅 

didefinisikan sebagai mangsa pertama dan mangsa 

kedua. Ketiga populasi ini kemudian akan diteliti 

bagaimana keeksisannya dalam sistem, tentu dengan 

asumsi awal populasi ini ada. Hal-hal lain yang 

kemudian mempengaruhi kestabilan sistem adalah 

parameter yang ada disekitar sistem. 𝑟 dan 𝑠 masing-

masing didefinisikan sebagai laju pertumbuhan 

intrinsik mangsa pertama dan mangsa kedua. 𝐾 dan 

𝐿  masing-masing didefiniskan sebagai daya 

tampung populasi mangsa pertama dan mangsa 

kedua. Model populasi di atas memanfaatkan fungsi 

respon Holling tipe I untuk masing-masing mangsa 

dimana koefisien pemangsaan untuk masing-masing 

mangsa ditunjukkan dengan 𝑏1dan 𝑏2. Selain fungsi 

respon pemangsaan, dinamika populasi juga 

ditentukan oleh persaingan antar mangsa yang 

kemudian ditunjukkan dengan 𝑎1dan 𝑎2. 

Untuk mengambil manfaat secara ekonomi pada 

sistem yang ada, peneliti memasukkan parameter 

𝑞1 dan 𝑞2  sebagai koefisien ketertangkapan mangsa 

pertama dan mangsa kedua. Parameter 𝐸1 dan 𝐸2 

masing-masing sebagai usaha pemanenan pada 

mangsa pertama dan mangsa kedua. 

Fungsi pemangsaan pada mangsa membuat 

kuantitas pada pemangsa berdinamika. Parameter 𝑛1 

dan 𝑛2  masing-masing menunjukkan efisiensi 

perubahan dari pemangsa terhadap mangsa pertama 

dan mangsa kedua. Pemangsa dianggap memiliki 

kematian alami dengan parameter 𝑐. 

 

Analisi Kesetimbangan 

Titik kesetimbangan yang diperoleh dari 

persamaan (1) adalah  

𝑇1 = (0,0,0) 

𝑇2 = (0,
𝐿𝐺10

𝑠
, 0) 

𝑇3 = (0,
𝑐

𝑛2𝑏2

,
𝐺1

𝐿𝑛2𝑏2
2) 

𝑇4 = (
𝐾𝐺11

𝑟
, 0,0) 

𝑇5 = (
𝑐

𝑛1𝑏1

, 0,
𝐺2

𝐾𝑛1𝑏1
2) 

𝑇6 = (
𝐾𝐺3

𝐺5

,
𝐿𝐺4

𝐺5

, 0) 

𝑇7 = (
𝐾𝐺6

𝐺7

,
𝐿𝐺9

𝐺7

, −
𝐺8

𝐺7

) 

dengan 

𝐺1 = 𝐿𝑠𝑏2𝑛2 − 𝐿𝐸2𝑏2𝑛2𝑞2 − 𝑐𝑠 
𝐺2 = 𝐾𝑟𝑏1𝑛1 − 𝐾𝐸1𝑏1𝑛1𝑞1 − 𝑐𝑟 
𝐺3 = 𝐿𝑠𝑎1 + 𝑠𝐸1𝑞1 − 𝐿𝐸2𝑎1𝑞2 − 𝑟𝑠 
𝐺4 = 𝐾𝑟𝑎2 + 𝑟𝐸2𝑞2 − 𝐾𝐸1𝑎2𝑞1 − 𝑟𝑠 
𝐺5 = 𝐾𝐿𝑎1𝑎2 − 𝑟𝑠 
𝐺6 = 𝐿𝐸1𝑏2

