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Abstrak

Penelitian ini membahas model dinamika populasi tiga spesies yang terdiri atas sumber daya, mangsa, dan
pemangsa, dengan mempertimbangkan interaksi predasi, pemanenan, dan respon fungsional Beddington-
DeAngelis. Tujuan dari penelitian ini adalah untuk menganalisis kestabilan sistem, mengidentifikasi titik
kesetimbangan, dan mengevaluasi dampak dari variasi parameter terhadap dinamika populasi. Hasil analisis
menunjukkan bahwa ketika e; = 0.8 dan e, = 0.2, titik kesetimbangan E, = (0,0,0),E; = (1,0,0),E, =
(x1,¥1,0), tidak stabil. Sedangkan, titik kesetimbangan E; = (x,,0, z,) tidak ada karena terdapat populasi
yang negatif. Sementara itu, titik kesetimbangan hidup berdampingan E* = (x*,y*,z") adalah stabil
asimtotik pada interval nilai parameter tingkat pemanenan terhadap mangsa h; € (0.13,0.27). Namun,
terjadi bifurkasi Supercritical Hopf pada h; = 0.13, yang menyebabkan perubahan dinamika populasi, di
mana ketiga populasi, yakni sumber daya, mangsa, dan pemangsa, mengalami fluktuasi. Dengan kata lain,
pertumbuhan ketiga populasi mengalami siklus yang berkala.

Kata Kunci: Analisis kestabilan, sistem mangsa-pemangsa, predasi intraguild, Beddington-DeAngelis.

Abstract

This study discusses a three-species population dynamics model consisting of a resource, prey, and predator, taking into
account predation interactions, harvesting, and the Beddington-DeAngelis functional response. The aim of this study is
to analyze the stability of the system, identify equilibrium points, and evaluate the impact of parameter variations on
population dynamics. The results of the analysis show that when e; = 0.8 and e, = 0.2, the equilibrium points
Ey = (0,0,0),E; = (1,0,0),E, = (x1,¥1,0), are unstable. Meanwhile, the equilibrium point E; = (x,,0, z,) does not
exist because there is a negative event. Meanwhile, the equilibrium point of life E* = (x*,y*, z*) is asymptotically stable
in the interval of the parameter values of the level of harvesting against prey hy € (0.13,0.27). However, a supercritical
Hopf bifurcation occurs at hy = 0.13, leading to a change in population dynamics, where the resource, prey, and pred
ator populations undergo fluctuations. In other words, the growth of all three populations follows a periodic cycle.
Keywords: Stability analysis, predator-prey system, intraguild predation, Beddington-DeAngelis.

Dalam lingkungan alami, populasi

mangsa

Hubungan antar spesies maupun antar populasi
merupakan fenomena yang tidak dapat dihindari
dalam ekosistem alami. Salah satu bentuk interaksi
antarspesies yang paling umum adalah sistem
mangsa-pemangsa, yaitu ketika suatu spesies
memangsa spesies lain. Interaksi ini disebut predasi
dan menjadi fokus penting dalam studi ekologi
(Hasting, 1997).

Model matematika sering digunakan untuk
interaksi

merepresentasikan dinamika ekologi,

termasuk interaksi antara mangsa dan pemangsa.
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cenderung berfluktuasi, dan keberadaannya dapat
menarik pemangsa untuk menetap. Respon
pemangsa terhadap variasi kepadatan mangsa
disebut respon fungsional, yang menggambarkan
hubungan antara jumlah mangsa yang dikonsumsi
dan kepadatan mangsa itu sendiri (Solomon, 1949).
Salah satu bentuk respon fungsional yang lebih
kompleks adalah respon Beddington-DeAngelis,
yang mempertimbangkan pengaruh populasi
pemangsa serta batas perlindungan lingkungan
(Haque, 2011).
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Selain faktor interaksi langsung, pemanenan
merupakan aspek penting dalam studi ekologi
karena dapat memengaruhi keseimbangan populasi.
tidak
mengganggu hubungan antara spesies, menurunkan

Pemanenan yang terkendali  berpotensi

populasi, bahkan mengarah pada kepunahan. Oleh

upaya
mempertimbangkan kapasitas regenerasi spesies

karena itu, pemanenan konstan yang
perlu diterapkan untuk menjaga keseimbangan
antara pemanfaatan dan konservasi (Blaber dkk.,
2000).

