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Abstrak 

Banyak permasalahan-permasalahan dalam kehidupan sehari-hari yang dapat dimodelkan melalui model 
matematika. Salah satunya adalah permasalahan di bidang mekanika yaitu vibrasi. Vibrasi yang berlebihan 
dapat menyebabkan kehilangan efisiensi bahkan menyebabkan kerusakan struktural yang dapat 
membahayakan. Untuk meredam vibrasi atau eksitasi yang tidak diinginkan dapat menggunakan sistem 
tereksitasi sendiri yang dirangkai dengan eksitasi parametrik dan dimodelkan melalui sistem pegas dua 
massa. Sehingga, tujuan dari penelitian ini adalah untuk mengetahui daerah kestabilan di mana eksitasi 
tersebut dapat teredam. Metode averaging digunakan untuk menganalisis kestabilan dari sistem. Hasil dari 

penelitian ini menunjukkan bahwa peredaman bergantung pada dua kondisi. Kondisi pertama menyatakan 
bahwa peredaman bergantung pada parameter peredam 𝜃11  dan 𝜃22  di mana jumlah kedua parameter 
tersebut harus positif. Kondisi kedua yaitu terkait kombinasi parametrik anti-resonansi dengan melibatkan 
frekuensi eksitasi parametrik. Hasil juga menunjukkan bahwa dengan memperbesar nilai amplitudo 𝜀 dari 
eksitasi parametrik dapat memperluas daerah peredaman eksitasi sendiri. Di luar solusi trivial juga dapat 
muncul solusi non-trivial. 
Kata Kunci: Eksitasi sendiri, eksitasi parametrik, metode averaging, peredam, kombinasi parametrik anti-
resonansi. 
  

Abstract 

Many problems in everyday life can be modeled through mathematical models. One of them is a problem in the field of 
mechanics, namely vibration. Excessive vibration can cause loss of efficiency and even cause structural damage that 
can be dangerous. To dampen unwanted vibrations or excitations, a self-excited system can be used which is assembled 
with parametric excitation and modeled through a two-mass spring system. Thus, the purpose of this study is to 
determine the stability area where the excitation can be damped. The averaging method is used to analyze the stability 
of the system. The results of this study indicate that the absorber depends on two conditions. The first condition states 
that the damping depends on the damping parameters 𝜃11 and 𝜃22 where the sum of two parameters must be positive. 
The second condition is related to the parametric combination anti-resonance involving the parametric excitation 
frequency. The results also show that by increasing the amplitude value 𝜀 of parametric excitation, the self-excitation 
damping area can be expanded. Beyond the trivial solution, non-trivial solutions can also emerge. 
Keywords: Self-excited, parametric excitation, averaging method, damping, parametric anti-resonance combination.

 

 

PENDAHULUAN 

Banyak permasalahan dalam kehidupan sehari-

hari yang muncul dalam berbagai bidang ilmu. 

Salah satu contohnya adalah dalam bidang 

mekanika, di mana perilaku sistem mekanik dapat 

dimodelkan melalui model matematika. Dalam 

bidang mekanika, sistem mekanik yang bekerja 

sering menimbulkan permasalahan seperti vibrasi 

(getaran) yang berlebihan pada suatu sistem. Vibrasi 

yang berlebihan dapat menyebabkan kehilangan 

efisiensi dan dalam kasus ekstrem akan 

menyebabkan kerusakan struktural yang dapat 

membahayakan (Rao, 2018).  

Salah satu contoh sistem yang mengalami vibrasi 

adalah bangunan tinggi. Vibrasi tersebut bisa 

dipengaruhi oleh beberapa faktor. Bangunan tinggi 

yang mengalami vibrasi dapat dimodelkan sebagai 

sistem pegas massa yang disusun berdasarkan 

prinsip hukum Hooke dan hukum Newton II 
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(Diyamita, 2017). Massa pada sistem yang bergetar 

berperan penting dalam menentukan karakteristik 

osilasi, terutama ketika dua osilator dirangkai. 

Ketika dua osilator dirangkai, masing-masing 

dengan massa dan konstanta pegas yang berbeda, 

akan berinteraksi satu sama lain melalui gaya 

pemulih. Interaksi ini menyebabkan energi dapat 

berpindah dari osilator satu ke osilator lainnya. Jika 

satu osilator diberi energi melalui getaran, maka 

dapat mempengaruhi gerakan osilator kedua, sistem 

ini disebut sebagai sistem osilator gabungan 

(Holland, 2008).  

Penelitian yang telah dilakukan oleh Půst dan 

Tondl (2008) yaitu membahas analisis sistem dua 

massa yang terdiri dari sistem utama dengan 

eksitasi sendiri yang dipasang pada subsistem 

fondasi berupa massa dan pegas. Kemudian 

penelitian yang dilakukan oleh Bobryk, dkk (2017) 

yang membahas mengenai penekanan getaran 

eksitasi sendiri pada sistem utama dengan getaran 

eksitasi parametrik acak pada sistem penyerap. 

Penelitian yang telah dilakukan oleh Fatimah dan 

Verhulst (2003) yaitu membahas mengenai 

kemungkinan menekan getaran yang diinduksi 

aliran (flow-induced vibrations) menggunakan eksitasi 

parametrik secara periodik. 

Pada penelitian ini akan mengkaji model 

matematika pada sistem pegas dua massa yang 

tereksitasi sendiri yang diredam oleh eksitasi 

parametrik. Penelitian ini untuk memodifikasi 

penelitian yang dilakukan oleh Půst dan Tondl 

(2008) terkait getaran eksitasi sendiri pada sistem 

utama dengan menambahkan pengaruh lain berupa 

eksitasi parametrik acak pada subsistem fondasi 

seperti pada penelitian yang dilakukan Bobryk, dkk 

(2017). Namun, penelitian ini akan berfokus pada 

penambahan eksitasi parametrik secara periodik 

seperti pada penelitian yang dilakukan Fatimah dan 

Verhulst (2003). 

KAJIAN TEORI 

VIBRASI 

Vibrasi atau getaran adalah gerak osilasi pada 

sistem mekanik yang terjadi di sekitar titik 

kesetimbangannya. Terdapat dua kelompok getaran 

umum, yaitu getaran bebas (free vibration) dan 

getaran yang disebabkan oleh gaya (forced vibration). 