2𝑛2𝑞1 + 𝐿𝑠𝑏1𝑏2𝑛2 + 𝐿𝑐𝑎1𝑏2 
−(𝐿𝐸2𝑏1𝑏2𝑛2𝑞2 + 𝐿𝑟𝑏2

2𝑛2 + 𝑐𝑠𝑏1) 
𝐺7 = 𝐾𝐿𝑎1𝑏1𝑏2𝑛1 + 𝐾𝐿𝑎2𝑏1𝑏2𝑛2 

−(𝐾𝑠𝑏1
2𝑛1 + 𝐿𝑟𝑏2

2𝑛2) 
𝐺8 = 𝐾𝐿𝐸1𝑎2𝑏2𝑛2𝑞1 + 𝐾𝐿𝐸2𝑎1𝑏1𝑛1𝑞2 + 𝐾𝐿𝑐𝑎1𝑎2 

+𝐾𝑟𝑠𝑏1𝑛1 + 𝐿𝑟𝑠𝑏2𝑛2 − (𝐾𝐿𝑟𝑎2𝑏2𝑛2 + 𝐾𝐿𝑠𝑎1𝑏1𝑛1 
+𝐾𝑠𝐸1𝑏1𝑛1𝑞1 + 𝐿𝑟𝐸2𝑏2𝑛2𝑞2 + 𝑐𝑟𝑠) 
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𝐺9 = 𝐾𝐸2𝑏1
2𝑛1𝑞2 + 𝐾𝑟𝑏1𝑏2𝑛1 + 𝐾𝑐𝑎2𝑏1 

−(𝐾𝐸1𝑏1𝑏2𝑛1𝑞1 + 𝐾𝑠𝑏1
2𝑛1 + 𝑐𝑟𝑏2) 

𝐺10 = 𝑠 − 𝐸2𝑞2 
𝐺11 = 𝑟 − 𝐸1𝑞1 

 

Populasi mangsa pertama akan ada jika 
𝐺6 > 0, 𝐿𝐸1𝑏2

2𝑛2𝑞1 + 𝐿𝑠𝑏1𝑏2𝑛2 + 𝐿𝑐𝑎1𝑏2 >
𝐿𝐸2𝑏1𝑏2𝑛2𝑞2 + 𝐿𝑟𝑏2

2𝑛2 + 𝑐𝑠𝑏1 dan 𝐺7 >

0, 𝐾𝐿𝑎1𝑏1𝑏2𝑛1 + 𝐾𝐿𝑎2𝑏1𝑏2𝑛2 > 𝐾𝑠𝑏1
2𝑛1 + 𝐿𝑟𝑏2

2𝑛2 
atau 𝐺6 < 0, 𝐿𝐸1𝑏2

2𝑛2𝑞1 + 𝐿𝑠𝑏1𝑏2𝑛2 + 𝐿𝑐𝑎1𝑏2 <

𝐿𝐸2𝑏1𝑏2𝑛2𝑞2 + 𝐿𝑟𝑏2
2𝑛2 + 𝑐𝑠𝑏1 dan 𝐺7 <

0, 𝐾𝐿𝑎1𝑏1𝑏2𝑛1 + 𝐾𝐿𝑎2𝑏1𝑏2𝑛2 < 𝐾𝑠𝑏1
2𝑛1 + 𝐿𝑟𝑏2

2𝑛2 
Populasi mangsa kedua akan ada jika 

𝐺7 > 0, 𝐺9 > 0, 𝐾𝐸2𝑏1
2𝑛1𝑞2 + 𝐾𝑟𝑏1𝑏2𝑛1 + 𝐾𝑐𝑎2𝑏1 >

𝐾𝐸1𝑏1𝑏2𝑛1𝑞1 + 𝐾𝑠𝑏1
2𝑛1 + 𝑐𝑟𝑏2 atau 𝐺7 > 0, 𝐺9 <

0, 𝐾𝐸2𝑏1
2𝑛1𝑞2 + 𝐾𝑟𝑏1𝑏2𝑛1 + 𝐾𝑐𝑎2𝑏1 < 𝐾𝐸1𝑏1𝑏2𝑛1𝑞1 +

𝐾𝑠𝑏1
2𝑛1 + 𝑐𝑟𝑏2. 

