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Abstrak

Banyak permasalahan-permasalahan dalam kehidupan sehari-hari yang dapat dimodelkan melalui model
matematika. Salah satunya adalah permasalahan di bidang mekanika yaitu vibrasi. Vibrasi yang berlebihan
dapat menyebabkan kehilangan efisiensi bahkan menyebabkan kerusakan struktural yang dapat
membahayakan. Untuk meredam vibrasi atau eksitasi yang tidak diinginkan dapat menggunakan sistem
tereksitasi sendiri yang dirangkai dengan eksitasi parametrik dan dimodelkan melalui sistem pegas dua
massa. Sehingga, tujuan dari penelitian ini adalah untuk mengetahui daerah kestabilan di mana eksitasi
tersebut dapat teredam. Metode averaging digunakan untuk menganalisis kestabilan dari sistem. Hasil dari
penelitian ini menunjukkan bahwa peredaman bergantung pada dua kondisi. Kondisi pertama menyatakan
bahwa peredaman bergantung pada parameter peredam 60;; dan 8, di mana jumlah kedua parameter
tersebut harus positif. Kondisi kedua yaitu terkait kombinasi parametrik anti-resonansi dengan melibatkan
frekuensi eksitasi parametrik. Hasil juga menunjukkan bahwa dengan memperbesar nilai amplitudo € dari
eksitasi parametrik dapat memperluas daerah peredaman eksitasi sendiri. Di luar solusi trivial juga dapat
muncul solusi non-trivial.

Kata Kunci: Eksitasi sendiri, eksitasi parametrik, metode averaging, peredam, kombinasi parametrik anti-
resonansi.

Abstract

Many problems in everyday life can be modeled through mathematical models. One of them is a problem in the field of
mechanics, namely vibration. Excessive vibration can cause loss of efficiency and even cause structural damage that
can be dangerous. To dampen unwanted vibrations or excitations, a self-excited system can be used which is assembled
with parametric excitation and modeled through a two-mass spring system. Thus, the purpose of this study is to
determine the stability area where the excitation can be damped. The averaging method is used to analyze the stability
of the system. The results of this study indicate that the absorber depends on two conditions. The first condition states
that the damping depends on the damping parameters 61, and 0, where the sum of two parameters must be positive.
The second condition is related to the parametric combination anti-resonance involving the parametric excitation
frequency. The results also show that by increasing the amplitude value € of parametric excitation, the self-excitation
damping area can be expanded. Beyond the trivial solution, non-trivial solutions can also emerge.

Keywords: Self-excited, parametric excitation, averaging method, damping, parametric anti-resonance combination.

PENDAHULUAN

Banyak permasalahan dalam kehidupan sehari-
hari yang muncul dalam berbagai bidang ilmu.
Salah
mekanika, di mana perilaku sistem mekanik dapat

satu contohnya adalah dalam bidang

dimodelkan melalui model matematika. Dalam
bidang mekanika, sistem mekanik yang bekerja
sering menimbulkan permasalahan seperti vibrasi

(getaran) yang berlebihan pada suatu sistem. Vibrasi
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yang berlebihan dapat menyebabkan kehilangan
ekstrem  akan
menyebabkan kerusakan struktural yang dapat
membahayakan (Rao, 2018).

Salah satu contoh sistem yang mengalami vibrasi

efisiensi dan dalam kasus

adalah bangunan tinggi. Vibrasi tersebut bisa
dipengaruhi oleh beberapa faktor. Bangunan tinggi
yang mengalami vibrasi dapat dimodelkan sebagai
sistem pegas massa yang disusun berdasarkan
prinsip hukum Hooke dan hukum Newton II
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(Diyamita, 2017). Massa pada sistem yang bergetar
berperan penting dalam menentukan karakteristik
osilasi, terutama ketika dua osilator dirangkai.
Ketika dua osilator dirangkai, masing-masing
dengan massa dan konstanta pegas yang berbeda,
akan berinteraksi satu sama lain melalui gaya
pemulih. Interaksi ini menyebabkan energi dapat
berpindah dari osilator satu ke osilator lainnya. Jika
satu osilator diberi energi melalui getaran, maka
dapat mempengaruhi gerakan osilator kedua, sistem
ini disebut sebagai
(Holland, 2008).
Penelitian yang telah dilakukan oleh Past dan

