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Abstrak  

Penelitian ini membahas model dinamika populasi tiga spesies yang terdiri atas sumber daya, mangsa, dan 
pemangsa, dengan mempertimbangkan interaksi predasi, pemanenan, dan respon fungsional Beddington-
DeAngelis. Tujuan dari penelitian ini adalah untuk menganalisis kestabilan sistem, mengidentifikasi titik 
kesetimbangan, dan mengevaluasi dampak dari variasi parameter terhadap dinamika populasi. Hasil analisis 
menunjukkan bahwa ketika 𝑒1 = 0.8  dan 𝑒2 = 0.2 , titik kesetimbangan 𝐸0 = (0,0,0),𝐸1 = (1,0,0),𝐸2 =
(𝑥1 , 𝑦1 , 0), tidak stabil. Sedangkan, titik kesetimbangan 𝐸3 = (𝑥2 , 0, 𝑧2) tidak ada karena terdapat populasi 
yang negatif. Sementara itu, titik kesetimbangan hidup berdampingan 𝐸∗ = (𝑥∗, 𝑦∗, 𝑧∗)  adalah stabil 
asimtotik pada interval nilai parameter tingkat pemanenan terhadap mangsa ℎ1 ∈ (0.13, 0.27).  Namun, 
terjadi bifurkasi Supercritical Hopf pada ℎ1 = 0.13, yang menyebabkan perubahan dinamika populasi, di 
mana ketiga populasi, yakni sumber daya, mangsa, dan pemangsa, mengalami fluktuasi. Dengan kata lain, 
pertumbuhan ketiga populasi mengalami siklus yang berkala.  
Kata Kunci: Analisis kestabilan, sistem mangsa-pemangsa, predasi intraguild, Beddington-DeAngelis. 
  

Abstract  
This study discusses a three-species population dynamics model consisting of a resource, prey, and predator, taking into 
account predation interactions, harvesting, and the Beddington-DeAngelis functional response. The aim of this study is 
to analyze the stability of the system, identify equilibrium points, and evaluate the impact of parameter variations on 
population dynamics. The results of the analysis show that when 𝑒1 = 0.8  and 𝑒2 = 0.2 , the equilibrium points 
𝐸0 = (0,0,0),𝐸1 = (1,0,0),𝐸2 = (𝑥1 , 𝑦1 , 0), are unstable. Meanwhile, the equilibrium point 𝐸3 = (𝑥2, 0, 𝑧2) does not 
exist because there is a negative event. Meanwhile, the equilibrium point of life 𝐸∗ = (𝑥∗, 𝑦∗, 𝑧∗) is asymptotically stable 
in the interval of the parameter values of the level of harvesting against prey ℎ1 ∈ (0.13,0.27).  However, a supercritical 
Hopf bifurcation occurs at ℎ1 = 0.13, leading to a change in population dynamics, where the resource, prey, and pred 
ator populations undergo fluctuations. In other words, the growth of all three populations follows a periodic cycle. 
Keywords: Stability analysis, predator-prey system, intraguild predation, Beddington-DeAngelis.   

 
 

PENDAHULUAN  

Hubungan antar spesies maupun antar populasi 

merupakan fenomena yang tidak dapat dihindari 

dalam ekosistem alami. Salah satu bentuk interaksi 

antarspesies yang paling umum adalah sistem 

mangsa-pemangsa, yaitu ketika suatu spesies 

memangsa spesies lain. Interaksi ini disebut predasi 

dan menjadi fokus penting dalam studi ekologi 

(Hasting, 1997). 

Model matematika sering digunakan untuk 

merepresentasikan dinamika interaksi ekologi, 

termasuk interaksi antara mangsa dan pemangsa. 

Dalam lingkungan alami, populasi mangsa 

cenderung berfluktuasi, dan keberadaannya dapat 

menarik pemangsa untuk menetap. Respon 

pemangsa terhadap variasi kepadatan mangsa 

disebut respon fungsional, yang menggambarkan 

hubungan antara jumlah mangsa yang dikonsumsi 

dan kepadatan mangsa itu sendiri (Solomon, 1949). 

Salah satu bentuk respon fungsional yang lebih 

kompleks adalah respon Beddington–DeAngelis, 

yang mempertimbangkan pengaruh populasi 

pemangsa serta batas perlindungan lingkungan 

(Haque, 2011). 

 



ANALISIS DINAMIK MODEL … 

555 

Selain faktor interaksi langsung, pemanenan 

merupakan aspek penting dalam studi ekologi 

karena dapat memengaruhi keseimbangan populasi. 

Pemanenan yang tidak terkendali berpotensi 

mengganggu hubungan antara spesies, menurunkan 

populasi, bahkan mengarah pada kepunahan. Oleh 

karena itu, upaya pemanenan konstan yang 

mempertimbangkan kapasitas regenerasi spesies 

perlu diterapkan untuk menjaga keseimbangan 

antara pemanfaatan dan konservasi (Blaber dkk., 

2000). 

Interaksi antara spesies dalam ekosistem sering 

kali lebih kompleks daripada hubungan predasi 

langsung. Salah satu bentuk interaksi kompleks 

tersebut adalah predasi intraguild, yaitu ketika dua 

spesies yang bersaing memperebutkan sumber daya 

yang sama, juga terlibat dalam hubungan pemangsa–

mangs (Holt & Polis, 1997). Dalam konteks ini, 

interaksi yang terjadi mencakup dua jenis sekaligus: 

kompetisi dan predasi. 

Penelitian Ji & Wang (2022), mengkaji model 

predasi intraguild yang melibatkan tiga spesies: 

sumber daya, mangsa intraguild, dan pemangsa 

intraguild. Mereka menunjukkan bahwa model ini 

memungkinkan terjadinya koeksistensi antara 

mangsa dan pemangsa intraguild dalam kondisi 

tertentu, seperti keseimbangan interior yang stabil, 

siklus batas yang stabil, atau osilasi yang tidak 

teratur. Temuan ini mengindikasikan bahwa predasi 

intraguild dapat memperkuat keberlangsungan 

hidup spesies dan menyeimbangkan ekosistem (Ji & 

Wang, 2022). 