Getaran bebas terjadi ketika sistem bergetar akibat 

gangguan awal dan tanpa adanya pengaruh gaya 

eksternal (Rao, 2018).  

Getaran yang disebabkan oleh gaya 

diklasifikasikan menjadi tiga; yakni getaran 

tereksitasi sendiri (self excited vibration) yang terjadi 

karena ada medium yang mengalir seperti angin 

dan air; getaran dengan adanya gaya eksternal 

(external excitations vibrations) yang terjadi akibat 

gaya eksternal yang diterapkan pada sistem; dan 

getaran tereksitasi secara periodik (parametrically 

excitation vibrations) yang terjadi ketika parameter 

sistem berubah secara periodik terhadap waktu 

(Nayfeh & Mook, 1995). 

SISTEM PEGAS MASSA 

Sistem pegas massa merupakan salah satu 

contoh sederhana yang digunakan untuk 

memahami prinsip dasar osilasi mekanis dalam 

konteks getaran. Sistem pegas massa terdiri dari 

massa yang dirangkai dengan pegas, dapat disusun 

secara seri maupun paralel. Pada rangkaian seri, 

gaya yang bekerja pada setiap pegas sama besar. 

Sedangkan pada rangkaian paralel, gaya yang 

bekerja pada sistem dibagi antara pegas-pegas yang 

ada pada sistem (Rao, 2018).  

SISTEM PERSAMAAN DIFERENSIAL BIASA 

Sistem persamaan diferensial biasa merupakan 
persamaan diferensial biasa yang terdiri dari 𝑛 
persamaan diferensial biasa. Bentuk umum sistem 
persamaan diferensial orde-1 sebagai berikut: 

𝒙′ = 𝒇(𝒕,𝒙), 𝒕 ∈ ℝ, 𝒙 ∈ ℝ𝑛 (1) 
di mana 𝒙 = 𝒙(𝒕) = 𝑥1(𝑡),𝑥2(𝑡), 𝑥3(𝑡),… , 𝑥𝑛(𝑡) dan 𝒇 

adalah fungsi bernilai real dari 𝑛 + 1  variabel 
𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  dan 𝑡 . Titik 𝒙∗  disebut titik 
kesetimbangan dari sistem jika dan hanya jika 
memenuhi 𝒇(𝒕,𝒙∗) = 0. Sistem persamaan 𝒇(𝒕,𝒙∗) =

0 dapat ditulis dalam bentuk vektor 
𝒙′ = 𝑨𝒙+ 𝒉(𝒕) (2) 

di mana 𝑨  adalah matriks jacobian dari 𝒇  di 𝒙∗ 
berikut : 

𝑨 =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 
 
 
 

 (3) 

dan 𝒉(𝒕) merupakan suku berorde tinggi yang lebih 
cepat menuju 0. Sehingga sistem (1) dapat 
diaproksimasi dengan sistem linier menjadi  

𝒙′ = 𝑨𝒙 (4) 
yang disebut dengan sistem terlinierisasi. 
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Nilai eigen matriks jacobian 𝑨 berukuran 𝑛 × 𝑛 
memiliki 𝑛 nilai eigen 𝜆. Nilai eigen diperoleh dari 
persamaan karakteristik matriks 𝑨  dapat berupa 
nilai real berbeda atau kompleks disebut nilai eigen 
dari matriks 𝑨. Berdasarkan nilai 𝜆 maka kestabilan 
titik kesetimbangan stabil asimtotik jika nilai eigen 
real atau negatif atau memiliki bagian real yang 
negatif dan tidak stabil jika terdapat nilai eigen real 
positif atau bagian real positif (Boyce dkk., 2017). 

KRITERIA ROUTH-HURWITZ 

Kriteria Routh-Hurwitz merupakan salah satu 
metode alternatif untuk menentukan kestabilan 
sistem jika nilai eigen dalam sistem linier sulit 
untuk ditentukan. Kriteria Routh-Hurwitz 
menentukan kestabilan suatu sistem melalui 
koefisien dari persamaan karakteristik saja tanpa 
harus mengetahui nilai eigen 𝜆.  

Misalkan nilai karakteristik matriks 𝑨 adalah  
det(𝑨 − 𝜆𝑰) = 0  

𝑎𝑛𝜆𝑛 + 𝑎𝑛−1𝜆
𝑛−1 + 𝑎𝑛−2𝜆

𝑛−2 + ⋯+ 𝑎1𝜆 + 𝑎0

= 0 
(5) 

di mana 𝑛  adalah orde sistem dan 𝑎𝑛, 𝑎𝑛−1, … , 𝑎0 
adalah koefisien polinomial. Sehingga diperoleh 
tabel kriteria Routh-Hurwitz berikut : 

Tabel 1. Bentuk tabel kriteria Routh-Hurwitz 

𝜆𝑛  𝑎𝑛 𝑎𝑛−2 𝑎𝑛−4 … 

𝜆𝑛−1 𝑎𝑛−1 𝑎𝑛−3 𝑎𝑛−5 … 

𝜆𝑛−2 𝑏1  𝑏2 𝑏3 … 

… …    

𝜆0 𝑃    

dengan 𝑛 = 1,2,… , 𝑘 didefinisikan sebagai berikut : 

𝑏1 =
𝑎1𝑎2 − 𝑎0𝑎3

𝑎1

,     𝑏2 =
𝑎1𝑎4 − 𝑎0𝑎5

𝑎1

, 

𝑏𝑛 =
𝑎1𝑎2𝑛 − 𝑎0𝑎2𝑛+1

𝑎1

,     𝑐1 =
𝑏1𝑎3 − 𝑎1𝑏2

𝑏1

, 

𝑐2 =
𝑏1𝑎5 − 𝑎1𝑏3

𝑏1

,     𝑐𝑛 =
𝑏1𝑎2𝑛+1 − 𝑎1𝑏𝑛+1

𝑏1

. 

Tabel Routh-Hurwitz tersebut dilanjutkan mendatar 
dan menurun hingga diperoleh elemen-elemen 
pada kolom pertama nol. Suatu sistem dikatakan 
stabil jika bagian real dari nilai eigennya adalah 
negatif, yang ditunjukkan dengan tidak ada 
perubahan tanda pada tabel Routh-Hurwitz (Olsder 
& Woude, 1998). 