Interaksi antara spesies dalam ekosistem sering
kali lebih kompleks daripada hubungan predasi
langsung. Salah satu bentuk interaksi kompleks
tersebut adalah predasi intraguild, yaitu ketika dua
spesies yang bersaing memperebutkan sumber daya
yang sama, juga terlibat dalam hubungan pemangsa-
mangs (Holt & Polis, 1997). Dalam konteks ini,
interaksi yang terjadi mencakup dua jenis sekaligus:
kompetisi dan predasi.

Penelitian Ji & Wang (2022), mengkaji model
predasi intraguild yang melibatkan tiga spesies:
sumber daya, mangsa intraguild, dan pemangsa
intraguild. Mereka menunjukkan bahwa model ini
memungkinkan terjadinya koeksistensi antara
mangsa dan pemangsa intraguild dalam kondisi
tertentu, seperti keseimbangan interior yang stabil,
siklus batas yang stabil, atau osilasi yang tidak
teratur. Temuan ini mengindikasikan bahwa predasi
intraguild dapat memperkuat keberlangsungan
hidup spesies dan menyeimbangkan ekosistem (Ji &
Wang, 2022).

Penelitian lain oleh Putra dkk. (2023) membahas
model Lotka-Volterra dengan pemanenan linear
pada mangsa dan pemangsa. Hasil penelitian
menunjukkan bahwa pemanenan memengaruhi
kelestarian populasi. Jika tingkat pertumbuhan
pemangsa lebih kecil daripada laju kematian dan
pemanenan, maka kedua spesies berisiko punah.
Sebaliknya, populasi akan bertahan jika pemanenan
dikelola dengan baik (Putra dkk., 2023).

Penelitian ini mengembangkan model interaksi
mangsa-pemangsa dengan predasi intraguild dan
respon fungsional Beddington-DeAngelis, mengacu
pada model Ji dan Wang (2022), dengan penambahan
aspek pemanenan. Tujuan dari penelitian ini adalah
mengembangkan model interaksi mangsa-pemangsa
yang melibatkan predasi intraguild,

Beddington-DeAngelis,

respon

fungsional dan
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kestabilan  titik
kesetimbangan serta menyimulasikan model untuk

pemanenan,untuk menganalisis

memahami kondisi di mana populasi tetap stabil atau
mengalami perubahan.

KAJIAN TEORI

Sistem mangsa-pemangsa merupakan model dasar
dalam ekologi matematika yang digunakan untuk
menggambarkan interaksi antara populasi mangsa
dan pemangsa. Salah satu model klasik yang banyak
digunakan adalah model Lotka-Volterra, yang
mengasumsikan bahwa populasi mangsa tumbuh
secara eksponensial tanpa keberadaan pemangsa,
sedangkan populasi pemangsa menurun secara
eksponensial tanpa keberadaan mangsa. Interaksi
pemangsaan kemudian memengaruhi dinamika
kedua spesies tersebut. Model ini selanjutnya
dikembangkan dengan menambahkan pertumbuhan
logistik pada populasi mangsa (Boyce dkk., 2017).

intraguild  (intraguild predation/1GP)
bentuk  interaksi yang
menggabungkan predasi dan kompetisi secara

Predasi
merupakan ekologis
simultan. Dalam IGP, pemangsa tidak hanya
memangsa mangsanya, tetapi juga bersaing dengan
mangsa tersebut dalam memanfaatkan sumber daya
yang sama. Interaksi ini melibatkan tiga komponen
utama, yaitu IG pemangsa, IG mangsa, dan sumber
daya. IG pemangsa memangsa IG mangsa dan
sumber daya, sedangkan IG mangsa hanya
memanfaatkan sumber daya (Holt & Polis, 1997).
Interaksi ini menghasilkan dinamika yang lebih
kompleks dibandingkan model mangsa-pemangsa
klasik karena adanya kombinasi antara kompetisi
dan predasi.

