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Abstrak

Kestabilan suatu populasi menunjukkan tingkat keberlangsungan hidup populasi makhluk hidup tersebut.
Kebijakan hasil penelitian diperlukan untuk memastikan kebermanfaatan terhadap sistem yang diteliti, baik
terhadap pemangsa maupun mangsa, sekalipun mangsa itu dianggap lemah dihadapan pemangsa. Peneliti
menformulasikan fungsi respon Holling tipe I pada masing-masing mangsa. Dinamika antar mangsa pun
terjadi. Untuk mengambil manfaat ekonomi dari sistem, peneliti melakukan usaha pemanenan pada masing-
masing mangsa. Peneliti menganalisis solusi positifnya, keeksisan titik keseimbangannya, dan kestabilan
pada titik-titik keseimbangannya itu. Kondisi kestabilan lokalnya diperoleh dengan pendekatan kriteria
Routh-Hurwitz. Peneliti juga mensimulasikan model tersebut.

Kata Kunci: kestabilan, Holling tipe I, kriteria Routh-Hurwitz

Abstract

The stability of a population indicates the level of survival sustainability of that living population. Research-derived
policies are necessary to ensure benefits to the studied system, for both predators and prey, even if the prey is considered
weak in the presence of the predator. Researchers formulated the Holling Type I response function for each prey.
Dynamics between prey also occur. To gain economic benefits from the system, researchers conduct harvesting efforts
on each prey. Researchers analyzed the positive solutions, the existence of equilibrium points, and the stability at those
equilibrium points. The local stability conditions were obtained using the Routh-Hurwitz criteria approach. Researchers

also simulated the model.

Keywords: stability, Holling type I, Routh-Hurwitz criteria

PENDAHULUAN

Banyak peneliti telah memodelkan interaksi
mangsa-pemangsa dengan berbagai pendekatan
untuk memahami dinamika ekosistem. Ikbal meneliti
model populasi satu mangsa-dua pemangsa dengan
melibatkan persaingan intraspesifik. (M Ikbal, 2021).
Penelitian mengenai model populasi dua mangsa-
satu pemangsa juga telah diteliti (Rebelo & Rosa,
2025). Karena Rebelo meneliti mengenai mangsa
yang kuat dan lemah, maka pada mangsa yang lemah
menggunakan Allee Effect. Hal yang sama dilakukan
oleh (Anggriani et al., 2023), hanya saja sebagai unsur
tambahan populasi yang berdinamika, peneliti
menambahkan faktor kompetisi intraspesifik pada
pemangsa. Peneliti lain, dengan dasar penelitian
yang sama yakni mengenai model populasi mangsa-
pemangsa, telah diteliti dengan menambahkan
waktu tunda (R. Yang et al., 2022).

Penelitian model populasi dengan menfaatkan
pemanenan telah banyak diteliti, Panigoro telah
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meneliti model populasi mangsa-pemangsa dengan
memanfaatkan tipe Michelis Menten sebagai fungsi
pemanenan (Panigoro et al., 2022).

Peneliti lain yang menjadi dasar dari penelitian
ini adalah (Das, 2011), membahas dinamika model
mangsa-pemangsa di mana pemangsa terinfeksi
penyakit, mengeksplorasi dampak penyakit pada
interaksi. Penelitian dasar mengenai model
pemangsa satu mangsa terhadap dua pemangsa telah
dilakukan oleh peneliti sebelumnya (Mukhopadhyay
& Bhattacharyya, 2016). Ikbal dan Riska juga meneliti
hal yang sama dengan menambahkan unsur
pemanenan pada pemangsa. (Muhammad Ikbal &
Riskawati, 2020). Penelitian terbaru yang melibatkan
dinamika populasi nyamuk telah dilakukan oleh
Whittaker dan teman-temannya (Whittaker et al.,
2022).

Penelitian ini akan membahas model populasi
mangsa-pemangsa. Ada dua mangsa yang saling
berinteraksi, interaksi ini membuat masing-masing

populasi berdinamika. Dua mangsa ini kemudian
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akan dimangsa oleh satu pemangsa dengan
mengunakan fungsi respon Holling tipe I. Pemangsa
juga memiliki kematian alami yang membuat sistem
berdinamika. Untuk mengambil manfaat secara
ekonomi, dua mangsa dalam sistem diberikan fungsi
pemanenan.