METODE AVERAGING  

Prinsip dari metode averaging adalah dengan 
mengasumsikan adanya parameter 𝜀  pada sebuah 
persamaan osilator. Parameter 𝜀  merupakan 
parameter yang sangat kecil atau menuju nol 
dengan 𝜀 > 0 . Misalkan diketahui suatu sistem 
terpertubasi berikut : 

𝑥̈ + 𝑥 = 𝜀𝑓(𝑥, 𝑥̇) (6) 
di mana 𝜀𝑓(𝑥, 𝑥̇) adalah suku perturbasi dari sistem 
(6), 𝑓 berperiode-𝑇 terhadap 𝑡. Jika 𝜀 = 0, diperoleh 

solusi dari persamaan (6) dengan kombinasi linier 
dari cos 𝑡 dan sin 𝑡 berikut : 

𝑥(𝑡) = 𝑟0 cos(𝑡 + 𝜓0). (7) 
Solusi untuk 𝜀 ≠ 0, Lagrange mengenalkan “variasi 
parameter”. Diasumsikan bahwa 𝜀 ≠ 0 , solusinya 
dapat dituliskan dalam bentuk di mana amplitudo 
(𝑟)  dan fase (𝜓)  sebagai fungsi dalam waktu. 
Sehingga, masukkan solusi dari persamaan (6) 
sebagai berikut : 

𝑥(𝑡) = 𝑟(𝑡)cos(𝑡 + 𝜓(𝑡)) 
(8) 

𝑥̇(𝑡) = −𝑟(𝑡)sin(𝑡 + 𝜓(𝑡)). 
Persamaan (8) disubstitusikan ke (6) kemudian 
ditransformasikan dan diperoleh : 
𝑟̇ = −𝜀 sin(𝑡 + 𝜓)𝑓(𝑟 cos(𝑡 + 𝜓) ,−𝑟 sin(𝑡

+ 𝜓)) 
(9) 

𝜓̇ = −
𝜀

𝑟
cos(𝑡 + 𝜓)𝑓(𝑟 cos(𝑡 + 𝜓) ,−𝑟 sin(𝑡

+ 𝜓)). 
Persamaan (9) dapat ditulis sebagai berikut : 
𝑥̇ = 𝜀𝑓(𝑥, 𝑡) + 𝜀2𝑔(𝑥, 𝑡, 𝜀),𝑥(𝑡0) = 𝑥0. (10) 

di mana 𝜀𝑔(𝑥, 𝑡, 𝜀)  adalah suku perturbasi dari 
sistem, 𝑓  dan 𝑔  berperiode- 𝑇  terhadap variabel 𝑡 . 
Persamaan averaged dari (10) adalah  

𝑦̇ = 𝜀𝑓0(𝑦),𝑦(𝑡0) = 𝑥0 (11) 
dengan 

𝑓0(𝑦) =
1

𝑇
∫𝑓(𝑡, 𝑦)

𝑇

0

𝑑𝑡. (12) 

Solusi 𝑦(𝑡) dari (12) adalah aproksimasi dari solusi 
𝑥(𝑡) dari (10), di mana 𝑥(𝑡) − 𝑦(𝑡) = 𝒪(𝜀). 

METODE 

Penelitian ini adalah jenis penelitian studi 

literatur dan simulasi numerik mengenai analisis 

kestabilan sistem tereksitasi sendiri yang diredam 

oleh eksitasi parametrik. Tahapan yang dilakukan 

adalah studi literatur, menyusun batasan masalah, 

mengonstruksi model matematika sistem, 

menganalisis kestabilan model matematika sistem, 

simulasi, serta menarik kesimpulan dan saran. 
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HASIL DAN PEMBAHASAN 

KONSTRUSKSI MODEL MATEMATIKA SISTEM 

TEREKSITASI SENDIRI YANG DIREDAM OLEH 

EKSITASI PARAMETRIK 

 
Gambar 1. Sistem pegas dua massa yang tereksitaisi 

sendiri dirangkai dengan eksitasi parametrik 

Massa utama 𝑚1  dengan defleksi 𝑦1  tidak 

melekat pada apapun dirangkai secara vertikal 

melalui sebuah kekakuan pegas 𝑘1  dan 

dihubungkan dengan massa subsistem fondasi 𝑚2 

serta memiliki peredam 𝑐1 pada lantai. Massa utama 

𝑚1  mengalami eksitasi sendiri oleh aliran 𝑈  yang 

dinyatakan dengan redaman tipe Raileigh 𝛽0𝑈
2(1 −

𝛾0𝑦̇1
2)𝑦̇1 , 𝛽0, 𝛾0 > 0 . Massa subsistem fondasi 

dengan defleksi 𝑦2  terhubung ke massa utama 𝑚1 

melalui kekakuan pegas 𝑘1 dan terhubung ke lantai 

melalui kekakuan pegas yang berubah secara 

periodik yaitu 𝑘2(1 + 𝜀 cos𝜔𝑡)  serta memiliki 

peredam 𝑐2 pada lantai. Sehingga model matematika 

yang diperoleh adalah : 

𝑚1𝑦̈1 + 𝑐1𝑦̇1 + 𝑘1(𝑦1 − 𝑦2) 

−𝛽0𝑈
2(1 − 𝛾0 𝑦̇1

2)𝑦̇1 = 0 
(13) 

𝑚2𝑦̈2 + 𝑐2𝑦̇2 + 𝑘1(𝑦2 − 𝑦1) 

+𝑘2(1 + 𝜀 cos𝜔𝑡)𝑦2 = 0, 

dengan keterangan berikut : 

Tabel 2. Tabel keterangan parameter 

Variabel atau 

Parameter 
Keterangan 

𝑚1 Massa utama 

𝑚2 Massa subsistem fondasi 

𝑦1 Defleksi dari sistem utama 

𝑦2 Defleksi dari subsistem fondasi 

𝑘1 Kekakuan pegas massa utama 

𝑘2 Kekakuan pegas subsistem fondasi  

𝑐1 Peredam dari massa utama 

𝑐2 Peredam dari massa subsistem fondasi 

𝑈 Kecepatan aliran 

𝛽0 Konstanta aliran  

𝛾0 Koefisien nonlinieritas aliran 

𝜀 cos𝜔𝑡 Eksitasi parametrik dari 𝑘2 

𝑦̇1 Kecepatan dari massa utama 

𝑦̇2 
Kecepatan dari massa subsistem 

fondasi 

𝑦̈1 Percepatan dari massa utama 

𝑦̈2 
Percepatan dari massa subsistem 

fondasi 

  