Penelitian lain oleh Putra dkk. (2023) membahas 

model Lotka–Volterra dengan pemanenan linear 

pada mangsa dan pemangsa. Hasil penelitian 

menunjukkan bahwa pemanenan memengaruhi 

kelestarian populasi. Jika tingkat pertumbuhan 

pemangsa lebih kecil daripada laju kematian dan 

pemanenan, maka kedua spesies berisiko punah. 

Sebaliknya, populasi akan bertahan jika pemanenan 

dikelola dengan baik (Putra dkk., 2023). 

Penelitian ini mengembangkan model interaksi 

mangsa-pemangsa dengan predasi intraguild dan 

respon fungsional Beddington–DeAngelis, mengacu 

pada model Ji dan Wang (2022), dengan penambahan 

aspek pemanenan. Tujuan dari penelitian ini adalah 

mengembangkan model interaksi mangsa–pemangsa 

yang melibatkan predasi intraguild, respon 

fungsional Beddington–DeAngelis, dan 

pemanenan,untuk menganalisis kestabilan titik 

kesetimbangan  serta menyimulasikan model untuk 

memahami kondisi di mana populasi tetap stabil atau 

mengalami perubahan. 

KAJIAN TEORI  

Sistem mangsa–pemangsa merupakan model dasar 

dalam ekologi matematika yang digunakan untuk 

menggambarkan interaksi antara populasi mangsa 

dan pemangsa. Salah satu model klasik yang banyak 

digunakan adalah model Lotka–Volterra, yang 

mengasumsikan bahwa populasi mangsa tumbuh 

secara eksponensial tanpa keberadaan pemangsa, 

sedangkan populasi pemangsa menurun secara 

eksponensial tanpa keberadaan mangsa. Interaksi 

pemangsaan kemudian memengaruhi dinamika 

kedua spesies tersebut. Model ini selanjutnya 

dikembangkan dengan menambahkan pertumbuhan 

logistik pada populasi mangsa (Boyce dkk., 2017). 

Predasi intraguild (intraguild predation/IGP) 

merupakan bentuk interaksi ekologis yang 

menggabungkan predasi dan kompetisi secara 

simultan. Dalam IGP, pemangsa tidak hanya 

memangsa mangsanya, tetapi juga bersaing dengan 

mangsa tersebut dalam memanfaatkan sumber daya 

yang sama. Interaksi ini melibatkan tiga komponen 

utama, yaitu IG pemangsa, IG mangsa, dan sumber 

daya. IG pemangsa memangsa IG mangsa dan 

sumber daya, sedangkan IG mangsa hanya 

memanfaatkan sumber daya (Holt & Polis, 1997). 

Interaksi ini menghasilkan dinamika yang lebih 

kompleks dibandingkan model mangsa–pemangsa 

klasik karena adanya kombinasi antara kompetisi 

dan predasi. 

Untuk menggambarkan dinamika yang lebih 

realistis, model juga mempertimbangkan respon 

fungsional, yaitu laju pemangsaan yang dipengaruhi 

tidak hanya oleh populasi mangsa, tetapi juga oleh 

kepadatan pemangsa. Salah satu bentuk respon 

fungsional tersebut adalah respon Beddington–

DeAngelis (Beddington, 1975). Selain itu, faktor 

pemanenan juga diperhitungkan, khususnya 

pemanenan dengan upaya konstan, yaitu ketika hasil 

tangkapan per satuan waktu diasumsikan sebanding 

dengan ukuran populasi dan intensitas upaya, 

seperti jumlah kapal, alat, atau durasi penangkapan 

(Brauer & Castillo-Chavez, 2001). 

Model matematika dari interaksi tersebut 

dinyatakan dalam bentuk sistem persamaan 
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diferensial biasa (PDB). Secara umum, PDB 

berdimensi-n dituliskan dalam bentuk 𝒙̇ = 𝒇(𝑡, 𝒙) , 

dengan 𝒙  sebagai vektor keadaan dan 𝒇  sebagai 

fungsi vektor. Jika fungsi-fungsi tersebut bersifat 

nonlinier, maka sistem disebut nonlinier. Titik 

kesetimbangan diperoleh dengan menyamakan 

seluruh turunan terhadap waktu menjadi nol (Boyce 

dkk., 2017). Untuk menganalisis kestabilannya, 

sistem dilinearisasi di sekitar titik kesetimbangan 

menggunakan matriks Jacobian, kemudian dianalisis 

berdasarkan nilai-nilai eigennya. Nilai eigen dari 

Jacobian menentukan sifat kestabilan lokal, seperti 

simpul, pelana, atau spiral. Namun, jika nilai eigen 

sulit diperoleh, dapat digunakan kriteria kestabilan 

Routh–Hurwitz yang mengevaluasi tanda koefisien 

dari persamaan karakteristik tanpa menghitung nilai 

eigen secara langsung (Murray, 2001). 

Selain itu, perubahan perilaku sistem akibat 

variasi parameter dianalisis dengan bifurkasi, seperti 

bifurkasi saddle-node, transcritical, pitchfork, dan hopf. 

Analisis ini penting untuk memahami transisi 

dinamis dalam sistem populasi yang dipengaruhi 

oleh perubahan parameter lingkungan atau interaksi 

antarspesies (Strogatz, 2018). 

 

HASIL DAN PEMBAHASAN 

KONTRUKSI MODEL MANGSA-PEMANGSA DENGAN 

PREDASI INTRAGUILD, PEMANENAN DAN RESPON 

FUNGSIONAL BEDDINGTON-DEANGELIS. 