Untuk menggambarkan dinamika yang lebih
realistis, model juga mempertimbangkan respon
fungsional, yaitu laju pemangsaan yang dipengaruhi
tidak hanya oleh populasi mangsa, tetapi juga oleh
kepadatan pemangsa. Salah satu bentuk respon
fungsional tersebut adalah respon Beddington-
DeAngelis (Beddington, 1975). Selain itu, faktor
pemanenan juga
pemanenan dengan upaya konstan, yaitu ketika hasil

diperhitungkan, khususnya
tangkapan per satuan waktu diasumsikan sebanding
dengan ukuran populasi dan intensitas upaya,
seperti jumlah kapal, alat, atau durasi penangkapan
(Brauer & Castillo-Chavez, 2001).

Model
dinyatakan dalam bentuk

matematika dari interaksi tersebut

sistem persamaan
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diferensial biasa (PDB).

berdimensi-n dituliskan dalam bentuk x = f(t, x),

Secara umum, PDB

dengan x sebagai vektor keadaan dan f sebagai
fungsi vektor. Jika fungsi-fungsi tersebut bersifat
Titik
kesetimbangan diperoleh dengan menyamakan

nonlinier, maka sistem disebut nonlinier.
seluruh turunan terhadap waktu menjadi nol (Boyce
dkk., 2017). Untuk menganalisis kestabilannya,
sistem dilinearisasi di sekitar titik kesetimbangan
menggunakan matriks Jacobian, kemudian dianalisis
berdasarkan nilai-nilai eigennya. Nilai eigen dari
Jacobian menentukan sifat kestabilan lokal, seperti
simpul, pelana, atau spiral. Namun, jika nilai eigen
sulit diperoleh, dapat digunakan kriteria kestabilan
Routh-Hurwitz yang mengevaluasi tanda koefisien
dari persamaan karakteristik tanpa menghitung nilai
eigen secara langsung (Murray, 2001).

Selain itu, perubahan perilaku sistem akibat
variasi parameter dianalisis dengan bifurkasi, seperti
bifurkasi saddle-node, transcritical, pitchfork, dan hopf.
Analisis ini penting untuk memahami transisi
dinamis dalam sistem populasi yang dipengaruhi
oleh perubahan parameter lingkungan atau interaksi
antarspesies (Strogatz, 2018).

HASIL DAN PEMBAHASAN

KONTRUKSI MODEL MANGSA-PEMANGSA DENGAN
PREDASI INTRAGUILD, PEMANENAN DAN RESPON
FUNGSIONAL BEDDINGTON-DEANGELIS.

Penelitian ini mengembangkan model interaksi
mangsa-pemangsa dengan predasi intraguild dan
yang
sebelumnya dikaji oleh Ji dan Wang (2022), dengan

respon fungsional Beddington-DeAngelis

menambahkan aspek pemanenan seperti pada studi
oleh Putra dkk. (2023). Model melibatkan tiga
populasi, yaitu sumber daya (R), IG mangsa (N), dan
IG pemangsa (P). Populasi sumber daya diasumsikan
tumbubh secara logistik dan dimangsa oleh IG mangsa
dan IG pemangsa mengikuti respon fungsional
Beddington-DeAngelis yang mempertimbangkan
faktor penanganan A, serta interferensi antar IG
mangsa A, dan IG pemangsa A;. IG mangsa
memakan sumber daya dengan laju serangan
maksimum c;, sementara IG pemangsa memangsa
baik sumber daya maupun IG mangsa, masing-
masing dengan laju ¢, dan c;.

Efisiensi konversi biomassa dinyatakan melalui
parameter &; untuk IG mangsa dari sumber daya, ¢,
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untuk IG pemangsa dari sumber daya, dan &; untuk
IG pemangsa dari IG mangsa. Selain bertumbuh,
populasi IG mangsa dan IG pemangsa juga menurun
akibat kematian alami dengan laju d; dan d,, serta
akibat pemanenan dengan laju E; dan E,.