ANALISIS KESTABILAN MODEL MATEMATIKA 

SISTEM TEREKSITASI SENDIRI YANG DIREDAM OLEH 

EKSITASI PARAMETRIK 

Menggunakan transformasi waktu 𝜔1𝑡 → 𝜏 , di 

mana 𝜔1
2 =

𝑘1

𝑚1
 yang merupakan frekuensi alami dari 

𝑚1  dan dengan menggunakan parameter yang 

sangat kecil, yaitu 𝜀 . Dengan mengskalakan 𝑘1,2 =

𝜀𝑘̅1,2  dan 𝛽 = 𝜀𝛽̅  pada sistem (13) serta 

mengasumsikan bahwa parameter lainnya adalah 

𝒪(1) terhadap 𝜀, maka diperoleh : 

𝑦1
′′ + 𝜀𝑘̅1𝑦1

′ + 𝑦1 − 𝑦2 

−𝜀𝛽̅𝑉2(1− 𝛾𝑦1
′2)𝑦1

′ = 0 
(14) 

𝑦2
′′ + 𝜀𝑘̅2𝑦2

′ + 𝑀(𝑦2 − 𝑦1) 

+𝑞2(1 + 𝜀 cos 𝜂𝜏)𝑦2 = 0 

di mana 𝑉2 =
𝑈2

𝑈𝑜
2 , 𝛽 =

𝛽0𝑈𝑜
2

𝑚1𝜔1
, 𝛾 = 𝛾0𝜔1

2 , 𝜂 =
𝜔

𝜔1
, 𝑘1 =

𝑐1

𝑚1𝜔1
, 𝑘2 =

𝑐2

𝑚2𝜔2
, 𝑞2 =

𝑘2

𝑚2𝜔1
2 , dan 𝑀 =

𝑚1

𝑚2
 dengan 𝑈𝑜 

merupakan nilai ynag dipilih untuk kecepatan arus.  

Transformasi persamaan (14) menjadi bentuk 

kuasi-normal menggunakan transformasi linier 

berikut : 

𝑦1 = 𝑥1 + 𝑥2 dan 𝑦2 = 𝑎1𝑥1 + 𝑎2𝑥2. (15) 

Substitusi (15) ke (14), diperoleh 

𝑥1
′′ + Ω1

2𝑥1 = −𝜀 𝐹1(𝑥1, 𝑥1
′ , 𝑥2, 𝑥2

′ , 𝜂𝜏) 
(16) 

𝑥2
′′ + Ω2

2𝑥2 = −𝜀 𝐹2(𝑥1, 𝑥1
′ , 𝑥2, 𝑥2

′ , 𝜂𝜏), 

di mana 

𝐹1(𝑥1, 𝑥1
′ , 𝑥2, 𝑥2

′ , 𝜂𝜏) = 𝜃11𝑥1
′ + 𝜃12𝑥2

′  

+(𝑄11𝑥1 + 𝑄12𝑥2) cos𝜂𝜏 − 𝐵1(𝑥1
′ + 𝑥2

′)3 
(17) 

𝐹2(𝑥1, 𝑥1
′ , 𝑥2, 𝑥2

′ , 𝜂𝜏) = 𝜃21𝑥1
′ + 𝜃22𝑥2

′  

+(𝑄21𝑥1 + 𝑄22𝑥2) cos𝜂𝜏 + 𝐵2(𝑥1
′ + 𝑥2

′)3 

dengan 

Ω1,2
2 =

1

2
(𝑞2 + 𝑀 + 1) ∓ √

1

4
(𝑞2 + 𝑀 + 1)2 − 𝑞2, 

𝑎1,2 =
1

2
((1 − 𝑞2 − 𝑀) ± √(𝑞2 + 𝑀 − 1)2 + 4𝑀), 

𝜃11 =
𝑎1𝑘2 − 𝑎2(𝑘1 − 𝛽𝑉2)

𝑎1 − 𝑎2

, 

𝜃12 =
𝑎2(𝑘2 − 𝑘1 + 𝛽𝑉2)

𝑎1 − 𝑎2

,   

𝜃21 =
−𝑎1(𝑘2 − 𝑘1 + 𝛽𝑉2)

𝑎1 − 𝑎2

,  
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𝜃22 =
𝑎1(𝑘1 − 𝛽𝑉2) − 𝑎2𝑘2

𝑎1 − 𝑎2

,  

𝑄11 =
𝑞2𝑎1

𝑎1 − 𝑎2

, 𝑄12 =
𝑞2𝑎2

𝑎1 − 𝑎2

, 𝑄21 =
−𝑞2𝑎1

𝑎1 − 𝑎2

,  

𝑄22 =
−𝑞2𝑎2

𝑎1 − 𝑎2

, 𝐵1 =
𝑎2𝛽𝑉2𝛾

𝑎1 − 𝑎2

, 𝐵2 =
𝑎1𝛽𝑉2𝛾

𝑎1 − 𝑎2

. 