Peneliti telah menemukan titik keseimbangan

sistem, dimana ketiga populasi eksis. Titik
keseimbangan ini kemudian akan dianlisis
kestabilannya.

Setelah menganalisis ketabilan titik

keseimbangan, peneliti menvisualisasikan sistem
dengan mensimulasikan nilai awal ketiga populasi
dan menentukan nilai parameter yang tepat.

KAJIAN TEORI

Model populasi satu mangsa-dua pemangsa telah
banyak diteliti
memasukkan unsur mangsa kuat dan mangsa lemabh,

oleh banyak peneliti Dengan

juga kompetisi intraspesifik pada pemangsa, Rebelo
dkk, (Rebelo & Rosa, 2025) telah meliti model berikut:

dx, X ax,;y
(1) gy~ dn
dx, X,
dt =1x,(1 = K_z) — X2y — dyX1 Xy,
dy eax;y .
P b+x1+fcxzy—my—ny ,

x,=20,x,>20,y=0

Kedua spesies mangsa diasumsikan mengikuti
pertumbuhan logistik, dengan laju pertumbuhan
intrinsik dan kapasitas dukung lingkungan masing-
masing dilambangkan sebagai 7 dan K; untuk
mangsa yang lebih kuat (x;) serta r, dan K, untuk
mangsa yang lebih lemah (x,). Mengingat x;adalah
spesies yang lebih kuat dibandingkan x,, pemangsa
memangsa x; sesuai dengan fungsi respon Holling
tipe-1I, yang ditandai dengan laju predasi maksimum
(a) dan konstanta setengah jenuh ( b ). Sebaliknya,
x,adalah spesies yang lebih lemah, dan pemangsa
memangsa x, dengan fungsi respon Holling tipe-I,
dengan laju predasi maksimum ( c ), karena tidak ada
waktu penanganan untuk mangsa ini. Fungsi respon
Holling tipe-II memodelkan bagaimana pemangsa
mengubah mangsa yang dipanen menjadi biomassa
mereka sendiri dan mencerminkan perubahan laju
konsumsi mangsa per pemangsa seiring perubahan
kepadatan mangsa. Selain itu, diasumsikan bahwa
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fraksi (e ) dan ( f ) dari biomassa x; dan x, masing-
masing berkontribusi pada pertumbuhan pemangsa.
Kompetisi untuk sumber daya, seperti makanan,
mendorong interaksi intra- dan antar-spesies.
Kompetisi terjadi antara mangsa yang lebih kuat dan
lebih lemah, dengan laju kematian akibat kompetisi
dilambangkan sebagai d; dan d,. Model ini juga
mempertimbangkan kompetisi intra-spesies dalam
populasi pemangsa y, dengan laju kematian akibat
kompetisi ( m ) dan laju kematian konstan (n ).
Dinamika populasi mangsa-pemangsa telah
diteliti oleh (T. K. Kar & Matsuda, 2007) dengan
memanfaatkan fungsi respon Holling tipe III. Fungsi
pemanenan telah diteliti oleh (Xiao & Cao, 2009)
Kar

memanfaatkan model stage-structure pada populasi

dengan memanfaatkan pemanenan linier.
pemangsa dalam dinamika populasi mangsa-
pemangsa yang mereka teliti (Tapan Kumar Kar &
Chattopadhyay, 2010). Peneliti lain telah meneliti
model  populasi mangsa-pemangsa  dengan
memodifikasi skema Leslie-Gower dan Holling tipe
Il pada modelnya (Ji et al., 2011).