sistem osilator gabungan

Tondl (2008) yaitu membahas analisis sistem dua
massa yang terdiri dari sistem utama dengan
eksitasi sendiri yang dipasang pada subsistem
fondasi berupa massa dan pegas. Kemudian
penelitian yang dilakukan oleh Bobryk, dkk (2017)
yang membahas mengenai penekanan getaran
eksitasi sendiri pada sistem utama dengan getaran
eksitasi parametrik acak pada sistem penyerap.
Penelitian yang telah dilakukan oleh Fatimah dan
Verhulst  (2003)
kemungkinan menekan getaran yang diinduksi

yaitu membahas mengenai
aliran (flow-induced vibrations) menggunakan eksitasi
parametrik secara periodik.

Pada penelitian ini akan mengkaji model
matematika pada sistem pegas dua massa yang
tereksitasi sendiri yang diredam oleh eksitasi
parametrik. Penelitian ini untuk memodifikasi
penelitian yang dilakukan oleh Phst dan Tondl
(2008) terkait getaran eksitasi sendiri pada sistem
utama dengan menambahkan pengaruh lain berupa
eksitasi parametrik acak pada subsistem fondasi
seperti pada penelitian yang dilakukan Bobryk, dkk
(2017). Namun, penelitian ini akan berfokus pada
penambahan eksitasi parametrik secara periodik
seperti pada penelitian yang dilakukan Fatimah dan
Verhulst (2003).

KA]IAN TEORI
VIBRASI

Vibrasi atau getaran adalah gerak osilasi pada
sistem mekanik yang terjadi di sekitar titik
kesetimbangannya. Terdapat dua kelompok getaran
umum, yaitu getaran bebas (free vibration) dan
getaran yang disebabkan oleh gaya (forced vibration).
Getaran bebas terjadi ketika sistem bergetar akibat
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gangguan awal dan tanpa adanya pengaruh gaya
eksternal (Rao, 2018).

Getaran yang  disebabkan
diklasifikasikan ~menjadi

oleh
yakni

gaya
tiga; getaran
tereksitasi sendiri (self excited vibration) yang terjadi
karena ada medium yang mengalir seperti angin
dan air; getaran dengan adanya gaya eksternal
(external excitations vibrations) yang terjadi akibat
gaya eksternal yang diterapkan pada sistem; dan
getaran tereksitasi secara periodik (parametrically
excitation vibrations) yang terjadi ketika parameter

sistem berubah secara periodik terhadap waktu
(Nayfeh & Mook, 1995).
SISTEM PEGAS MASSA

Sistem pegas massa merupakan salah satu

yang
memahami prinsip dasar osilasi mekanis dalam

contoh  sederhana digunakan untuk

konteks getaran. Sistem pegas massa terdiri dari
massa yang dirangkai dengan pegas, dapat disusun
secara seri maupun paralel. Pada rangkaian seri,
gaya yang bekerja pada setiap pegas sama besar.
Sedangkan pada rangkaian paralel, gaya yang
bekerja pada sistem dibagi antara pegas-pegas yang
ada pada sistem (Rao, 2018).

SISTEM PERSAMAAN DIFERENSIAL BIASA

Sistem persamaan diferensial biasa merupakan
persamaan diferensial biasa yang terdiri dari n
persamaan diferensial biasa. Bentuk umum sistem
persamaan diferensial orde-1 sebagai berikut:

x' = f(t,x), t e R, x €R" 1)
di mana x = x(t) = x,(t),x,(t), x3(¢t), ..., x,(t) dan f
adalah fungsi bernilai real dari n+ 1 variabel
Xy, X5, X3, -, X, dan t . Titik x* disebut titik
kesetimbangan dari sistem jika dan hanya jika
memenuhi f(t,x*) = 0. Sistem persamaan f(t,x*) =
0 dapat ditulis dalam bentuk vektor
x'=Ax+ h(t) )
di mana A adalah matriks jacobian dari f di x*
berikut :

0h Oh . Oh]
0x; 0x, 0x,
%h O . O
A=19x, ox, 0x, ©)
10X, Ox, 0x, ]

dan h(t) merupakan suku berorde tinggi yang lebih

cepat menuju 0. Sehingga sistem (1) dapat

diaproksimasi dengan sistem linier menjadi
x'=Ax

yang disebut dengan sistem terlinierisasi.