Hasil konstruksi model dalam penelitian ini
adalah tiga yang
merepresentasikan interaksi =~ mangsa-pemangsa

sistem dinamika dimensi
dengan predasi intraguild, pemanenan, dan fungsi
respon Beddington-DeAngelis, yang dirumuskan ke
dalam bentuk sistem persamaan diferensial sebagai
berikut:

dR R ¢,RN + ¢,RP
—=nR (1 - —) -
dr K) 1+ A,R+ A,N + AP
dN &, RN — ¢;NP AN —EN 13
dr ~ 1+ AR+ AN+ AP 1 ! (13
dP &C,RP + &5¢c3NP
— = — d,P — E,P
dt 1+ AR+ A,N + AP
Agar lebih mudah  menentukan titik

kesetimbangan, jumlah parameter dalam model (13)
dapat dikurangi melalui penskalaan berikut:

R Nc¢, Pc, .
X==,y=—,z=—", =nT
K y 7 7 !
Selain itu, diperkenalkan pula parameter-
parameter tak berdimensi baru sebagai berikut:
A, As, &0 K d
a=AKb =2 b, =22 e =" 5 =—,
G ) 1 £t
c E &0 K &¢C d E
=2 h=—e =" =225 =" h ==
G2 L6t L6t G £t £t

Diperoleh sistem nondimensional dari model (13)
dengan penskalaan sebagai berikut:

dx y+z

—=x (1 —-Xx— )

dt 1+ ax+ byy+ b,z

dy ( ei1x — cz 5 —h ) 14
ar 7 1+ ax+ byy+ bz ! ! a4
dz ( e,x + ecy P )

dt \1+ ax+ b,y+ b,z * ?

TITIK KESETIMBANGAN

Titik kesetimbangan diperoleh dari & 0,2 =
dt dt

0,% = 0, sehingga diperoleh 5 titik kesetimbangan

sebagai berikut:
1. Titik kesetimbangan trivial E, = (0,0,0)
2. Titik kesetimbangan kepunahan IG mangsa
dan IG pemangsa E; = (1,0,0)
3. Titik kesetimbangan kepunahan IG

pemangsa E, = (x4,y4,0), di mana

ad,+ah;+e;by—e +\/(—ad,—ah,—e by +e;)2+4(e;b1 51 +e;b hy)
2e.bq

X, =

dan
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x1(e;—adi—ahy)-81—hy

= by81+bihy

Titik  kesetimbangan kepunahan IG

pemangsa eksis ketika e; > 61;’11 +a(6; +
1

hy).

4. Titik kesetimbangan kepunahan IG mangsa
E; = (x,,0,2,), di mana

a62+ahz+ezbz—ez+\/(—a62—ah2—ezb2+ez)2+4(ezb252+ezb2h2)
2e;b,

Xy =

dan
_ x1(e;—ady—ahy)=8,-h,
2 b,8,+byh,

Titik kesetimbangan kepunahan IG mangsa
82h2 1 (8, + hy).

X2

5. Titik kesetimbangan hidup berdampingan

eksis ketika e, >

E* = (x*,y*,z*), di mana x* adalah Solusi
dari persamaan kuadrat berikut:
Ax* +Bx+C =0,
Dengan koefisien:
A = ec?a — ce,b, — £Ce,b,,
B = hye,b, + 8,e,b; — 8,e,b, — hye,b, + 8,e,b, + hye b,
+ec? + ece; — ce, — ec?a — ecab; — ecah, —
ece;b, + acd, + ach, + ce,b; — 6,e.b; + hye by,
¢ = C68, + ch, — €% — £C5, — ECh,,
Karena% < 0, maka hasil kali kedua akar

bernilai negatif, sehingga dapat disimpulkan
bahwa persamaan kuadrat tersebut memiliki
tepat satu akar real positif. Akar real positif
ini dinotasikan dengan x*, yang kemudian
digunakan untuk menentukan nilai y* dan
z* melalui persamaan berikut:

_ x"(81e2b2+hyezby—cadi—cahy+cez—hze1bp—8ze1bp)—cS1—chy

- c(82by+hyby—e81by+eh by—£c) ’

_ x"(82e1b1+hpe1 by +ecad+ecahs—eces —hiez b1 —81e2b1)+ecS1+echy
- (82b1+haby 81 by +ehyby—ec)