Populasi pemangsa akan ada jika 
𝐺7 > 0, 𝐺8 < 0, 𝐾𝐿𝐸1𝑎2𝑏2𝑛2𝑞1 + 𝐾𝐿𝐸2𝑎1𝑏1𝑛1𝑞2 +
𝐾𝐿𝑐𝑎1𝑎2 + 𝐾𝑟𝑠𝑏1𝑛1 + 𝐿𝑟𝑠𝑏2𝑛2 < 𝐾𝐿𝑟𝑎2𝑏2𝑛2 +
𝐾𝐿𝑠𝑎1𝑏1𝑛1 + 𝐾𝑠𝐸1𝑏1𝑛1𝑞1 + 𝐿𝑟𝐸2𝑏2𝑛2𝑞2 + 𝑐𝑟𝑠 atau 
𝐺7 < 0, 𝐺8 > 0, 𝐾𝐿𝐸1𝑎2𝑏2𝑛2𝑞1 + 𝐾𝐿𝐸2𝑎1𝑏1𝑛1𝑞2 +
𝐾𝐿𝑐𝑎1𝑎2 + 𝐾𝑟𝑠𝑏1𝑛1 + 𝐿𝑟𝑠𝑏2𝑛2 > 𝐾𝐿𝑟𝑎2𝑏2𝑛2 +
𝐾𝐿𝑠𝑎1𝑏1𝑛1 + 𝐾𝑠𝐸1𝑏1𝑛1𝑞1 + 𝐿𝑟𝐸2𝑏2𝑛2𝑞2 + 𝑐𝑟𝑠 

 

Analisis Kestabilan Titik Kesetimbangan 

Matriks Jacobian dari persamaan (1) adalah 

sebagai berikut 

𝐽 = [

𝐽11 𝐽12 𝐽13

𝐽21 𝐽22 𝐽23

𝐽31 𝐽32 𝐽33

] (2) 

 

Teorema 1 Titik keseimbangan 𝑇7 = (
𝐾𝐺6

𝐺7
,

𝐿𝐺9

𝐺7
, −

𝐺8

𝐺7
 ) 

stabil jika  
𝐽11 < 0, 𝐽22 < 0, 𝐽33 < 0,  𝐽11𝐽22 + 𝐽11𝐽33 + 𝐽22𝐽33 >
𝐽12𝐽21 + 𝐽13𝐽31 + 𝐽23𝐽32 
𝐽11𝐽23𝐽32 + 𝐽12𝐽21𝐽33 + 𝐽13𝐽31𝐽22 > 𝐽11𝐽22𝐽33 +

𝐽12𝐽23𝐽31 + 𝐽13𝐽32𝐽21, −(𝐽11 + 𝐽22 + 𝐽33)(𝐽11𝐽22 +

𝐽11𝐽33 + 𝐽22𝐽33 − 𝐽12𝐽21 − 𝐽13𝐽31 − 𝐽23𝐽32) > 𝐽11𝐽23𝐽32 +

𝐽12𝐽21𝐽33 + 𝐽13𝐽31𝐽22 − 𝐽11𝐽22𝐽33 − 𝐽12𝐽23𝐽31 − 𝐽13𝐽32𝐽21. 

Bukti. Hasil substitusi 𝑇7 pada persamaan (2) sebagai 

berikut 

𝐽(𝑇7) = [

𝐽11 𝐽12 𝐽13

𝐽21 𝐽22 𝐽23

𝐽31 𝐽32 𝐽33

] 

dengan 

𝐽11 = 𝑟 −
2𝑟𝑃

𝐾
− 𝑎1𝑄 − 𝑏1𝑅 − 𝑞1𝐸1,  

𝐽12 = −𝑎1𝑃, 𝐽13 = −𝑏1𝑃, 

𝐽21 = −𝑎2𝑄, 

𝐽22 = 𝑠 −
2𝑠𝑄

𝐿
− 𝑎2𝑃 − 𝑏2𝑅 − 𝑞2𝐸2,  

𝐽23 = −𝑏2𝑄, 

 𝐽31 = 𝑅𝑏1𝑛1, 

𝐽32 = 𝑅𝑏2𝑛2, 

 𝐽33 = 𝑃𝑏1𝑛1 + 𝑄𝑏2𝑛2 − 𝑐 

 