)
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Nilai eigen matriks jacobian A berukuran n x n
memiliki n nilai eigen A. Nilai eigen diperoleh dari
persamaan karakteristik matriks A dapat berupa
nilai real berbeda atau kompleks disebut nilai eigen
dari matriks A. Berdasarkan nilai A maka kestabilan
titik kesetimbangan stabil asimtotik jika nilai eigen
real atau negatif atau memiliki bagian real yang
negatif dan tidak stabil jika terdapat nilai eigen real
positif atau bagian real positif (Boyce dkk., 2017).

KRITERIA ROUTH-HURWITZ

Kriteria Routh-Hurwitz merupakan salah satu
metode alternatif untuk menentukan kestabilan
sistem jika nilai eigen dalam sistem linier sulit
untuk  ditentukan. Kriteria  Routh-Hurwitz
menentukan kestabilan suatu sistem melalui
koefisien dari persamaan karakteristik saja tanpa
harus mengetahui nilai eigen 4.

Misalkan nilai karakteristik matriks 4 adalah

det(A—AD =0
ap At + ap AV 4+ a, AP+ -+ a A +a 5)
di mana n adalah orde sistem dan a,,a,_4,...,a
adalah koefisien polinomial. Sehingga diperoleh
tabel kriteria Routh-Hurwitz berikut :
Tabel 1. Bentuk tabel kriteria Routh-Hurwitz

rn an an—2 an-4
At An-1 an-3 an-s
A2 b, b, b
2 P
dengann = 1,2, ..., k didefinisikan sebagai berikut :
_ a1a2 - a0a3 _ a1a4 - aoas
b1 - ) b2 - ]
a a
b = A10zn — Agzn41 _bjas—a,b,
= G
a; 1
e = byas —a,b; _byagny —aibpyy
2 == 1 n — .
b, b,

Tabel Routh-Hurwitz tersebut dilanjutkan mendatar
dan menurun hingga diperoleh elemen-elemen
pada kolom pertama nol. Suatu sistem dikatakan
stabil jika bagian real dari nilai eigennya adalah
negatif, yang ditunjukkan dengan tidak ada
perubahan tanda pada tabel Routh-Hurwitz (Olsder
& Woude, 1998).

METODE AVERAGING

Prinsip dari metode averaging adalah dengan
mengasumsikan adanya parameter ¢ pada sebuah
persamaan osilator. Parameter & merupakan
parameter yang sangat kecil atau menuju nol
dengan &£ > 0. Misalkan diketahui suatu sistem
terpertubasi berikut :

¥+ x=¢ef(x,%) (6)
di mana ef (x, ¥) adalah suku perturbasi dari sistem
(6), f berperiode-T terhadap t. Jika e = 0, diperoleh
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solusi dari persamaan (6) dengan kombinasi linier
dari cost dan sin t berikut :
x(t) =1, cos(t + Yy). )
Solusi untuk € # 0, Lagrange mengenalkan “variasi
parameter”. Diasumsikan bahwa & # 0, solusinya
dapat dituliskan dalam bentuk di mana amplitudo
(r) dan fase (3) sebagai fungsi dalam waktu.
Sehingga, masukkan solusi dari persamaan (6)
sebagai berikut :
x(t) =r(t) cos(t + zp(t)) 3
x(t) = —r(t) sin(t + P (1)). ®)
Persamaan (8) disubstitusikan ke (6) kemudian
ditransformasikan dan diperoleh :
7 = —esin(t + Y) f (r cos(t + ), —rsin(t

. +¥))
P =— ;cos(t + ) f(rcos(t + ), —rsin(t )
+9)).
Persamaan (9) dapat ditulis sebagai berikut :
x=¢f(x,t) +eg(xt,e),x(ty) = x,. (10)

di mana eg(x,t, &) adalah suku perturbasi dari
sistem, f dan g berperiode-T terhadap variabel t.
Persamaan averaged dari (10) adalah

y =¢ef°(y),y(ty) = x4 (11)
dengan
1
o) =7 [ Fe e 12)

Solusi y(t) dari (12) adalah aproksimasi dari solusi
x(t) dari (10), di mana x(t) — y(t) = 0(¢).