ANALISIS KESTABILAN

Analisis kestabilan titik kesetimbangan dilakukan
dengan melakukan linearisasi sistem persamaan .. di
sekitar titik kesetimbangan dengan menentukan nilai
eigennya. Melalui cara ini, dapat diketahui sifat
lokal titik
kesetimbangan. Matriks Jacobian yang diperoleh

kestabilan dari  masing-masing

merupakan hasil dari proses linearisasi sistem (13)

sebagai berikut:
0fi Ofi Of
dx dy 0z
_| %% 04 OA
J= ax dy 0z (15)
s 0fs 0fs
dx dy 0z
di mana,
of 1+ byy+ bz2)(y +2)

dox X (14 ax+ by + byz)? =i

%_ _x(1+ax)+xz( b, — b))

dy (14 ax+ byy+ b,2)? =iz

fi  x(1+ax)+xy(by— by)

9z (1+ ax+ byy+ byz)? ¥

% _ey(1+ byy) +yz(bye; — ac)

ax (14 ax+ by + byz)? T

% _(egx—cz)(1+ ax + byz) 8 —hy =]

dy  (1+ ax+ by + b,yz)?
df,  cy(1+ byy)+xy(be; + ac)
9z (1+ ax+ b,y + b,z)2 ¥
dfs _eyz(1+ byy+ byz) —aecyz
9x (14 ax+ byy+ b,z)? 2V
dfs _ecz(1+ b,yz) + xz(agc — bye;)
9y (14 ax+ byy+ byz)?
0fs (e;x+ecy)(1+ ax+ byy)
9z (14 ax+ byy+ b,z2)?
Selanjutnya, dilakukan analisis kestabilan di tiap
titik sistem  (13)
mensubtitusikan tiap titik kesetimbangan ke dalam
matriks Jacobian (15)
1. Kestabilan di titik kesetimbangan trivial E,
Subtitusi matriks Jacobian di titik E, ,

= J32,

8, — hy =Js3.

kesetimbangan dengan

sehingga diperoleh
1 0 0

J(Ep) = (0 =6, —hy 0 ) (16)
0 0 _62 - hz

Dari matriks Jacobian (16) diperoleh nilai
eigen A, =1, 4, =-6,—hy, ;3=-8,—h,
sehingga dapat disimpulkan bahwa titik
kesetimbangan E, tidak stabil dan

merupakan titik pelana
2. Kestabilan kepunahan IG mangsa dan IG
pemangsa E;

Subtitusi matriks Jacobian di titik E; ,

sehingga diperoleh
1 1
/_1 T1+4a “1+a \
JE)=] 0 5l 0 | an
€2
\0 0 1+a—52—h2/

Dari matriks Jacobian (17) diperoleh nilai
eigen 4, = -1, A, =1%—61—h1, A3 =1%—
—08, —h, sehingga dapat disimpulkan
bahwa titik kesetimbangan E; merupakan
titik simpul dan stabil asimtotik jika e; <
61+ h)(A+a)dane, < (6, + hy)(1 + a).

3. Kestabilan di  titikk = kesetimbangan
kepunahan IG pemangsa E,
Subtitusi matriks Jacobian di titik E, ,

sehingga diperoleh
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Jir Ji2 Jis
J(E;) = ]%1 ]%2 ]%3 (18)
0 0 Ji
di mana,
_ yi(1+ byy)
(14 ax; + byy)?
x(1+ ax;)

Jii=1-2x

1 _
Sz == (1+ ax; + byy,)?
Jh = — x1(1+ax;) +x,y.(by — by)

13 (1+ ax; + byy,)? ’
i = e;y1(1+ byy)

T4 axy + byyy)?

e x (1+ axy)

J22 = (1+ ax, + byy)? O =,
Jh = — cyi(1+ byy,) + x1y:(boeg + ac)’

1+ ax; + biy,)?
I, = (€2 + ecy ) (1 + axy + biyr) 5o —h
33 (1+ ax; + byy;)? z 2

Nilai eigen dari matriks Jacobian (18)

merupakan penyelesaiaan dari persamaan
Det(J(E,) —AI) =0 yang menghasilkan
persamaan Karakteristik A%+ p, A%+ p, A+
p,=0 di mana,
p1=—Ul +J32 +J33)
P2 =JiiJz2 + )i +J32J3s — i)
Ps =Ji1)22J3s — Jis/iJh