Penelitian ini mengembangkan model interaksi 

mangsa-pemangsa dengan predasi intraguild dan 

respon fungsional Beddington–DeAngelis yang 

sebelumnya dikaji oleh Ji dan Wang (2022), dengan 

menambahkan aspek pemanenan seperti pada studi 

oleh Putra dkk. (2023). Model melibatkan tiga 

populasi, yaitu sumber daya (𝑅), IG mangsa (𝑁), dan 

IG pemangsa (𝑃). Populasi sumber daya diasumsikan 

tumbuh secara logistik dan dimangsa oleh IG mangsa 

dan IG pemangsa mengikuti respon fungsional 

Beddington–DeAngelis yang mempertimbangkan 

faktor penanganan  𝐴1  serta interferensi antar IG 

mangsa  𝐴2  dan IG pemangsa  𝐴3 . IG mangsa 

memakan sumber daya dengan laju serangan 

maksimum 𝑐1, sementara IG pemangsa memangsa 

baik sumber daya maupun IG mangsa, masing-

masing dengan laju 𝑐2 dan 𝑐3. 

Efisiensi konversi biomassa dinyatakan melalui 

parameter 𝜀1 untuk IG mangsa dari sumber daya, 𝜀2 

untuk IG pemangsa dari sumber daya, dan 𝜀3 untuk 

IG pemangsa dari IG mangsa. Selain bertumbuh, 

populasi IG mangsa dan IG pemangsa juga menurun 

akibat kematian alami dengan laju 𝑑1  dan 𝑑2, serta 

akibat pemanenan dengan laju 𝐸1 dan 𝐸2.  

Hasil konstruksi model dalam penelitian ini 

adalah sistem dinamika tiga dimensi yang 

merepresentasikan interaksi  mangsa–pemangsa 

dengan predasi intraguild, pemanenan, dan fungsi 

respon Beddington–DeAngelis, yang dirumuskan ke 

dalam bentuk sistem persamaan diferensial sebagai 

berikut: 
𝑑𝑅

𝑑𝜏
= 𝑟1𝑅(1−

𝑅

𝐾
) −

 𝑐1𝑅𝑁 + 𝑐2𝑅𝑃

1 + 𝐴1𝑅 + 𝐴2𝑁+ 𝐴3𝑃
 

𝑑𝑁

𝑑𝜏
=

𝜀1𝑐1𝑅𝑁 − 𝑐3𝑁𝑃

1 + 𝐴1𝑅 + 𝐴2𝑁+ 𝐴3𝑃
− 𝑑1𝑁− 𝐸1𝑁                (13) 

𝑑𝑃

𝑑𝜏
=

𝜀2𝑐2𝑅𝑃 + 𝜀3𝑐3𝑁𝑃

1 + 𝐴1𝑅 + 𝐴2𝑁+ 𝐴3𝑃
− 𝑑2𝑃− 𝐸2𝑃 

Agar lebih mudah menentukan titik 

kesetimbangan, jumlah parameter dalam model (13) 

dapat dikurangi melalui penskalaan berikut: 

𝑥 =
𝑅

𝐾
, 𝑦 =

𝑁𝑐1
 𝑟1
, 𝑧 =

𝑃𝑐2
 𝑟1
, 𝑡 = 𝑟1𝜏 

Selain itu, diperkenalkan pula parameter-

parameter tak berdimensi baru sebagai berikut: 

𝑎 = 𝐴1𝐾, 𝑏1 =
𝐴2𝑟1
𝑐1
, 𝑏2 =

𝐴3𝑟2
𝑐2

, 𝑒1 =
𝜀1𝑐1𝐾

 𝑟1
, 𝛿1 =

𝑑1
 𝑟1
, 

𝑐 =
𝑐3
𝑐2
, ℎ1 =

𝐸1
 𝑟1
, 𝑒2 =

𝜀2𝑐2𝐾

 𝑟1
, 𝜀 =

𝜀3𝑐2
 𝑐1

, 𝛿2 =
𝑑2
 𝑟1
, ℎ2 =

𝐸2
 𝑟1

 

Diperoleh sistem nondimensional dari model (13) 

dengan penskalaan sebagai berikut: 

𝑑𝑥

𝑑𝜏
= 𝑥 (1 − 𝑥 −

𝑦 + 𝑧

1 +  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧
) 

𝑑𝑦

𝑑𝜏
= 𝑦 (

𝑒1𝑥 −  𝑐𝑧

1+  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧
− 𝛿1 − ℎ1)                (14) 

𝑑𝑧

𝑑𝜏
= 𝑧 (

𝑒2𝑥 +  𝜀𝑐𝑦

1 +  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧
− 𝛿2 − ℎ2) 

  

TITIK KESETIMBANGAN 

Titik kesetimbangan diperoleh dari 
𝑑𝑥

𝑑𝑡
= 0,

𝑑𝑦

𝑑𝑡
=

0,
𝑑𝑧

𝑑𝑡
= 0, sehingga diperoleh 5 titik kesetimbangan 

sebagai berikut: 

1. Titik kesetimbangan trivial  𝐸0 = (0,0,0) 

2. Titik kesetimbangan kepunahan IG mangsa 

dan IG pemangsa  𝐸1 = (1,0,0) 

3. Titik kesetimbangan kepunahan IG 

pemangsa 𝐸2 = (𝑥1, 𝑦1, 0), di mana  

 𝑥1 =
𝑎𝛿1+𝑎ℎ1+𝑒1𝑏1−𝑒1+√(−𝑎𝛿1−𝑎ℎ1−𝑒1𝑏1+𝑒1)

2+4(𝑒1𝑏1𝛿1+𝑒1𝑏1ℎ1)

2𝑒1𝑏1
 

dan  
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𝑦1 =
𝑥1(𝑒1−𝑎𝛿1−𝑎ℎ1)−𝛿1−ℎ1

𝑏1𝛿1+𝑏1ℎ1
. 