METODE

Penelitian ini adalah jenis penelitian studi
literatur dan simulasi numerik mengenai analisis
kestabilan sistem tereksitasi sendiri yang diredam
oleh eksitasi parametrik. Tahapan yang dilakukan
adalah studi literatur, menyusun batasan masalah,
mengonstruksi  model = matematika  sistem,
menganalisis kestabilan model matematika sistem,

simulasi, serta menarik kesimpulan dan saran.
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HASIL DAN PEMBAHASAN
KONSTRUSKSI MODEL MATEMATIKA  SISTEM
TEREKSITASI SENDIRI YANG DIREDAM OLEH

EKSITASI PARAMETRIK

CZlJ_ %kz(vr gcoswt )

Gambar 1. Sistem pegas dua massa yang tereksitaisi
sendiri dirangkai dengan eksitasi parametrik

Massa utama m; dengan defleksi y, tidak
melekat pada apapun dirangkai secara vertikal
sebuah  kekakuan pegas k; dan
dihubungkan dengan massa subsistem fondasi m,

melalui

serta memiliki peredam c; pada lantai. Massa utama
m; mengalami eksitasi sendiri oleh aliran U yang
dinyatakan dengan redaman tipe Raileigh B,U*(1 —
Yo¥2)V1 , Bo» Yo >0 . Massa subsistem fondasi
dengan defleksi y, terhubung ke massa utama m,
melalui kekakuan pegas k; dan terhubung ke lantai
melalui kekakuan pegas yang berubah secara
periodik yaitu k,(1+ecoswt) serta memiliki
peredam c, pada lantai. Sehingga model matematika

yang diperoleh adalah :

m iy + o+ ki — y2)
—BoU?(1 = yo¥P)y =0 (13)
My, + Y5 + ki (V2 — 1)
+k,(1 +ecoswt)y, =0,
dengan keterangan berikut :
Tabel 2. Tabel keterangan parameter

Variabel atau
Parameter Keterangan

my Massa utama
m, Massa subsistem fondasi
B2 Defleksi dari sistem utama
Yy Defleksi dari subsistem fondasi
ky Kekakuan pegas massa utama
k, Kekakuan pegas subsistem fondasi
¢ Peredam dari massa utama
Cy Peredam dari massa subsistem fondasi
U Kecepatan aliran
Bo Konstanta aliran
Yo Koefisien nonlinieritas aliran

£ cos wt Eksitasi parametrik dari k,

V1 Kecepatan dari massa utama
) Kecepatan dari massa subsistem
Y2 fondasi
1 Percepatan dari massa utama
. Percepatan dari massa subsistem
Y2 fondasi
ANALISIS KESTABILAN MODEL MATEMATIKA

SISTEM TEREKSITASI SENDIRI YANG DIREDAM OLEH
EKSITASI PARAMETRIK
Menggunakan transformasi waktu w,t = 7, di
mana w? = <& yang merupakan frekuensi alami dari
my

m,; dan dengan menggunakan parameter yang
sangat kecil, yaitu e. Dengan mengskalakan k; , =
dan B =¢B pada sistem (13)
mengasumsikan bahwa parameter lainnya adalah
0(1) terhadap &, maka diperoleh :
Vi + ek + 3 =y,
~eBV2(1—yyi*)yi =0
'+ ekoy; + My, = y1)

+q%(1 + ccosnt)y, =0

ek, serta

(14)

dimanaszu—Zﬁz—OUg Y=yow?, n="k =
Ug/ mlwl’ oW /s U)ll 1
c [4 k m
i k, =—2, q* =—%;, dan M = —* dengan U,
miqwq mpawy mawy my

merupakan nilai ynag dipilih untuk kecepatan arus.
Transformasi persamaan (14) menjadi bentuk

kuasi-normal menggunakan transformasi linier
berikut :

Vi =X +x,dany, = a;x; + a,x,. (15)
Substitusi (15) ke (14), diperoleh
x1'+ Qfxy = —e Fy (%, %1, X3, %3, N7) (16)
x5 + Q2x, = —e F, (x4, X1, X5, X5,07),
di mana
Fy (g, X1, X3, X5,17) = 0111 + 01,5
+(Q11%; + Q12%,) cosnT — By (x] + x3)° 17)

Fy(xq, 1, %2, X3,MT) = O51%1 + 05%;
+(Q21%1 + Qy2X5) cosnT + B, (x1 + x3)3
dengan

1 _
sz=§(q2+M+1)+\/Z(q2+M+1)2—q2,

1 2
a1,2=§<(1—q —M)i\/(q2+M—1)2+4M>,
ak, —ay(k, — BV?)