Berdasrakan kriteria Routh-Hurwitz,
titik kesetimbangan E, stabil asimtotik
ketika p; > 0,p;p, —p; > 0,p; > 0.
Kestabilan  di  titik
kepunahan IG mangsa E
Subtitusi matriks Jacobian di titik Ej ,

kesetimbangan

sehingga diperoleh

I I It
JEEs)=(0 J3& O (19)

51 J% T

di mana,

2 _ 4 B z,(1+ byz,)

Ji=1-2x (14 ax, + byzy)?

7= - %, (1 + ax,) + x,2,( by, — by)

12 — ]

(1+ ax, + byz,)?
x,(1+ axy)

2

Jis =~ (14 ax, + byzy)?
(e1x; —czy)(1+ ax, + byzy)
I3 = 2 — 6, —hy,
1+ ax, + byz,)

2 €27,(1+ b,z,)
Ja = (14 ax, + byz,)?2

, _ &z(1+ byz,) + x,2,(agc — byey)
J32 = (1+ ax, + byz,)?
2, = e, x,(1+ ax,) 5, —h,

1+ ax, + byz,)? B
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Nilai eigen dari matriks Jacobian (19)
merupakan penyelesaiaan dari persamaan
Det(J(E3) —AI) =0 yang menghasilkan
persamaan Karakteristik 2° +p, A% + p, A+
p, = 0 di mana,

P =—Uh +J5+J3)
P2 = Ji3e + T3 + 503 — Jia)5
Ps = JiJ3)3s — i3 5

Berdasrakan kriteria Routh-Hurwitz,
titik kesetimbangan E; stabil asimtotik
ketika p; > 0,p;p, —p3 > 0,p; > 0.
Kestabilan di titik kesetimbangan hidup

berdampingan E*
Subtitusi matriks Jacobian di titik E*
sehingga diperoleh
Jin Jiz i3
JE)={Jz1 J2z J23 (20)
J31 Ja2 I3
di mana,
ax*(1—x"
]{1 = ( ) *l

1+ ax*+ b,y* + b,z* B
bix*(1—x")—x"

Jiz =7 + ax* + b,y* + byz”
b,x*(1—x") —x"
]I3:1+ax*+b * +
\V*+ b,z
. y*(e; —aé, — ahy)
S = o ¥ b,y* + b,z*
. by (6, + hy)
S = T ey b,y* + b,z*
. —y*(c+by(6; +hy))
3 =1 o ¥ b,y* + b,z*
i z*(e, —ad, — ahy)
Jor = 1+ ax*+ byy*+ bz
. _ Z(ec—Dby(6; + hy))
J52 = 1+ ax*+ byy*+ byz"
. b,z"(8; + h,)
J33 =

" 14 ax* + byy* + byz”

Nilai eigen dari matriks Jacobian (20)
merupakan penyelesaiaan dari persamaan
Det(J(E*)—AI) =0 yang menghasilkan
persamaan Karakteristik A3+ p A% +p, 1+
p,=0 di mana,
p1 ==t +J32 +/3s)

P2 = JiJza +JiJis + JiJiz — i — JisJi — J3s).
Ps = J11J32)3s + 12J31)3s + JaJia)i — Jis)22)3n —

Jizalzz = T3zl

Berdasrakan kriteria Routh-Hurwitz,
titik kesetimbangan E* stabil asimtotik
ketika p; > 0,p;p, —p3 > 0,p3 > 0.
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SIMULASI NUMERIK

Untuk mengevaluasi kesesuaian antara hasil
analitik dan numerik, dilakukan simulasi numerik.
Rincian nilai parameter ditampilkan pada Tabel
berikut:

Tabel 1. Nilai Parameter

Parameter | Keterangan Nilai Sumber
a Faktor 0.9 Asumsi
penanganan
b, Efek interferensi 0.45 (Ji &
antar IG mangsa Wang,
2022)
b, Efek interferensi 0.02 (i &
antar IG pemangsa Wang,
2022)
c Tingkat tekanan 0.2 Asumsi
predasi
€ Efisiensi konversi 6 Asumsi
biomassa IG
pemangsa dari IG
mangsa
dy Tingkat kematian 0.05 Asumsi
IG mangsa
d, Tingkat kematian 0.3 (Ji &
IG pemangsa Wang,
2022)
h, Tingkat 0.15 Asumsi
pemanenan (@
mangsa
h, Tingkat 0.05 (Putra
pemanenan 1G dkk.,
pemangsa 2023)

Simulasi dilakukan untuk nilai parameter hl =
0.15 dengan nilai parameter pada Tabel 2 dan dipilih
nilai efisiensi konversi biomassa IG mangsa dan IG
pemangsa berbeda sesuai dengan syarat kestabilan
E; = (1,0,0) yaitu misalkan e; = 0.1 untuk nilaie; <
0.38, e; = 0.8 untuk nilai e; > 0.38, e, = 0.2 untuk
nilai e, < 0.665, dan e, = 0.8 untuk nilai e, > 0.665.

Time series di E, untuk h,=0.15, e,=0.1, e,=0.2

Populasi
>
5

0 1 2 3 4 5 [ 7 8 9
wakftu

10

Gambar 1. Simulasi numerik sistem (14) dengan e; = 0.1
dane, = 0.2 terhadap waktu t
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Gambar 5 menunjukkan bahwa ketika sistem (14)
dengan kasus parameter e; = 0.1 dane, = 0.2 , titik
kesetimbangan kepunahan IG mangsa dan IG
pemangsa stabil asimtotik yang ditandai dengan
grafik yang konvergen ke E; = (1,0,0).

Time series di E:' untuk h1=D.15, e1=0.1, e2=D.B
09

Sumber daya(x)
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Gambar 2. Simulasi numerik sistem (14) dengane; = 0.1
dane, = 0.8 terhadap waktu t

Gambar 6 menunjukkan bahwa ketika sistem (14)
dengan kasus parameter e; = 0.1 dane, = 0.8 , titik
kesetimbangan kepunahan IG mangsa E; stabil
asimtotik yang ditandai dengan grafik yang
konvergen ke titik E; = (0.7,0,0.45).

Time series di E" untuk h1=D.15, e1=0.8, ez=D.2
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Gambar 3. Simulasi numerik sistem (13) dengan e; = 0.8
dan e, = 0.2 terhadap waktu t

Gambar 7 menunjukkan bahwa ketika sistem (14)
dengan kasus parameter e; = 0.8 dan e, = 0.2, titik
kesetimbangan hidup berdampingan E* stabil
asimtotik yang ditandai dengan grafik yang
konvergen ke titik E* = (0.5,0.3,0.4).

Dari simulasi yang telah dilakukan, terdapat
kestabilan yang
menunjukkan terjadinya bifurkasi pada parameter h,

perubahan pada  sistem
yaitu tingkat pemanenan pada IG mangsa. Garis
tegas dan garis terputus-putus masing-masing
merepresentasikan kondisi stabil dan tidak stabil.
Sementara itu, garis putus-putus berwarna hitam
merepresentasikan solusi yang tidak stabil dan
memiliki nilai negatif, yang tidak bermakna secara

biologis. Titik H menandai terjadinya bifurkasi
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Supercritical Hopf, sementara BP (Branch Point)
menunjukkan terjadinya bifurkasi Transcritical.

Gambar 4. Bifurkasi dengan parameter hy

Gambar 8 menunjukkan bahwa perubahan
parameter h; (tingkat pemanenan IG mangsa)
menyebabkan perubahan kestabilan sistem, yang
ditandai  dengan  munculnya  bifurkasi.
Ditemukan dua titik bifurkasi transkritikal (BP)
pada hy = 0.27dan h; = 0.37, serta satu bifurkasi
Hopf pada h; =0.13
mengalami perubahan stabilitas pada titik-titik

superkritis Sistem
kesetimbangan tertentu. Titik kepunahan IG
mangsa dan pemangsa E; menjadi stabil setelah
hy >0.37 , sedangkan titik kepunahan IG
pemangsa E, stabil hy =
(0.27,0.37) Titik  kesetimbangan  hidup
berdampingan E* stabil pada interval h; = (0.13,
0.27). dan hilang saat h; > 0.27. Ketika h; < 0.13

sistem menunjukkan orbit periodik stabil yang

pada interval

menggambarkan fluktuasi populasi.