Titik kesetimbangan kepunahan IG 

pemangsa eksis ketika 𝑒1 >
𝛿1+ℎ1

𝑥1
+ 𝑎(𝛿1 +

ℎ1). 

4. Titik kesetimbangan kepunahan IG mangsa 

𝐸3 = (𝑥2, 0, 𝑧2), di mana  

 𝑥2 =
𝑎𝛿2+𝑎ℎ2+𝑒2𝑏2−𝑒2+√(−𝑎𝛿2−𝑎ℎ2−𝑒2𝑏2+𝑒2)

2+4(𝑒2𝑏2𝛿2+𝑒2𝑏2ℎ2)

2𝑒2𝑏2
 

dan  

𝑧2 =
𝑥1(𝑒2−𝑎𝛿2−𝑎ℎ2)−𝛿2−ℎ2

𝑏2𝛿2+𝑏2ℎ2
. 

Titik kesetimbangan kepunahan IG mangsa 

eksis ketika 𝑒2 >
𝛿2+ℎ2

𝑥2
+ 𝑎(𝛿2 + ℎ2). 

5. Titik kesetimbangan hidup berdampingan 

𝐸∗ = (𝑥∗ , 𝑦∗, 𝑧∗) , di mana 𝑥∗  adalah Solusi 

dari persamaan kuadrat berikut: 

𝐴𝑥2 +𝐵𝑥 + 𝐶 = 0, 

Dengan koefisien: 

𝐴 = 𝜀𝑐2𝑎 − 𝑐𝑒2𝑏1 − 𝜀𝑐𝑒1𝑏2 , 
𝐵 = ℎ1𝑒2𝑏1 + 𝛿1𝑒2𝑏1 − 𝛿1𝑒2𝑏2 − ℎ1𝑒2𝑏2 + 𝛿2𝑒1𝑏2 + ℎ2𝑒1𝑏2 

        +𝜀𝑐2 + 𝜀𝑐𝑒1 − 𝑐𝑒2 − 𝜀𝑐
2𝑎 − 𝜀𝑐𝑎𝛿1 − 𝜀𝑐𝑎ℎ1 − 

𝜀𝑐𝑒1𝑏2 + 𝑎𝑐𝛿2 + 𝑎𝑐ℎ2 + 𝑐𝑒2𝑏1 − 𝛿2𝑒1𝑏1 + ℎ2𝑒1𝑏1, 

𝑐 = 𝑐𝛿2 + 𝑐ℎ2 − 𝜀𝑐
2 − 𝜀𝑐𝛿1 − 𝜀𝑐ℎ1, 

Karena 
𝐶

𝐴
< 0, maka hasil kali kedua akar 

bernilai negatif, sehingga dapat disimpulkan 

bahwa persamaan kuadrat tersebut memiliki 

tepat satu akar real positif. Akar real positif 

ini dinotasikan dengan 𝑥∗ , yang kemudian 

digunakan untuk menentukan nilai 𝑦∗  dan 

𝑧∗ melalui persamaan berikut:  

 𝑦∗ =
𝑥∗(𝛿1𝑒2𝑏2+ℎ1𝑒2𝑏2−𝑐𝑎𝛿1−𝑐𝑎ℎ1+𝑐𝑒2−ℎ2𝑒1𝑏2−𝛿2𝑒1𝑏2)−𝑐𝛿1−𝑐ℎ1

𝑐(𝛿2𝑏1+ℎ2𝑏1−𝜀𝛿1𝑏2+𝜀ℎ1𝑏2−𝜀𝑐)
, 

 𝑧∗ =
𝑥∗(𝛿2𝑒1𝑏1+ℎ2𝑒1𝑏1+𝜀𝑐𝑎𝛿1+𝜀𝑐𝑎ℎ1−𝜀𝑐𝑒1−ℎ1𝑒2𝑏1−𝛿1𝑒2𝑏1)+𝜀𝑐𝛿1+𝜀𝑐ℎ1

𝑐(𝛿2𝑏1+ℎ2𝑏1−𝜀𝛿1𝑏2+𝜀ℎ1𝑏2−𝜀𝑐)
 

 

ANALISIS KESTABILAN 

Analisis kestabilan titik kesetimbangan dilakukan 

dengan melakukan linearisasi sistem persamaan .. di 

sekitar titik kesetimbangan dengan menentukan nilai 

eigennya. Melalui cara ini, dapat diketahui sifat 

kestabilan lokal dari masing-masing titik 

kesetimbangan. Matriks Jacobian yang diperoleh 

merupakan hasil dari proses linearisasi sistem (13) 

sebagai berikut: 

𝐽 =

(

 
 

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦

𝜕𝑓1

𝜕𝑧

𝜕𝑓2

𝜕𝑥

𝜕𝑓1

𝜕𝑦

𝜕𝑓1

𝜕𝑧

𝜕𝑓3

𝜕𝑥

𝜕𝑓3

𝜕𝑦

𝜕𝑓3

𝜕𝑧)

 
 

   (15) 

di mana, 

𝜕𝑓1
𝜕𝑥

= 1− 2𝑥 −
(1 + 𝑏1𝑦+ 𝑏2𝑧)(𝑦 + 𝑧)

(1 +  𝑎𝑥 + 𝑏1𝑦+ 𝑏2𝑧)
2
= 𝐽11, 

𝜕𝑓1
𝜕𝑦

= −
𝑥(1 + 𝑎𝑥) + 𝑥𝑧( 𝑏2 − 𝑏1)

(1 +  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧)
2
= 𝐽12, 

𝜕𝑓1
𝜕𝑧
= −

𝑥(1 + 𝑎𝑥) + 𝑥𝑦( 𝑏1 − 𝑏2)