Persamaan karakteristik dari matriks 𝐽(𝑇7) 

adalah 

𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 = 0 (3) 

dengan  

𝐴1 = −(𝐽11 + 𝐽22 + 𝐽33) 

𝐴2 = 𝐽11𝐽22 + 𝐽11𝐽33 + 𝐽22𝐽33 − 𝐽12𝐽21 − 𝐽13𝐽31 − 𝐽23𝐽32 

𝐴3 = 𝐽11𝐽23𝐽32 + 𝐽12𝐽21𝐽33 + 𝐽13𝐽31𝐽22 − 𝐽11𝐽22𝐽33 

−𝐽12𝐽23𝐽31 − 𝐽13𝐽32𝐽21. 

Untuk menjamin kestabilan 𝑇7  harus memenuhi 

kriteria Routh-Hurtwiz, yakni 𝐴1 > 0 , 𝐴2 > 0 , 𝐴3 >

0, dan  𝐴1𝐴2 > 𝐴3. 

1. 𝐴1 = −(𝐽11 + 𝐽22 + 𝐽33) > 0 

𝐽11 < 0, 𝐽22 < 0, 𝐽33 < 0 

2. 𝐴2 > 0 

𝐽11𝐽22 + 𝐽11𝐽33 + 𝐽22𝐽33 > 𝐽12𝐽21 + 𝐽13𝐽31 + 𝐽23𝐽32 

3. 𝐴3 > 0 

𝐽11𝐽23𝐽32 + 𝐽12𝐽21𝐽33 + 𝐽13𝐽31𝐽22 

> 𝐽11𝐽22𝐽33 + 𝐽12𝐽23𝐽31 + 𝐽13𝐽32𝐽21 

4. 𝐴1𝐴2 > 𝐴3 

−(𝐽11 + 𝐽22 + 𝐽33)(𝐽11𝐽22 + 𝐽11𝐽33 + 𝐽22𝐽33 −

𝐽12𝐽21 − 𝐽13𝐽31 − 𝐽23𝐽32) > 𝐽11𝐽23𝐽32 + 𝐽12𝐽21𝐽33 +

𝐽13𝐽31𝐽22 − 𝐽11𝐽22𝐽33 − 𝐽12𝐽23𝐽31 − 𝐽13𝐽32𝐽21. 

 

Simulasi Numerik 

Nilai parameter yang digunakan dalam simulasi 

ini yaitu 𝑟 = 2.05, 𝑠 = 1.5, 𝐾 = 100, 𝐿 = 100, 𝑎1 =

0.01, 𝑎2 = 0.001, 𝑏1 = 0.05, 𝑏2 = 0.02, 𝑞1 = 0.04, 𝑞2 =

0.05, 𝑛1 = 0.8, 𝑛2 = 0.5, 𝐸1 = 15, 𝐸2 = 20, 𝑐 = 1. 

Pada bagian simulasi numerik ini, simulasi 

dilakukan hanya pada kestabilan titik keseimbangan 

interior karena pada titik keseimbangan itulah 

semua populasi eksis dan semua komponen 

(parameter) dalam persamaan (1) dapat 

diinterpretasikan. 

Titik kesetimbangan yang diperoleh dari simulasi 

dengan parameter di atas adalah  

𝑇7 = 23.046875, 7.8125, 17.98828125 

Matriks Jacobian dari titik kesetimbangan 

tersebut adalah 

𝐽(𝑇7) = [
−0.4724609375 −0.23046875 −1.15234375

−0.0078125 −0.1171875 −0.15625
0.71953125 0.1798828125 0.