Meredam getaran eksitasi sendiri dapat 

dilakukan dengan menggunakan kombinasi 

resonansi anti-parametrik dengan memunculkan 

detuning ketika mengambil 𝜂 = 𝜂0 + 𝜀𝜎  di mana 

𝜂0 = Ω2 − Ω1 . Dengan menggunakan transformasi 

waktu 𝑡 → 𝜂𝜏, sistem (16) menjadi  

𝑥̅1
′′ + 𝜔̅1

2𝑥̅1 = −
𝜀

𝜂0
2
𝐹̅1(𝑥̅1, 𝑥̅1

′ , 𝑥̅2, 𝑥̅2
′ , 𝑡) 

(18) 
𝑥̅2

′′ + 𝜔̅2
2𝑥̅2 = −

𝜀

𝜂0
2
𝐹̅2(𝑥̅1, 𝑥̅1

′ , 𝑥̅2, 𝑥̅2
′ , 𝑡) 

di mana 𝜔̅𝑖 =
Ω𝑖

𝜂𝑜
, 𝑖 = 1,2 dan 

𝐹̅1(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡) = −2𝜔̅1Ω1𝜎𝑥̅1 

+(𝜃11𝑥̅1
′ + 𝜃12𝑥̅2

′)𝜂0 + (𝑄11𝑥̅1 + 𝑄12𝑥̅2) cos 𝑡 

−𝐵1𝜂0
3(𝑥̅1

′ + 𝑥̅2
′)3 

(19) 
𝐹̅2(𝑥̅1, 𝑥̅1

′ , 𝑥̅2, 𝑥̅2
′ , 𝑡) = −2𝜔̅2Ω2𝜎𝑥̅2 

+(𝜃21𝑥̅1
′ + 𝜃22𝑥̅2

′)𝜂0 + (𝑄21𝑥̅1 + 𝑄22𝑥̅2) cos 𝑡 

+𝐵2𝜂0
3(𝑥̅1

′ + 𝑥̅2
′)3. 

Analisis terhadap kestabilan solusi trivial 

dilakukan untuk memungkinkan terjadinya 

peredaman getaran eksitasi sendiri oleh eksitasi 

parametrik. Dengan menggunakan transformasi : 

𝑥̅𝑖 = 𝑢𝑖 cos 𝜔̅𝑖𝑡 + 𝑣𝑖 sin 𝜔̅𝑖𝑡,      (20) 
𝑥̅𝑖

′ = −𝑢𝑖𝜔̅𝑖 sin 𝜔̅𝑖𝑡 + 𝑣𝑖𝜔̅𝑖 cos 𝜔̅𝑖𝑡, 

di mana 𝑖 = 1,2 . Substitusi (20) ke (18), dengan 

menggunakan transformasi (20) akan diperoleh 

𝑢𝑖
′ =

𝜀

𝜂0
2𝜔̅𝑖

 sin 𝜔̅𝑖𝑡  𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡) 

(21) 
𝑣𝑖

′ = −
𝜀

𝜂0
2𝜔̅𝑖

 cos 𝜔̅𝑖𝑡  𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡). 

Ruas kanan dari (21) di-averaged pada interval 

[0,
2𝜋

𝜔̅𝑖
], dengan 𝑖 = 1,2 terhadap 𝑡 sehingga 

𝑢𝑖
′

=
𝜔̅𝑖

2𝜋
∫ (

𝜀

𝜂0
2𝜔̅𝑖

 sin 𝜔̅𝑖𝑡  𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡))𝑑𝑡

2𝜋
𝜔̅𝑖

0

 

(22) 
𝑣𝑖

′

=
𝜔̅𝑖

2𝜋
∫ (−

𝜀

𝜂0
2𝜔̅𝑖

 cos 𝜔̅𝑖𝑡  𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡))

𝑑𝑡.

2𝜋
𝜔̅𝑖

0

 

Setelah di-averaged pada interval [0,
2𝜋

𝜔̅𝑖
]  terhadap 𝑡 

dan melakukan faktor penskalaan ulang 
𝜀

𝜂0
2 , 

diperoleh : 

𝑢1
′ = −Ω1𝜎𝑣1 −

1

2
𝜃11𝑢1𝜂0 +

1

4

𝑄12

𝜔̅1

𝑣2 +
3

4
𝐵1 

𝜂0
3 (

1

2
𝜔̅1

2𝑢1(𝑢1
2 + 𝑣1

2) + 𝜔̅2
2𝑢1(𝑢2

2 + 𝑣2
2)), 

(23) 

𝑣1
′ =  Ω1𝜎𝑢1 −

1

2
𝜃11𝑣1𝜂𝑜 −

1

4

𝑄12

𝜔̅1

𝑢2 +
3

4
𝐵1 

𝜂0
3 (

1

2
𝜔̅1

2𝑣1(𝑢1
2 + 𝑣1

2) + 𝜔̅2
2𝑣1(𝑢2

2 + 𝑣2
2)), 

𝑢2
′ = −Ω2𝜎𝑣2 −

1

2
𝜃22𝑢2𝜂0 +

1

4

𝑄21

𝜔̅2

𝑣1 −
3

4
𝐵2  

𝜂0
3 (𝜔̅1

2𝑢2(𝑢1
2 + 𝑣1

2) +
1

2
𝜔̅2

2𝑢2(𝑢2
2 + 𝑣2

2)), 

𝑣2
′ =  Ω2𝜎𝑢2 −

1

2
𝜃22𝑣2𝜂𝑜 −

1

4

𝑄21

𝜔̅2

𝑢1 −
3

4
𝐵2  

𝜂0
3 (𝜔̅1

2𝑣2(𝑢1
2 + 𝑣1

2) +
1

2
𝜔̅2

2𝑣2(𝑢2
2 + 𝑣2

2)). 

Identifikasi titik kesetimbangan dari (23) dengan 

mengnolkan ruas kanan dari (23) sehingga 𝑢1
′ =

0, 𝑣1
′ = 0,𝑢2

′ = 0,𝑣2
′ = 0. Salah satu solusi untuk 𝑢1

′ =

0, 𝑣1
′ = 0,𝑢2

′ = 0,𝑣2
′ = 0  adalah ketika 𝑢1 = 0, 𝑣1 =

0, 𝑢2 = 0, 𝑣2 = 0 . Sehingga diperoleh titik 

kesetimbangan solusi trivial (𝑢1, 𝑣1 , 𝑢2 , 𝑣2) =

(0,0,0,0)  yang merepresentasikan sistem tersebut 

diam.  

Linierisasi persamaan (23) sehingga diperoleh 

matriks Jacobian 

𝑱 =

(

 
 
 
 
 
 

−
1

2
𝜃11𝜂0 −Ω1𝜎 0

1

4

𝑄12

𝜔1

Ω1𝜎 −
1

2
𝜃11𝜂0 −

1

4

𝑄12

𝜔1

0

0
1

4

𝑄21

𝜔2

−
1

2
𝜃22𝜂0 −Ω2𝜎

−
1

4

𝑄21

𝜔2

0 Ω2𝜎 −
1

2
𝜃22𝜂0)

 
 
 
 
 
 

 (24) 

dengan persamaan karakteristik  

𝜆4 + 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4 = 0 (25) 

di mana 𝑎𝑖 , 𝑖 = 1. .4 , yang bergantung pada 

parameter 𝑞,𝑀, 𝑘1 , 𝑘2 , 𝑉, dan 𝛽. 