(1 +  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧)2
= 𝐽13, 

𝜕𝑓2
𝜕𝑥

=
𝑒1𝑦(1 + 𝑏1𝑦) + 𝑦𝑧( 𝑏2𝑒1 −  𝑎𝑐)

(1 +  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧)2
= 𝐽21, 

𝜕𝑓2
𝜕𝑦

=
(𝑒1𝑥 − 𝑐𝑧)(1 +  𝑎𝑥 + 𝑏2𝑧)

(1 +  𝑎𝑥 + 𝑏1𝑦+ 𝑏2𝑧)2
− 𝛿1 − ℎ1 = 𝐽22, 

𝜕𝑓2
𝜕𝑧
= −

𝑐𝑦(1 + 𝑏1𝑦) + 𝑥𝑦( 𝑏2𝑒1 +  𝑎𝑐)

(1 +  𝑎𝑥 + 𝑏1𝑦 + 𝑏2𝑧)2
= 𝐽23, 

𝜕𝑓3
𝜕𝑥

=
𝑒2𝑧(1 + 𝑏1𝑦+ 𝑏2𝑧) − 𝑎𝜀𝑐𝑦𝑧

(1 +  𝑎𝑥 + 𝑏1𝑦+ 𝑏2𝑧)
2

= 𝐽31, 

𝜕𝑓3
𝜕𝑦

=
𝜀𝑐𝑧(1 + 𝑏2𝑧) + 𝑥𝑧(𝑎𝜀𝑐 − 𝑏1𝑒2)

(1 +  𝑎𝑥 + 𝑏1𝑦+ 𝑏2𝑧)
2

= 𝐽32, 

𝜕𝑓3
𝜕𝑧
=
(𝑒2𝑥 + 𝜀𝑐𝑦)(1 +  𝑎𝑥 + 𝑏1𝑦)

(1 +  𝑎𝑥 + 𝑏1𝑦+ 𝑏2𝑧)2
− 𝛿2 − ℎ2 = 𝐽33 . 

Selanjutnya, dilakukan analisis kestabilan di tiap 

titik kesetimbangan sistem (13) dengan 

mensubtitusikan tiap titik kesetimbangan ke dalam 

matriks Jacobian (15) 

1. Kestabilan di titik kesetimbangan trivial 𝐸0 

Subtitusi matriks Jacobian di titik 𝐸0 , 

sehingga diperoleh 

               𝐽(𝐸0) = (
1 0 0
0 −𝛿1 − ℎ1 0
0 0 −𝛿2 − ℎ2

)        (16) 

Dari matriks Jacobian (16) diperoleh nilai 

eigen 𝜆1 = 1, 𝜆2 = −𝛿1 − ℎ1, 𝜆3 = −𝛿2 − ℎ2 

sehingga dapat disimpulkan bahwa titik 

kesetimbangan 𝐸0  tidak stabil dan 

merupakan titik pelana 

2. Kestabilan kepunahan IG mangsa dan IG 

pemangsa 𝐸1 

Subtitusi matriks Jacobian di titik 𝐸1 , 

sehingga diperoleh 

𝐽(𝐸1) =

(

 
 
 
−1 −

1

1 + 𝑎
−

1

1 + 𝑎

0
𝑒1

1 + 𝑎
− 𝛿1 − ℎ1 0

0 0
𝑒2

1 + 𝑎
− 𝛿2 − ℎ2)

 
 
 
   (17) 

Dari matriks Jacobian (17) diperoleh nilai 

eigen 𝜆1 = −1, 𝜆2 =
𝑒1

1+𝑎
− 𝛿1 − ℎ1, 𝜆3 =

𝑒1

1+𝑎
−

−𝛿2 − ℎ2  sehingga dapat disimpulkan 

bahwa titik kesetimbangan 𝐸1  merupakan 

titik simpul dan stabil asimtotik jika 𝑒1 <

(𝛿1 + ℎ1)(1 + 𝑎) dan 𝑒2 < (𝛿2 + ℎ2)(1+ 𝑎). 

3. Kestabilan di titik kesetimbangan 

kepunahan IG pemangsa 𝐸2 

Subtitusi matriks Jacobian di titik 𝐸2 , 

sehingga diperoleh 
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               𝐽(𝐸2) = (

𝐽11
1 𝐽12

1 𝐽13
1

𝐽21
1 𝐽22

1 𝐽23
1

0 0 𝐽33
1

)                      (18) 

di mana, 

𝐽11
1 = 1 − 2𝑥1 −

𝑦1(1+ 𝑏1𝑦1)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)2
, 

𝐽12
1 = −

𝑥1(1+ 𝑎𝑥1)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)2
, 

𝐽13
1 = −

𝑥1(1 + 𝑎𝑥1) + 𝑥1𝑦1( 𝑏1 − 𝑏2)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)2
, 

𝐽21
1 =

𝑒1𝑦1(1+ 𝑏1𝑦1)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)
2
, 

𝐽22
1 =

𝑒1𝑥1(1 +  𝑎𝑥1)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)
2
− 𝛿1 − ℎ1, 

𝐽23
1 = −

𝑐𝑦1(1 + 𝑏1𝑦1) + 𝑥1𝑦1( 𝑏2𝑒1 +  𝑎𝑐)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)2
, 

𝐽33
1 =

(𝑒2𝑥1 + 𝜀𝑐𝑦1)(1+  𝑎𝑥1 + 𝑏1𝑦1)

(1 +  𝑎𝑥1 + 𝑏1𝑦1)
2

− 𝛿2 − ℎ2 

Nilai eigen dari matriks Jacobian (18) 

merupakan penyelesaiaan dari persamaan 

𝐷𝑒𝑡(𝐽(𝐸2) − 𝜆𝐼) = 0 yang menghasilkan 

persamaan karakteristik 𝜆3+ 𝑝
1
𝜆2+ 𝑝

2
𝜆 +

𝑝
3
= 0 di mana, 

 𝑝1 = −(𝐽11
1 + 𝐽22

1 + 𝐽33
1 ) 

          𝑝2 = 𝐽11
1 𝐽22

1 + 𝐽11
1 𝐽33

1 + 𝐽22
1 𝐽33

1 − 𝐽12
1 𝐽21

1  

 𝑝3 = 𝐽11
1 𝐽22

1 𝐽33
1 − 𝐽33

1 𝐽12
1 𝐽21

1  

Berdasrakan kriteria Routh-Hurwitz, 

titik kesetimbangan 𝐸2 stabil asimtotik 

ketika 𝑝1 > 0,𝑝1𝑝2 − 𝑝3 > 0,𝑝3 > 0. 