Efek pemanenan dalam dinamika populasi
mangsa-pemangsa telah banyak dilakukan oleh
peneliti. Parameter ini dimasukkan untuk
mengambil manfaat ekonomi dalam model
(Dumbela & Aldila, 2019; Gupta & Chandra, 2013,
2017, Muhammad Ikbal & Riskawati, 2020; Lv et al.,
2019; Panigoro et al., 2022; Purnomo et al., 2017; Tang
& Xiao, 2014)

Kajian yang memanfaatkan kriteria Routh-
Hurwitz telah dilakukan oleh peneliti sebelumnya
(X. Yang, 2002)(Alebraheem & Abu-Hasan, 2012; Das,
2011; Gupta & Chandra, 2017, M Ikbal, 2021;
Muhammad Ikbal & Riskawati, 2020; Li et al., 2019;

Rebelo & Rosa, 2025)

METODE

Penelitian ini merupakan penelitian yang berbasis
studi pustaka. Model populasi yang terbentuk
diambil dari berbagai model populasi yang sudah
diteliti sebelumnya.

Kajian pustaka dilakukan dengan mengkaji
referensi yang berkaitan erat dengan model dua
mangsa-satu pemangsa, fungsi respon holling, fungsi
pemanenan, titik keseimbangan, dan kestabilan lokal
sistem populasi.
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Setelah model populasi terbentuk, langkah
selanjutnya melihat titik keseimbangan sistem.
Setelah titik keseimbangan dianalisis, selanjutnya
kestabilan titik tersebut.

Dengan pertimbangan parameter yang berkelindan

peneliti  menganalisis

dalam sistem, maka dilakukan simulasi numerik
untuk melihat secara langsung kestabilan sistem.
Analisis dilakukan dengan memanfaatkan perangkat
Maple 18.

Untuk memvisualisasikan kestabilan sistem,
peneliti memanfaatkan python 3.11.3 dengan modul
matplotlib, numpy, scipy.

Sebagai tambahan, peneliti menampilkan data
dari sistem untuk menunjukkan dinamika populasi
tahun ke tahun. Data ini dibuat juga menggunakan
perangkat python.

HASIL DAN PEMBAHASAN

Bagian ini merupakan bagian utama artikel hasil

penelitian dan Dbiasanya merupakan bagian
terpanjang dari suatu artikel. Hasil penelitian yang
disajikan dalam bagian ini adalah hasil “bersih”.
Proses analisis data seperti perhitungan statistik dan
proses pengujian hipotesis tidak perlu disajikan.
Hanya hasil analisis dan hasil pengujian hipotesis
saja yang perlu dilaporkan. Tabel dan grafik dapat
digunakan untuk memperjelas penyajian hasil
penelitian secara verbal. Tabel dan grafik harus diberi

komentar atau dibahas.

dP P
E=TP(1_E)_G'1PQ_blpR_qlElp

dQ_ 1 Y P b,0OR E (H
E—SQ( _I)_az Q — b,QR — q;E>Q

dR

E = n1,81PR + nzﬂzQR —cR

dengan nilai awal
P(0) > 0;Q(0) = 0;R(0) =0
Model di atas terdiri dari tiga variabel, yakni

P didefinisikan Q dan R
didefinisikan sebagai mangsa pertama dan mangsa

sebagai pemangsa,
kedua. Ketiga populasi ini kemudian akan diteliti
bagaimana keeksisannya dalam sistem, tentu dengan
asumsi awal populasi ini ada. Hal-hal lain yang
kemudian mempengaruhi kestabilan sistem adalah
parameter yang ada disekitar sistem. r dan s masing-
masing didefinisikan sebagai laju pertumbuhan
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intrinsik mangsa pertama dan mangsa kedua. K dan

L masing-masing didefiniskan sebagai daya
tampung populasi mangsa pertama dan mangsa
kedua. Model populasi di atas memanfaatkan fungsi
respon Holling tipe I untuk masing-masing mangsa
dimana koefisien pemangsaan untuk masing-masing
mangsa ditunjukkan dengan b;dan b,. Selain fungsi
juga
ditentukan oleh persaingan antar mangsa yang

respon pemangsaan, dinamika populasi
kemudian ditunjukkan dengan a,dan a,.

Untuk mengambil manfaat secara ekonomi pada
sistem yang ada, peneliti memasukkan parameter
q,dan q, sebagai koefisien ketertangkapan mangsa
pertama dan mangsa kedua. Parameter E; dan E,
masing-masing sebagai usaha pemanenan pada
mangsa pertama dan mangsa kedua.