Untuk menentukan interval kestabilan dari solusi 

trivial, akan diterapkan tabel kriteria Routh-Hurwitz 

Tabel 3. Tabel Kriteria Routh – Hurwitz 

Baris Kolom 1 Kolom 2 Kolom 3 

𝜆4 1 𝑎2 𝑎4 

𝜆3 𝑎1 𝑎3 0 

𝜆2 𝑏1  𝑏2 0 

𝜆 𝑐1 0  

𝜆0 𝑑1   

yang menghasilkan 2 kondisi yakni :  
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rh-A. 𝜃11 + 𝜃22 > 0, 
(26) 

rh-C. 𝑝0𝜎
4 + 𝑝1𝜎

2 + 𝑝2 > 0, 

di mana 𝑝𝑖 , 𝑖 = 0,1,2  yang bergantung pada 

parameter 𝑞,𝑀, 𝑘1 , 𝑘2 , 𝑉, dan 𝛽. Dari rh-C diperoleh 

solusi untuk 𝜎 yaitu  

𝜎1,2 = ±
1

4

(𝜃11 + 𝜃22)

𝜃11𝜃22

√−𝜃11𝜃22

(4Ω1Ω2𝜃11𝜃22 + 𝑄12𝑄21)

Ω1Ω2

 (27) 

dengan 𝜎3,4 selalu bernilai imajiner. Dari (27), untuk 

mendapatkan nilai real dari 𝜎1,2  harus memenuhi 

kondisi 4Ω1Ω2𝜃11𝜃22 + 𝑄12𝑄21 > 0  dan 𝜃11𝜃22 < 0 . 

Dengan demikian, nilai dari parameter detuning 𝜎 

berada pada interval berikut : 

𝜎1 ≤ 𝜎 ≤ 𝜎2 (28) 

dan interval kestabilan dari solusi trivial di sekitar 

anti – resonansi kombinasi parametrik berikut : 

𝜂0 + 𝜀𝜎1 < 𝜂 < 𝜂0 + 𝜀𝜎2 . (29) 

Solusi non-trivial sistem dapat muncul saat 

berada di luar solusi trivial sistem. Dengan 

menggunakan transformasi 

𝑥̅𝑖 = 𝑅𝑖 cos(𝜔̅𝑖𝑡 + 𝜓𝑖) (30) 
𝑥̅𝑖

′ = −𝑅𝑖𝜔̅𝑖 sin(𝜔̅𝑖𝑡 + 𝜓𝑖), 

di mana 𝑅𝑖merupakan amplitudo dan 𝜓𝑖 merupakan 

fase dengan 𝑖 = 1,2. Substitusi (30) ke (18), dengan 

menggunakan transformasi (30) akan diperoleh 

𝑅𝑖
′ =

𝜀

𝜂0
2𝜔̅𝑖

 sin(𝜔̅𝑖𝑡 + 𝜓𝑖) 𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡) 

(31) 
𝜓𝑖

′ =
𝜀

𝜂0
2𝜔̅𝑖𝑅𝑖

 cos(𝜔̅𝑖𝑡 + 𝜓𝑖) 𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡). 

Ruas kanan dari (31) di-averaged pada interval 

[0,
2𝜋

𝜔̅𝑖
], dengan 𝑖 = 1,2 terhadap 𝑡 sehingga 

𝑅𝑖
′ =

𝜔̅𝑖

2𝜋
∫ (

𝜀

𝜂0
2𝜔̅𝑖

 sin(𝜔̅𝑖𝑡

2𝜋
𝜔̅𝑖

0

+ 𝜓𝑖) 𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡))𝑑𝑡 

(32) 

𝜓𝑖
′ =

𝜔̅𝑖

2𝜋
∫ (

𝜀

𝜂0
2𝜔̅𝑖𝑅𝑖

 cos(𝜔̅𝑖𝑡

2𝜋
𝜔̅𝑖

0

+ 𝜓𝑖) 𝐹̅𝑖(𝑥̅1, 𝑥̅1
′ , 𝑥̅2, 𝑥̅2

′ , 𝑡))𝑑𝑡. 

Setelah di-averaged pada interval [0,
2𝜋
𝜔̅𝑖

]  terhadap 𝑡 

dan melakukan faktor penskalaan ulang 
𝜀

𝜂0
2 , 

diperoleh : 

𝑅1
′ = −

1

2
𝜃11𝑅1𝜂0 +

1

4

𝑄12𝑅2

𝜔̅1

sin(𝜓1 − 𝜓2) 

+𝐵1𝜂0
3 (

3

8
𝑅1

3𝜔̅1
2 +

3

4
𝑅1𝑅2

2𝜔2
2), 

(33) 

𝜓1
′ = −Ω1𝜎 +

1

4

𝑄12𝑅2

𝜔̅1𝑅1

cos(𝜓1 − 𝜓2), 

𝑅2
′ = −

1

2
𝜃22𝑅2𝜂0 +

1

4

𝑄21𝑅1

𝜔2

sin(𝜓2 − 𝜓1) 

−𝐵2𝜂0
3 (

3

8
𝑅2

3𝜔2
2 +

3

4
𝑅1

2𝑅2𝜔̅1
2), 

𝜓2
′ = −Ω2𝜎 +

1

4

𝑄21𝑅1

𝜔2𝑅2

cos(𝜓2 − 𝜓1). 

Dimensi dari (33) dapat dikurangi dengan 

memisalkan variabel fase 𝜑 = 𝜓2 − 𝜓1  dan (33) 

menjadi 

𝑅1
′ = −

1

2
𝜃11𝑅1𝜂0 +

1

4

𝑄12𝑅2

𝜔̅1

sin(𝜓1 − 𝜓2) 

+𝐵1𝜂0
3 (

3

8
𝑅1

3𝜔̅1
2 +

3

4
𝑅1𝑅2

2𝜔2
2), 

(34) 𝑅2
′ = −

1

2
𝜃22𝑅2𝜂0 +

1

4

𝑄21𝑅1

𝜔2

sin(𝜓2 − 𝜓1) 

−𝐵2𝜂0
3 (

3

8
𝑅2

3𝜔2
2 +

3

4
𝑅1

2𝑅2𝜔̅1
2), 

𝜑′ = −𝜎𝜂0 +
1

4
(
𝑄21𝑅1

𝜔̅2𝑅2

−
𝑄12𝑅2

𝜔̅1𝑅1

) cos 𝜑. 