4. Kestabilan di titik kesetimbangan 

kepunahan IG mangsa 𝐸3 

Subtitusi matriks Jacobian di titik 𝐸3 , 

sehingga diperoleh 

        𝐽(𝐸3) = (

𝐽11
2 𝐽12

2 𝐽13
2

0 𝐽22
2 0

𝐽31
2 𝐽32

2 𝐽33
2

)                      (19) 

di mana, 

𝐽11
2 = 1 − 2𝑥2 −

𝑧2(1 + 𝑏2𝑧2)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)
2
, 

𝐽12
2 = −

𝑥2(1 + 𝑎𝑥2) + 𝑥2𝑧2( 𝑏2 − 𝑏1)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)2
, 

𝐽13
2 = −

𝑥2(1 + 𝑎𝑥1)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)2
, 

𝐽22
2 =

(𝑒1𝑥2 − 𝑐𝑧2)(1+  𝑎𝑥2 + 𝑏2𝑧2)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)2
− 𝛿1 − ℎ1, 

𝐽31
2 =

𝑒2𝑧2(1+ 𝑏2𝑧2)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)
2
 

𝐽32
2 =

𝜀𝑐𝑧2(1+ 𝑏2𝑧2)+ 𝑥2𝑧2(𝑎𝜀𝑐− 𝑏1𝑒2)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)2
 

𝐽33
2 =

𝑒2𝑥2(1+  𝑎𝑥2)

(1 +  𝑎𝑥2 + 𝑏2𝑧2)2
− 𝛿2 − ℎ2 

Nilai eigen dari matriks Jacobian (19) 

merupakan penyelesaiaan dari persamaan 

𝐷𝑒𝑡(𝐽(𝐸3) − 𝜆𝐼) = 0 yang menghasilkan 

persamaan karakteristik 𝜆3+ 𝑝
1
𝜆2+ 𝑝

2
𝜆 +

𝑝
3
= 0 di mana, 

 𝑝1 = −(𝐽11
2 + 𝐽22

2 + 𝐽33
2 ) 

          𝑝2 = 𝐽11
2 𝐽22

2 + 𝐽11
2 𝐽33

2 + 𝐽22
2 𝐽33

2 − 𝐽13
1 𝐽31

2  

 𝑝3 = 𝐽11
2 𝐽22

2 𝐽33
2 − 𝐽13

2 𝐽22
2 𝐽31

2  

Berdasrakan kriteria Routh-Hurwitz, 

titik kesetimbangan 𝐸3 stabil asimtotik 

ketika 𝑝1 > 0,𝑝1𝑝2 − 𝑝3 > 0,𝑝3 > 0. 

5. Kestabilan di titik kesetimbangan hidup 

berdampingan 𝐸∗ 

Subtitusi matriks Jacobian di titik 𝐸∗ 

sehingga diperoleh 

             𝐽(𝐸∗) = (

𝐽11
∗ 𝐽12

∗ 𝐽13
∗

𝐽21
∗ 𝐽22

∗ 𝐽23
∗

𝐽31
∗ 𝐽32

∗ 𝐽33
∗
)                      (20) 

di mana, 

𝐽11
∗ =

𝑎𝑥∗(1 − 𝑥∗)

1 +  𝑎𝑥∗ + 𝑏1𝑦∗ + 𝑏2𝑧∗
− 𝑥∗, 

𝐽12
∗ =

𝑏1𝑥
∗(1 − 𝑥∗) − 𝑥∗

1 +  𝑎𝑥∗ + 𝑏1𝑦∗ + 𝑏2𝑧∗
, 

𝐽13
∗ =

𝑏2𝑥
∗(1 − 𝑥∗) − 𝑥∗

1 +  𝑎𝑥∗ + 𝑏1𝑦∗ + 𝑏2𝑧∗
, 

𝐽21
∗ =

𝑦∗(𝑒1 − 𝑎𝛿1 − 𝑎ℎ1)

1 +  𝑎𝑥∗ + 𝑏1𝑦∗+ 𝑏2𝑧∗
, 

𝐽22
∗ = −

𝑏1𝑦
∗(𝛿1 + ℎ1)

1 +  𝑎𝑥∗ + 𝑏1𝑦
∗ + 𝑏2𝑧

∗
, 

𝐽23
∗ =

−𝑦∗(𝑐 + 𝑏2(𝛿1 + ℎ1))

1 +  𝑎𝑥∗ + 𝑏1𝑦
∗+ 𝑏2𝑧

∗
, 

𝐽31
∗ =

𝑧∗(𝑒2 − 𝑎𝛿2 − 𝑎ℎ2)

1 +  𝑎𝑥∗ + 𝑏1𝑦
∗+ 𝑏2𝑧

∗
, 

𝐽32
∗ =

𝑧∗(𝜀𝑐 − 𝑏1(𝛿2 + ℎ2))

1 +  𝑎𝑥∗ + 𝑏1𝑦∗+ 𝑏2𝑧∗
, 

𝐽33
∗ = −

𝑏2𝑧
∗(𝛿2 + ℎ2)