Fungsi pemangsaan pada mangsa membuat
kuantitas pada pemangsa berdinamika. Parameter n,
dan n, masing-masing menunjukkan efisiensi
perubahan dari pemangsa terhadap mangsa pertama
dan mangsa kedua. Pemangsa dianggap memiliki

kematian alami dengan parameter c.

Analisi Kesetimbangan
Titik kesetimbangan yang diperoleh dari
persamaan (1) adalah

T, = (0,0,0)
LG
T, = (0,—=,0)
s
T, = (0 &
5= ( 'nzbz'anbzz)
Ty =(——,00)
r
T — c G,
5T (nlbl' 'Knlblz)
KGs LG,
= —1—10
=G0
KG: LG G
T, = (—=2,—2 -8
G; G, G
dengan

G, = Lsbyn, — LE,b,n,q, — cs
G, = Krb;n, — KE;byn,q, — cr
Gs; = Lsa, + sE,q, — LE,a,q, — 715
G, = Kra, +rE,q, — KE,a,q, — s
Gs = KLa,a, — s
G¢ = LE;b3n,q, + Lsbyb,n, + Lca, b,
—(LE,byb,n,q, + Lrb2n, + csby)
G, = KLa;b;b,n, + KLa,b,b,n,
—(Ksb?n, + Lrb?n,)
Gg = KLE,a,b,n,q,; + KLE,a,b,n,q, + KLca,a,
+Krsbyny + Lrsb,n, — (KLra,b,n, + KLsa,bin,
+KsE byn,q; + LrE,b,n,q, + crs)
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Gy = KE,b?n,q, + Krb,byn, + Kca,b,
—(KE b;byn,q, + Ksb?n, + crb,)

Gio =s— Exq,

Gy =1r—Eq

Populasi mangsa pertama akan ada jika
G¢ > 0,LE;b%n,q, + Lsb,b,n, + Lca, b, >
LE,b,;b,n,q, + Lrb2n, + csb; dan G, >
0,KLa,b,;b,n, + KLa,b,b,n, > Ksb?n, + LrbZn,
atau Gg < 0, LE;b2n,q; + Lsbyb,n, + Lca; b, <
LE,b;b,n,q, + Lrb3n, + csb; dan G, <
0,KLa,b;b,n; + KLayb,b,n, < Ksb?n, + Lrb?n,

Populasi mangsa kedua akan ada jika
G, > 0,Gg > 0,KE,b?n,q, + Krb;b,n, + Kca,b;, >
KE b;b,n,q, + Ksb?n, + crb, atau G, > 0, Gy <
0,KE,b?n,q, + Krb;b,n, + Kca,b; < KE;b;b,n,q; +
Ksb?n, + crb,.

Populasi pemangsa akan ada jika
G, >0,G4 < 0,KLE a,b,n,q, + KLE,a,b1n,q, +
KLcaya, + Krsbyn, + Lrsb,n, < KLra,b,n, +
KLsa;byn, + KsE;b;n,q; + LrE,b,n,q, + crs atau
G, <0,Gg > 0,KLE;a,b,n,q, + KLE,a,b;n,q, +
KLca,a, + Krsbyn, + Lrsb,n, > KLra,b,n, +
KLsa;byng + KsE;bin,q, + LrE;,b,n,q, + crs

Analisis Kestabilan Titik Kesetimbangan
Matriks Jacobian dari persamaan (1) adalah

sebagai berikut
11 ]12 ]13
/= []21 J22 ]23] (2)
31 Ja2 a3

KGg LGy  Gg

’

)

Teorema 1 Titik keseimbangan T, = (

G; ' G, Gy
stabil jika
J11 < 0,J22 < 0,J33 <0, JitJaz + J11)33 + J22J33 >
J12J21 + J1zf31 + 2352