Titik kesetimbangan dari (34) diperoleh dengan 

mengnolkan ruas kanan dari (34) sehingga 𝑅1
′ =

0,𝑅2
′ = 0, dan 𝜑′ = 0 . Namun, analisis titik 

kesetimbangan tersebut sulit dilakukan karena 

mengandung persamaan kubik, sehingga analisis 

titik kesetimbangan dan kestabilannya dilakukan 

dengan simulasi numerik. 

SIMULASI NUMERIK 

Simulasi numerik dilakukan dengan 

menggunakan nilai-nilai pada Tabel 4 berikut : 

Tabel 4. Nilai Parameter untuk simulasi numerik 

Parameter  Nilai 

𝜀 0.1 

𝑘1 0.8 

𝑘2 0.5 

𝛽 0.5 

𝑉 √2.1 

𝛾 4 

Pada rh-A, diperoleh batas-batas untuk 𝜃11  dan 𝜃22 

pada bidang 𝑀 − 𝑞 yang ditunjukkan pada Gambar 

2 berikut : 

 
Gambar 2. Batas daerah 𝜽𝟏𝟏 dan 𝜽𝟐𝟐 



ANALISIS KESTABILAN SISTEM 

585 

Gambar 2 menunjukkan bahwa terdapat tiga 

daerah. Daerah I menunjukkan 𝜃11  bernilai positif 

dan 𝜃22  bernilai negatif, jika dijumlahkan akan 

menghasilkan nilai positif. Daerah II menunjukkan 

𝜃11  dan 𝜃22  bernilai positif, jika dijumlahkan akan 

mengasilkan nilai positif. Daerah III menunjukkan 

bahwa 𝜃11  bernilai negatif dan 𝜃22  bernilai positif, 

jika dijumlahkan akan menghasilkan nilai positif. 

Hal ini menunjukkan bahwa nilai-nilai Parameter 

pada Tabel 4 memungkinkan rh-A terpenuhi. Dalam 

daerah II pada Gambar 6 menunjukkan getaran 

eksitasi sendiri dapat diredam sepenuhnya oleh 

eksitasi parametrik karena 𝜃11  dan 𝜃22  bernilai 

positif, jika dijumlahkan akan bernilai positif. Dari 

rh-A dapat disimpulkan bahwa hanya satu dari 𝜃11  

dan 𝜃22  saja yang  bernilai negatif dan nilai 

absolutnya harus lebih kecil daripada nilai absolut 

yang positif. 

Sedangkan pada rh-C diperoleh batas kestabilan 

pada bidang 𝜎 − 𝑞 yang sesuai kondisi (28). Dengan 

menggunakan nilai Set I yang memungkinkan 

syarat rh-A terpenuhi, diperoleh daerah kestabilan 

solusi trivial berikut : 

 
Gambar 3. Daerah kestabilan dari solusi trivial di bidang 

𝝈 − 𝒒 dengan nilai 𝑴 = 𝟎. 𝟏, 𝑴 = 𝟎.𝟑, dan 𝑴 = 𝟎.𝟒 

Gambar 3 menunjukkan bentuk dari daerah 

peredaman getaran eksitasi sendiri oleh eksitasi 

parametrik pada bidang 𝜎 − 𝑞 . Pada daerah di 

antara dua kurva, getaran eksitasi sendiri dapat 

diredam sepenuhnya. Sedankan daerah yang berada 

di luar kurva merupakan daerah solusi trivial tidak 

stabil dan menghasilkan solusi non-trivial. Dengan 

memperbesar nilai rasio massa 𝑀 , maka daerah 

kestabilan solusi trivial juga semakin luas. 

Terdapat cara lain untuk melihat daerah 

kestabilan solusi trivial, yaitu dengan mengambil 

daerah pada bidang 𝜂 − 𝑞 yang memenuhi kondisi 

(29), diperoleh daerah kestabilan solusi trivial 

berikut : 

 
Gambar 4. Daerah kestabilan dari solusi trivial ketika 
𝑴 = 𝟎. 𝟑 pada bidang  𝜼 − 𝒒 dengan nilai 𝜺 bervariasi 

Gambar 4 menunjukkan bentuk dari daerah 

peredaman getaran eksitasi sendiri oleh eksitasi 

parametrik pada bidang 𝜂 − 𝑞 . Pada daerah di 

antara dua kurva, getaran eksitasi sendiri dapat 

diredam sepenuhnya. Garis kombinasi parametrik 

anti-resonansi 𝜂0 = Ω2 − Ω1 merupakan daerah yang 

stabil. dengan memperbesar nilai amplitudo 𝜀  dari 

eksitasi parametrik maka daerah kestabilan solusi 

trivial juga semakin luas. Hal ini menunjukkan 

bahwa 𝜀  merupakan parameter yang sangat efektif 

untuk memperbesar daerah peredaman getaran 

eksitasi sendiri oleh getaran eksitasi parametrik. 

Nilai-nilai Parameter pada Tabel 4 

memungkinkan syarat rh-A dan rh-C terpenuhi, 

sehingga memiliki solusi trivial stabil. Namun, 

diluar solusi trivial dapat muncul solusi non-trivial. 

Berikut adalah simulasi numerik untuk solusi trivial 

dan solusi non-trivial. 