1 +  𝑎𝑥∗ + 𝑏1𝑦
∗ + 𝑏2𝑧

∗
, 

Nilai eigen dari matriks Jacobian (20) 

merupakan penyelesaiaan dari persamaan 

𝐷𝑒𝑡(𝐽(𝐸∗) − 𝜆𝐼) = 0 yang menghasilkan 

persamaan karakteristik 𝜆3+ 𝑝
1
𝜆2+ 𝑝

2
𝜆 +

𝑝
3
= 0 di mana, 

 𝑝1 = −(𝐽11
1 + 𝐽22

1 + 𝐽33
1 ) 

          𝑝2 = 𝐽11
1 𝐽22

1 + 𝐽11
1 𝐽33

1 + 𝐽22
1 𝐽33

1 − 𝐽12
1 𝐽21

1 − 𝐽13
1 𝐽31

1 − 𝐽23
1 𝐽32

1  

 𝑝3 = 𝐽11
1 𝐽22

1 𝐽33
1 + 𝐽12

1 𝐽31
1 𝐽23

1 + 𝐽21
1 𝐽13

1 𝐽32
1 − 𝐽13

1 𝐽22
1 𝐽31

1 − 

𝐽11
1 𝐽23

1 𝐽32
1 − 𝐽33

1 𝐽12
1 𝐽21

1  

Berdasrakan kriteria Routh-Hurwitz, 

titik kesetimbangan 𝐸∗ stabil asimtotik 

ketika 𝑝1 > 0,𝑝1𝑝2 − 𝑝3 > 0,𝑝3 > 0. 
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SIMULASI NUMERIK 

Untuk mengevaluasi kesesuaian antara hasil 

analitik dan numerik, dilakukan simulasi numerik. 

Rincian nilai parameter ditampilkan pada Tabel 

berikut: 

Tabel 1. Nilai Parameter 
Parameter  Keterangan  Nilai Sumber 

𝑎 Faktor 

penanganan 

0.9 Asumsi 

𝑏1 Efek interferensi 

antar IG mangsa 

0.45 (Ji & 

Wang, 

2022) 

𝑏2 Efek interferensi 

antar IG pemangsa 

0.02 (Ji & 

Wang, 

2022) 

𝑐 Tingkat tekanan 

predasi  

0.2 Asumsi 

𝜀 Efisiensi konversi 

biomassa IG 

pemangsa dari IG 

mangsa 

6 Asumsi 

𝑑1 Tingkat kematian 

IG mangsa 

0.05 Asumsi 

𝑑2 Tingkat kematian 

IG pemangsa 

0.3 (Ji & 

Wang, 

2022) 

ℎ2 Tingkat 

pemanenan IG 

mangsa 

0.15 Asumsi 

ℎ2 Tingkat 

pemanenan IG 

pemangsa 

0.05 (Putra 

dkk., 

2023) 

 

Simulasi dilakukan untuk nilai parameter h1 = 

0.15 dengan nilai parameter pada Tabel 2 dan dipilih 

nilai efisiensi konversi biomassa IG mangsa dan IG 

pemangsa berbeda sesuai dengan syarat kestabilan 

𝐸1 = (1,0,0) yaitu misalkan 𝑒1 = 0.1 untuk nilai 𝑒1 <

0.38, 𝑒1 = 0.8  untuk nilai 𝑒1 > 0.38, 𝑒2 = 0.2untuk 

nilai 𝑒2 < 0.665, dan 𝑒2 = 0.8  untuk nilai 𝑒2 > 0.665. 

 
Gambar  1. Simulasi numerik sistem (14) dengan 𝑒1 = 0.1 
dan 𝑒2 = 0.2   terhadap waktu t 

Gambar 5 menunjukkan bahwa ketika sistem (14) 

dengan kasus parameter 𝑒1 = 0.1 dan 𝑒2 = 0.2  , titik 

kesetimbangan kepunahan IG mangsa dan IG 

pemangsa stabil asimtotik yang ditandai dengan 

grafik yang konvergen ke 𝐸1 = (1,0,0).  

 
Gambar  2. Simulasi numerik sistem (14) dengan 𝑒1 = 0.1 
dan 𝑒2 = 0.8     terhadap waktu t 

Gambar 6 menunjukkan bahwa ketika sistem (14) 

dengan kasus parameter 𝑒1 = 0.1 dan 𝑒2 = 0.8  , titik 

kesetimbangan kepunahan IG mangsa 𝐸3  stabil 

asimtotik yang ditandai dengan grafik yang 

konvergen ke titik 𝐸3 = (0.7,0,0.45). 

 
Gambar  3. Simulasi numerik sistem (13) dengan 𝑒1 = 0.8 
dan 𝑒2 = 0.2 terhadap waktu t 

Gambar 7 menunjukkan bahwa ketika sistem (14) 

dengan kasus parameter 𝑒1 = 0.8 dan 𝑒2 = 0.2, titik 

kesetimbangan hidup berdampingan 𝐸∗ stabil 

asimtotik yang ditandai dengan grafik yang 

konvergen ke titik 𝐸∗ = (0.5, 0.3, 0.4). 

Dari simulasi yang telah dilakukan, terdapat 

perubahan kestabilan pada sistem yang 

menunjukkan terjadinya bifurkasi pada parameter ℎ1 

yaitu tingkat pemanenan pada IG mangsa. Garis 

tegas dan garis terputus-putus masing-masing 

merepresentasikan kondisi stabil dan tidak stabil. 

Sementara itu, garis putus-putus berwarna hitam 

merepresentasikan solusi yang tidak stabil dan 

memiliki nilai negatif, yang tidak bermakna secara 

biologis. Titik H menandai terjadinya bifurkasi 
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Supercritical Hopf, sementara BP (Branch Point) 

menunjukkan terjadinya bifurkasi Transcritical. 