] 

 

Persamaan karakteristik yang diperoleh adalah 

𝜆3 + 0.5896484375𝜆2 + 0.9108200074𝜆 + 0.08291473388 
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Nilai eigen yang diperoleh adalah 

𝜆1 = −0.2468087826391 + 0.9108200074 𝑖 

𝜆2 = −0.2468087826391 − 0.895825265773833𝑖 

𝜆3 = −0.0960308722217999 

 

Plot Model 

Model populasi mangsa-pemangsa pada 

persamaan (1) dapat digambarkan perubahan 

populasi yang berdinamika dengan menunjukkan 

plot dari hasil simulasi numerik sebelumnya. Berikut 

hasil plot model populasi tersebut ditinjau dari 

perubahan populasi baik kedua mangsa maupun 

pemangsa. Dengan menggunakan python versi 3.11.3 

dan module matplotlib, berikut hasil plot model 

persamaan (1) dengan nilai awal (7, 7, 7). 

Gambar 1. Trajektori ketiga populasi 

Plot di atas menunjukkan secara visual dinamika 

setiap populasi dalam sistem. Dinamika populasi 

ditentukan oleh nilai awal populasi dan parameter-

parameter yang bekerja disekitarnya. Sebelum 

mencapai titik stabilnya, masing-masing populasi 

beroscilasi ditunjukkan dengan gambar garis yang 

bergelombang. 

Hal ini ditunjukkan dalam analisis numerik 

dengan nilai eigen sebagai berikut 

𝜆1 = −0.2468087826391 + 0.9108200074 𝑖 

𝜆2 = −0.2468087826391 − 0.895825265773833𝑖 

𝜆3 = −0.0960308722217999 

 

 

 

 

Tabel 1. Data perubahan populasi  

Year Mangsa1 Mangsa2 Pemangsa 

0 7.066596 7.0837 7.084427 

1 16.83409 9.156532 4.428679 

2 31.72086 11.54633 4.613541 

3 40.61288 13.32003 8.500438 

4 35.75437 13.54837 17.45148 

5 24.68846 11.45416 24.41054 

6 18.15079 9.822848 22.99111 

7 17.58492 9.172716 18.67576 

8 19.93849 9.038179 15.67892 

9 23.18745 9.591136 15.12551 

10 25.03005 9.650725 16.19961 

11 24.83188 9.632818 17.8116 

12 23.17384 9.308926 18.94326 

13 22.17065 8.764479 18.94859 

14 21.6302 8.592131 18.17767 

15 22.15101 8.684622 17.64581 

16 22.90726 8.497072 17.42755 

17 23.43694 8.560976 17.42801 

18 23.17509 8.484184 17.82599 

19 23.00847 8.297757 18.17085 

20 22.84133 8.337167 18.02129 

 

Tabel 1 menunjukkan data yang diambil dari model 

dengan memanfaatkan python. Data tersebut dimulai 

dengan nilai awal yang sama dengan gambar 1 dan gambar 

2. Data di atas menunjukkan keeksisan masing-masing 

populasi dati tahun ke tahun, data juga menunujukkan 

dinamika populasi yang sangat dipengaruhi oleh 

parameter-parameter yang diberikan. 

PENUTUP 

SIMPULAN 

Titik ketabilan model dimana populasinya eksis 

semua yaitu  

𝑇7 = (
𝐾𝐺6

𝐺7

,
𝐿𝐺9

𝐺7

, −
𝐺8

𝐺7

) 

Titik ini akan eksis jika memenuhi syarat 

paramater: 