]11]23]32 +]12]21]33 +]13]31]22 >]11]22]33 +

]12]23]31 +]13]32]21/ _(]11 +]22 +]33)(]11]22 +
]11]33 +]22]33 _]12]21 _]13]31 _]23]32) >]11]23]32 +
]12]21]33 +]13]3L]22 _]11j22]33 _]12]23]31 _]13]32]21-

Bukti. Hasil substitusi T, pada persamaan (2) sebagai
berikut

11 Jiz Ji3
](T7) = []21 J22 ]23]
31 Ja2 Js3

dengan

2rP
Juu=r — %~ a;Q — bR — q,E,

Ji2 = —a,P, J13 = —b. P,

J21 = —ay0,

2sQ
Joz =5 _% — ayP — bR — qzE5,
J23 = —by0Q,
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J31 = Rbyny,

J32 = Rbyn,,

Js3 = Pbiny + @byn, — ¢
Persamaan karakteristik dari matriks J(T5)

adalah

/13 + Alﬂ.z + Azl + A3 = 0 (3)

dengan

Ay = =11+ J22 + J33)
Ay = J1d22 ¥ 133 +J22)33 — Ji2J21 — J13J31 — J2s)s2

A3 =]11]23]32 +]12]21]33 +]13]31]22 _]11]22]33
_]12]23]31 _]13]32]21'

Untuk menjamin kestabilan T, harus memenuhi
kriteria Routh-Hurtwiz, yakni 4; > 0, 4, >0, 43 >
0,dan A4, > A;.

1. Ay =—(i1+/)22+J33) >0
J11 <0,J52<0,J33<0
2. A, >0
Ji2z + 1133 +J22J33 > J12J21 + J13S31 + J23)52
3. A;>0
J123)32 + J12J21)33 + J13)31)22
> J11J22J33 + J12J23)31 + J13ls2)21
4. AA, > A,

_(]11 +]22 +]33)(]11]22 +]11]33 +]22]33 -
]12]21 _]13]31 _]23]32) >]11]23]32 +]12]21]33 +
]13]31]22 _]11]22]33 _]12]23]31 _]13]32]21-

Simulasi Numerik

Nilai parameter yang digunakan dalam simulasi
ini yaitu r=2.055s=15K=100L=100,a, =
0.01,a, = 0.001, b, = 0.05,b, = 0.02,q, = 0.04,q,
0.05,n, = 0.8,n, = 0.5,E, = 15,E, = 20,c = 1.

Pada bagian simulasi numerik ini, simulasi

dilakukan hanya pada kestabilan titik keseimbangan
interior karena pada titik keseimbangan itulah

semua populasi eksis dan semua komponen
(parameter) dalam  persamaan (1) dapat
diinterpretasikan.

Titik kesetimbangan yang diperoleh dari simulasi
dengan parameter di atas adalah
T, = 23.046875,7.8125,17.98828125

Matriks Jacobian dari titik kesetimbangan
tersebut adalah
—0.4724609375 —0.23046875 —1.15234375
J(T;) =] —0.0078125 —0.1171875 —0.15625
0.71953125 0.1798828125 0.

Persamaan karakteristik yang diperoleh adalah
2% +0.58964843754 + 0.91082000741 + 0.08291473388
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Nilai eigen yang diperoleh adalah

A, = —0.2468087826391 + 0.9108200074 i
A, = —0.2468087826391 — 0.895825265773833i
Az = —0.0960308722217999
Plot Model
Model populasi mangsa-pemangsa pada
persamaan (1) dapat digambarkan perubahan

populasi yang berdinamika dengan menunjukkan
plot dari hasil simulasi numerik sebelumnya. Berikut
hasil plot model populasi tersebut ditinjau dari
perubahan populasi baik kedua mangsa maupun
pemangsa. Dengan menggunakan python versi 3.11.3
dan module matplotlib, berikut hasil plot model
persamaan (1) dengan nilai awal (7, 7, 7).

10 ; //
NN

Gambar 1. Trajektori ketiga populasi

Plot di atas menunjukkan secara visual dinamika
setiap populasi dalam sistem. Dinamika populasi
ditentukan oleh nilai awal populasi dan parameter-
parameter yang bekerja disekitarnya. Sebelum
mencapai titik stabilnya, masing-masing populasi
beroscilasi ditunjukkan dengan gambar garis yang
bergelombang.