 
Gambar  4. Bifurkasi dengan parameter ℎ1 

Gambar 8 menunjukkan bahwa perubahan 

parameter ℎ1  (tingkat pemanenan IG mangsa) 

menyebabkan perubahan kestabilan sistem, yang 

ditandai dengan munculnya bifurkasi. 

Ditemukan dua titik bifurkasi transkritikal (BP) 

pada ℎ1 = 0.27dan ℎ1 = 0.37, serta satu bifurkasi 

Hopf superkritis pada ℎ1 = 0.13 . Sistem 

mengalami perubahan stabilitas pada titik-titik 

kesetimbangan tertentu. Titik kepunahan IG 

mangsa dan pemangsa 𝐸1  menjadi stabil setelah 

ℎ1 > 0.37 , sedangkan titik kepunahan IG 

pemangsa 𝐸2  stabil pada interval ℎ1 =

(0.27, 0.37) . Titik kesetimbangan hidup 

berdampingan 𝐸∗ stabil pada interval ℎ1 = (0.13,

0.27).  dan hilang saat ℎ1 > 0.27. Ketika ℎ1 < 0.13 

sistem menunjukkan orbit periodik stabil yang 

menggambarkan fluktuasi populasi. 

 
Gambar  5. Potret fase sistem (13) untuk berbagai nilai 
parameter ℎ1 

Potret fase pada Gambar 9 menunjukkan 

perubahan dinamika sistem seiring variasi nilai ℎ1 . 

Pada ℎ1 = 0.11 , sistem membentuk orbit periodik 

stabil yang mencerminkan fluktuasi populasi akibat 

rendahnya tingkat pemanenan IG mangsa. Saat ℎ1 

meningkat ke 0.13 , terjadi bifurkasi Hopf yang 

mengubah sistem dari tidak stabil menjadi stabil, 

menunjukkan tingkat pemanenan IG mangsa mulai 

menstabilkan populasi. Pada ℎ1 = 0.15 , lintasan 

spiral masuk ke titik kesetimbangan, menandakan 

kestabilan asimtotik. 

 

  
Gambar  6. Simulasi numerik sistem (13) dengan 𝑒1 = 0.8 
dan 𝑒2 = 0.8 terhadap waktu t 

Gambar 10 menunjukkan bahwa ketika sistem 

(14) dengan kasus parameter 𝑒1 = 0.8 dan 𝑒2 = 0.8  , 

titik kesetimbangan kepunahan IG mangsa, sistem 

stabil asimtotik yang ditandai dengan grafik yang 

konvergen ke titik 𝐸3 = (0.7,0,0.45) . Adapun, titik 

kesetimbangan hidup berdampingan, sistem stabil 

asimtotik yang ditandai dengan grafik yang 

konvergen ke titik 𝐸∗ = (0.5, 0.08, 0.6). 

 

PENUTUP 

SIMPULAN 

Penelitian ini mengkonstruksi model matematika 

sistem mangsa–pemangsa dengan predasi intraguild, 

respon fungsional Beddington–DeAngelis, dan 

pemanenan. Model awal yang melibatkan tiga 

populasi (sumber daya 𝑅 , IG mangsa 𝑁 , dan IG 

pemangsa 𝑃 ) disederhanakan melalui penskalaan 

menjadi sistem tiga dimensi dengan variabel 𝑥, 𝑦, dan 

𝑧 . Model hasil penskalaan memiliki lima titik 

kesetimbangan yang dianalisis kestabilannya 

menggunakan matriks Jacobian dan kriteria Routh–

Hurwitz. 

Hasil simulasi numerik menunjukkan bahwa 

kestabilan titik-titik kesetimbangan sangat 

dipengaruhi oleh variasi parameter efisiensi konversi 

energi (𝑒1  dan 𝑒2)    dan tingkat pemanenan ( ℎ1). 

Hasil simulasi menunjukkan bahwa: 

1. Pada kasus nilai parameter 𝑒1 = 0.1 dan 𝑒2 =

0.2, hanya titik kesetimbangan 𝐸1 = (1,0,0) 

yang stabil, titik lainnya tidak eksis. 

2. Pada kasus nilai parameter 𝑒1 = 0.1 dan 𝑒2 =

0.8 ,  hanya titik kesetimbangan  𝐸3  yang 

stabil. 

3. Pada kasus nilai parameter 𝑒1 = 0.8 dan 𝑒2 =

0.2, titik hidup berdampingan 𝐸∗ stabil saat 

ℎ1 ∈ (0.13, 0.27) . Selain itu, saat ℎ1 ∈
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(0, 0.13)  terjadi osilasi populasi ketiga 

spesies secara berkala. 

4. Pada kasus nilai parameter 𝑒1 = 0.8 dan 𝑒2 =

0.8 , titik kesetimbangan 𝐸3 dan 𝐸∗  adalah 

stabil, sedangkan titik lainnya tidak stabil. 

Secara umum, model ini menunjukkan bahwa 

parameter konversi dan pemanenan berperan 

penting dalam menentukan eksistensi dan stabilitas 

populasi mangsa dan pemangsa dalam sistem 

ekologi yang kompleks. 

 

SARAN 

Penelitian ini difokuskan pada simulasi pengaruh 

variasi tingkat pemanenan IG mangsa (ℎ1)  terhadap 

dinamika sistem. Untuk pengembangan lebih lanjut, 

disarankan agar dilakukan analisis sensitivitas 

parameter guna mengidentifikasi parameter-

parameter yang paling berpengaruh terhadap 

kestabilan dan keberlanjutan sistem. Hasil analisis ini 

akan memberikan landasan yang lebih kuat dalam 

pengambilan keputusan pengelolaan sumber daya 

alam secara berkelanjutan. 
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