Populasi mangsa pertama akan ada jika 
𝐺6 > 0, 𝐿𝐸1𝑏2

2𝑛2𝑞1 + 𝐿𝑠𝑏1𝑏2𝑛2 + 𝐿𝑐𝑎1𝑏2 >
𝐿𝐸2𝑏1𝑏2𝑛2𝑞2 + 𝐿𝑟𝑏2

2𝑛2 + 𝑐𝑠𝑏1 dan 𝐺7 >

0, 𝐾𝐿𝑎1𝑏1𝑏2𝑛1 + 𝐾𝐿𝑎2𝑏1𝑏2𝑛2 > 𝐾𝑠𝑏1
2𝑛1 + 𝐿𝑟𝑏2

2𝑛2 
atau 𝐺6 < 0, 𝐿𝐸1𝑏2

2𝑛2𝑞1 + 𝐿𝑠𝑏1𝑏2𝑛2 + 𝐿𝑐𝑎1𝑏2 <

𝐿𝐸2𝑏1𝑏2𝑛2𝑞2 + 𝐿𝑟𝑏2
2𝑛2 + 𝑐𝑠𝑏1 dan 𝐺7 <

0, 𝐾𝐿𝑎1𝑏1𝑏2𝑛1 + 𝐾𝐿𝑎2𝑏1𝑏2𝑛2 < 𝐾𝑠𝑏1
2𝑛1 + 𝐿𝑟𝑏2

2𝑛2 
Populasi mangsa kedua akan ada jika 

𝐺7 > 0, 𝐺9 > 0, 𝐾𝐸2𝑏1
2𝑛1𝑞2 + 𝐾𝑟𝑏1𝑏2𝑛1 + 𝐾𝑐𝑎2𝑏1 >

𝐾𝐸1𝑏1𝑏2𝑛1𝑞1 + 𝐾𝑠𝑏1
2𝑛1 + 𝑐𝑟𝑏2 atau 𝐺7 > 0, 𝐺9 <
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0, 𝐾𝐸2𝑏1
2𝑛1𝑞2 + 𝐾𝑟𝑏1𝑏2𝑛1 + 𝐾𝑐𝑎2𝑏1 < 𝐾𝐸1𝑏1𝑏2𝑛1𝑞1 +

𝐾𝑠𝑏1
2𝑛1 + 𝑐𝑟𝑏2. 

Populasi pemangsa akan ada jika 
𝐺7 > 0, 𝐺8 < 0, 𝐾𝐿𝐸1𝑎2𝑏2𝑛2𝑞1 + 𝐾𝐿𝐸2𝑎1𝑏1𝑛1𝑞2 +
𝐾𝐿𝑐𝑎1𝑎2 + 𝐾𝑟𝑠𝑏1𝑛1 + 𝐿𝑟𝑠𝑏2𝑛2 < 𝐾𝐿𝑟𝑎2𝑏2𝑛2 +
𝐾𝐿𝑠𝑎1𝑏1𝑛1 + 𝐾𝑠𝐸1𝑏1𝑛1𝑞1 + 𝐿𝑟𝐸2𝑏2𝑛2𝑞2 + 𝑐𝑟𝑠 atau 
𝐺7 < 0, 𝐺8 > 0, 𝐾𝐿𝐸1𝑎2𝑏2𝑛2𝑞1 + 𝐾𝐿𝐸2𝑎1𝑏1𝑛1𝑞2 +
𝐾𝐿𝑐𝑎1𝑎2 + 𝐾𝑟𝑠𝑏1𝑛1 + 𝐿𝑟𝑠𝑏2𝑛2 > 𝐾𝐿𝑟𝑎2𝑏2𝑛2 +
𝐾𝐿𝑠𝑎1𝑏1𝑛1 + 𝐾𝑠𝐸1𝑏1𝑛1𝑞1 + 𝐿𝑟𝐸2𝑏2𝑛2𝑞2 + 𝑐𝑟𝑠 

  Kestabilan titik tersebut ditentukan oleh syarat 

paramter: 

−(𝐽11 + 𝐽22 + 𝐽33)(𝐽11𝐽22 + 𝐽11𝐽33 + 𝐽22𝐽33 − 𝐽12𝐽21 −

𝐽13𝐽31 − 𝐽23𝐽32) > 𝐽11𝐽23𝐽32 + 𝐽12𝐽21𝐽33 + 𝐽13𝐽31𝐽22 −

𝐽11𝐽22𝐽33 − 𝐽12𝐽23𝐽31 − 𝐽13𝐽32𝐽21. 

SARAN 

Saran untuk peneliti selanjutnya, model ini belum 

menguji parameter koefisien intraspesifik pada 

mangsa. Peneliti bisa mengkaji lebih lanjut dengan 

memasukkan parameter kompetisi intraspesifik. 
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