Gambar 5. Potret fase sistem (13) untuk berbagai nilai
parameter h;

Potret fase pada Gambar 9 menunjukkan
perubahan dinamika sistem seiring variasi nilai h; .
Pada h; = 0.11, sistem membentuk orbit periodik
stabil yang mencerminkan fluktuasi populasi akibat
rendahnya tingkat pemanenan IG mangsa. Saat h;
meningkat ke 0.13, terjadi bifurkasi Hopf yang
mengubah sistem dari tidak stabil menjadi stabil,

menunjukkan tingkat pemanenan IG mangsa mulai
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menstabilkan populasi. Pada h; = 0.15, lintasan
spiral masuk ke titik kesetimbangan, menandakan
kestabilan asimtotik.

Tima sarias i E, untuk h, =0.15:

......

dan e, = 0.8 terhadap waktu t

Gambar 10 menunjukkan bahwa ketika sistem
(14) dengan kasus parameter e; = 0.8 dane, = 0.8 ,
titik kesetimbangan kepunahan IG mangsa, sistem
stabil asimtotik yang ditandai dengan grafik yang
konvergen ke titik E; = (0.7,0,0.45). Adapun, titik
kesetimbangan hidup berdampingan, sistem stabil
asimtotik yang ditandai dengan grafik yang
konvergen ke titik E* = (0.5, 0.08, 0.6).

PENUTUP
SIMPULAN

Penelitian ini mengkonstruksi model matematika
sistem mangsa-pemangsa dengan predasi intraguild,
respon fungsional Beddington-DeAngelis, dan
pemanenan. Model awal yang melibatkan tiga
populasi (sumber daya R, IG mangsa N, dan IG
pemangsa P) disederhanakan melalui penskalaan
menjadi sistem tiga dimensi dengan variabel x, y, dan
z . Model hasil penskalaan memiliki lima titik

kesetimbangan yang dianalisis kestabilannya
menggunakan matriks Jacobian dan kriteria Routh-
Hurwitz.

Hasil simulasi numerik menunjukkan bahwa
kestabilan  titik-titik

dipengaruhi oleh variasi parameter efisiensi konversi

kesetimbangan  sangat

energi (e; dan e;) dan tingkat pemanenan (h;).

Hasil simulasi menunjukkan bahwa:

1. Padakasus nilai parameter e; = 0.1 dane, =
0.2, hanya titik kesetimbangan E; = (1,0,0)
yang stabil, titik lainnya tidak eksis.

2. Pada kasus nilai parameter e; = 0.1 dane, =
0.8, hanya titik kesetimbangan E; yang
stabil.

3. Padakasus nilai parameter e; = 0.8 dane, =

0.2, titik hidup berdampingan E* stabil saat

h, € (0.13,0.27) . Selain itu, saat h; €
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(0,0.13) terjadi
spesies secara berkala.

osilasi populasi ketiga
Pada kasus nilai parameter e; = 0.8 dane, =
0.8, titik kesetimbangan E; dan E* adalah
stabil, sedangkan titik lainnya tidak stabil.
Secara umum, model ini menunjukkan bahwa
parameter konversi dan pemanenan berperan
penting dalam menentukan eksistensi dan stabilitas
populasi mangsa dan pemangsa dalam sistem

ekologi yang kompleks.

SARAN

Penelitian ini difokuskan pada simulasi pengaruh
variasi tingkat pemanenan IG mangsa (h,) terhadap
dinamika sistem. Untuk pengembangan lebih lanjut,
disarankan agar dilakukan analisis sensitivitas
parameter guna mengidentifikasi parameter-
parameter yang paling berpengaruh terhadap
kestabilan dan keberlanjutan sistem. Hasil analisis ini
akan memberikan landasan yang lebih kuat dalam
pengambilan keputusan pengelolaan sumber daya

alam secara berkelanjutan.
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