1. Solusi Trivial 

Solusi trivial dibagi menjadi dua kasus, 

yakni pada saat kasus resonansi eksak 𝜎 = 0 

dan kasus resonansi non-eksak 𝜎 ≠ 0. 

a. Kasus resonansi eksak (𝜎 = 0) 

 
Gambar 5. Plot 𝑹𝟏 dan 𝑹𝟐 di daerah I untuk 
Parameter Set I ketika 𝑴 = 𝟎.𝟏 dan 𝒒 = 𝟎. 𝟖 

saat 𝝈 = 𝟎 

Gambar 5 menunjukkan pergerakan 

amplitudo 𝑅1  dan 𝑅2  di daerah I 

berdasarkan Gambar 2 yang semakin kecil 

dan konvergen menuju nol. Dari kurva 
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tersebut menunjukkan bahwa getaran 

eksitasi sendiri dapat diredam penuh oleh 

eksitasi parametrik. Hal ini sesuai dengan 

Gambar 3 di mana pada saat diambil nilai 

𝑀 = 0.1  dan 𝑞 = 0.8  pada saat 𝜎 = 0 , 

getaran eksitasi sendiri dapat diredam 

sepenuhnya oleh eksitasi parametrik yang 

merepresetasikan bahwa solusi trivial 

stabil. 

b. Kasus resonansi non-eksak (𝜎 ≠ 0) 

 
Gambar 6. Plot 𝑹𝟏 dan 𝑹𝟐 di daerah III untuk 
Parameter Set I ketika 𝑴 = 𝟎.𝟒 dan 𝒒 = 𝟏. 𝟏 

saat 𝝈 = 𝟎. 𝟐 

Gambar 6 menunjukkan pergerakan 

amplitudo 𝑅1  dan 𝑅2  di daerah III 

berdasarkan Gambar 2 yang semakin kecil 

dan konvergen menuju nol. Dari kurva 

tersebut menunjukkan bahwa getaran 

eksitasi sendiri dapat diredam penuh oleh 

eksitasi parametrik. Hal ini sesuai dengan 

Gambar 3 di mana pada saat diambil nilai 

𝑀 = 0.4  dan 𝑞 = 1.1  pada saat 𝜎 = 0.2 , 

getaran eksitasi sendiri dapat diredam 

sepenuhnya oleh eksitasi parametrik yang 

merepresetasikan bahwa solusi trivial 

stabil. 

2. Solusi Non-trivial 

Solusi non-trivial dibagi menjadi dua kasus, 

yakni pada saat kasus resonansi eksak 𝜎 = 0 

dan kasus resonansi non-eksak 𝜎 ≠ 0. 

a. Kasus resonansi eksak (𝜎 = 0) 

 
Gambar 7. Plot 𝑹𝟏 dan 𝑹𝟐 di daerah I untuk 
Parameter Set I ketika 𝑴 = 𝟎.𝟑 dan 𝒒 = 𝟎. 𝟐 

saat 𝝈 = 𝟎 

Gambar 7 menunjukkan pergerakan 

amplitudo 𝑅1  dan 𝑅2  di daerah I 

berdasarkan Gambar 2 dengan mengambil 

nilai 𝑀 = 0.3, 𝑞 = 0.2 pada saat 𝜎 = 0. Dari 

kurva tersebut menunjukkan bahwa 

getaran eksitasi sendiri dapat teredam 

sebagian oleh eksitasi parametrik.  

 
Gambar 8. Plot 𝑹𝟏 dan 𝑹𝟐 di daerah III untuk 
Parameter Set I ketika 𝑴 = 𝟎.𝟑 dan 𝒒 = 𝟏. 𝟔 

saat 𝝈 = 𝟎 

Gambar 8 menunjukkan pergerakan 

amplitudo 𝑅1  dan 𝑅2  di daerah III 

berdasarkan Gambar 2 dengan mengambil 

nilai 𝑀 = 0.3, 𝑞 = 1.6 pada saat 𝜎 = 0. Dari 

kurva tersebut menunjukkan bahwa nilai 

𝑅1 lebih besar dari 𝑅2 yang artinya getaran 

eksitasi sendiri tidak dapat diredam oleh 

eksitasi parametrik. 

b. Kasus resonansi non-eksak (𝜎 ≠ 0) 
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Gambar 9. Plot 𝑹𝟏 dan 𝑹𝟐 di daerah I untuk 
Parameter Set I ketika 𝑴 = 𝟎.𝟏 dan 𝒒 = 𝟎. 𝟒 

saat 𝝈 = 𝟎. 𝟐 

Gambar 9 menunjukkan pergerakan 

amplitudo 𝑅1  dan 𝑅2  di daerah I 

berdasarkan Gambar 2 dengan mengambil 

nilai 𝑀 = 0.1 , 𝑞 = 0.4  pada saat 𝜎 = 0.2 . 

Dari kurva tersebut menunjukkan bahwa 

getaran eksitasi sendiri dapat teredam 

sebagian oleh eksitasi parametrik.  

 
Gambar 10. Plot 𝑹𝟏 dan 𝑹𝟐 di daerah III untuk 

Parameter Set I ketika 𝑴 = 𝟎.𝟏 dan 𝒒 = 𝟏. 𝟐 
saat 𝝈 = 𝟎. 𝟐 

Gambar 10 menunjukkan pergerakan 

amplitudo 𝑅1  dan 𝑅2  di daerah III 

berdasarkan Gambar 2 dengan mengambil 

nilai 𝑀 = 0.3, 𝑞 = 1.2 pada saat 𝜎 = 0. Dari 

kurva tersebut menunjukkan bahwa nilai 

𝑅1 lebih besar dari 𝑅2 yang artinya getaran 

eksitasi sendiri tidak dapat diredam oleh 

eksitasi parametrik. 

 

PENUTUP 

SIMPULAN 

Berdasarkan hasil analisis menunjukkan bahwa 

peredaman bergantung pada dua kondisi. Kondisi 

pertama menyatakan bahwa peredaman bergantung 

pada parameter peredam 𝜃11  dan 𝜃22  di mana 

jumlah kedua parameter tersebut harus positif. 

Kondisi kedua yaitu terkait kombinasi parametrik 

anti-resonansi dengan melibatkan frekuensi eksitasi 

parametrik. Hasil juga menunjukkan bahwa dengan 

memperbesar nilai amplitudo 𝜀  dari eksitasi 

parametrik dapat memperluas daerah peredaman 

eksitasi sendiri. Selain itu, di luar solusi trivial juga 

dapat muncul solusi non-trivial. 

 

SARAN 

Untuk penelitian selanjutnya, dapat dianalisis 

bifurkasi dengan menjalankan parameter lain serta 

dapat memodelkan sistem dengan menambah gaya 

eksternal pada salah satu elemen atau kedua 

elemen. 
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