Hal ini ditunjukkan dalam analisis numerik

dengan nilai eigen sebagai berikut

Ay = —0.2468087826391 + 0.9108200074 i
A, = —0.2468087826391 — 0.895825265773833i
A3 = —0.0960308722217999
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Tabel 1. Data perubahan populasi

Year | Mangsal | Mangsa2 | Pemangsa
0 7.066596 7.0837 7.084427
1 16.83409 9.156532 4.428679
2 31.72086 11.54633 4.613541
3 40.61288 13.32003 8.500438
4 35.75437 13.54837 17.45148
5 24.68846 11.45416 24.41054
6 18.15079 9.822848 2299111
7 17.58492 9.172716 18.67576
8 19.93849 9.038179 15.67892
9 23.18745 9.591136 15.12551

10 25.03005 9.650725 16.19961
11 24.83188 9.632818 17.8116
12 23.17384 9.308926 18.94326
13 22.17065 8.764479 18.94859
14 21.6302 8.592131 18.17767
15 22.15101 8.684622 17.64581
16 22.90726 8.497072 17.42755
17 23.43694 8.560976 17.42801
18 23.17509 8.484184 17.82599
19 23.00847 8.297757 18.17085
20 22.84133 8.337167 18.02129

Tabel 1 menunjukkan data yang diambil dari model
dengan memanfaatkan python. Data tersebut dimulai
dengan nilai awal yang sama dengan gambar 1 dan gambar
2. Data di atas menunjukkan keeksisan masing-masing
populasi dati tahun ke tahun, data juga menunujukkan
yang sangat dipengaruhi oleh
parameter-parameter yang diberikan.

dinamika populasi

PENUTUP
SIMPULAN

Titik ketabilan model dimana populasinya eksis

semua yaitu
KG, LG,
"=,
7 b7 7
Titik ini akan eksis jika memenuhi syarat

Gg

paramater:

Populasi mangsa pertama akan ada jika
G > 0,LE;b?n,q, + Lsb,b,n, + Lca, b, >
LE,b;b,n,q, + LTb3n, + csb; dan G, >
0,KLa,b;b,n; + KLa,b,b,n, > Ksb?n, + Lrb3n,
atau Gg < 0,LE;b2n,q; + Lsbyb,n, + Lca; b, <
LE,b,b,n,q, + Lrb3n, + csb; dan G, <
0,KLa,b;b,n; + KLayb,b,n, < Ksb?n, + Lrbn,
Populasi mangsa kedua akan ada jika
G, > 0,Gg > 0,KE,b?n,q, + Krb;b,n; + Kca,b; >
KE; b byn,q, + Ksbin, + crb, atau G, > 0, Gy <
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0,KE,b?n,q, + Krb,b,n, + Kca,b; < KE;b;byn,q, +
Ksb?n, + crb,.
Populasi pemangsa akan ada jika

G, >0,G3 <0,KLE a,b,n,q, + KLE,a,b1n,q, +
KLca,a, + Krsbyn, + Lrsb,n, < KLra,b,n, +
KLsa,bin, + KsE;bin,q, + LrE,b,n,q, + crs atau
G, <0,Gg > 0,KLE a,b,n,q, + KLE,a;b1n,q, +
KLca,a, + Krsbyn, + Lrsb,n, > KLra,b,n, +
KLsabin, + KsE;byn,q, + LrE,b,n,q, + crs

Kestabilan titik tersebut ditentukan oleh syarat
paramter:

=11+ J22 + J33)Ui)az + JidS33 +J22J33 — Ji2Ja1 —
J13J31 = J23J32) > Ji1Jasls2 + J12)21)33 + Ji3)3i)a2 —
J1J22J33 — J12J23)31 — J13Js2)21-

SARAN

Saran untuk peneliti selanjutnya, model ini belum
menguji parameter koefisien intraspesifik pada
mangsa. Peneliti bisa mengkaji lebih lanjut dengan
memasukkan parameter kompetisi intraspesifik.
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