01, = a, —a,
6.. = a,(ky —ky + BV?)
12 a; —a '
—a,(k, —k; + BV?)
0, = ’

a; —a;
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2
0 a, (ky = BV*?) — azk,
2 a; —a; '
2 2 2
9 . qa, . Tqa
11 a, a, » 12 a, — az' 21 a, — az’
2 2 2
—q°a; apVy o VY
22 = By = 1Bz =
a; — a; a; —a; a; — a
Meredam getaran eksitasi sendiri dapat
dilakukan dengan menggunakan kombinasi

resonansi anti-parametrik dengan memunculkan
detuning ketika mengambil n =7, + &0 di mana
N = Q, — Q,. Dengan menggunakan transformasi
waktu t — 77, sistem (16) menjadi
€
X + a129?1 = __2F1 (%1, X1, X5, X3, 1)
0
=1 —2 = £ = - =1 = izl (18)
X+ 05X, = ——= F (%, X1, Xp, X3, )
Mo
% i =1,2dan
Mo

di mana @;
Fy (X, X1, %, X5, t) = —2@,Q, 0%,

+(0:11 %1 + 6,,%3)n0 + (Q11%; + Qy2X,) cost
—Bins (¥ + %3)°

Fy(%,, %), %y, %5, ) = —2@,0,0%,

+(021%1 + 05,%3)00 + (Q21%; + Qp2%;) cost
+B,m5 (X1 + x3)°.

terhadap kestabilan
untuk

(19)

Analisis solusi trivial

dilakukan
peredaman getaran eksitasi sendiri oleh eksitasi

memungkinkan terjadinya
parametrik. Dengan menggunakan transformasi :
X; = u; cosw;t + v; sin w;t,

X; = —u;w; sinw;t + v;w; cos ;t,

di mana i = 1,2. Substitusi (20) ke (18), dengan
menggunakan transformasi (20) akan diperoleh

(20)

ul 7o sinw;t F;(xX,,%,, X, %3, t)
oi

21

e (21)

i 2 —

U

Ruas kanan dari (21) di-averaged pada interval

Ccos Glt Fi (fl' f{r fZI fz’, t)

[0,2—7:], dengani = 1,2 terhadap t sehingga

, (22)

sinw;t F,(xy, %}, X,, X3, t)> dt

2 —

cosw;t F(xy,%;, X, %5, t)
Now;

dt.
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Setelah di-averaged pada interval [O,%] terhadap t

dan melakukan faktor penskalaan ulang niz ,

0
diperoleh :

3
i

I

U

1

3( =

Tlo<2
1

ro_
v = Qo _5911171770 -

1
L I
1

=—-Qov, _5911111770 1%

s (u + v?) + B, (13 + vg))

1 3
1%y, 435,
4 w,

u2+4

1_ _
18 (300t + 1) + @ + 09 ),

10 3,
4w, * 42

. 23)
Uy = —Q,0v, — 5922uzno +

1
18 (@tustat + v + 30305 +09))
, 1 10 3
v, = Qy0u, _5922172770 _ZE_Z:ul _ZBZ
1
i (00,0t 400 + 30, + 08 ).
Identifikasi titik kesetimbangan dari (23) dengan
mengnolkan ruas kanan dari (23) sehingga u; =

0,v{ = 0,u; = 0,v; = 0. Salah satu solusi untuk u; =
0,v; =0,u, = 0,v; =0 adalah ketika u;, =0,v, =
0,u, =0,v,=0 Sehingga  diperoleh  titik
kesetimbangan  solusi trivial  (uy, vy, u,,v,) =

(0,0,0,0) yang merepresentasikan sistem tersebut
diam.

Linierisasi persamaan (23) sehingga diperoleh
matriks Jacobian

(—%Huno —QO, 0 0 %%112 \|
[ —%911770 —%% 0
1= 10, 1 | (24)
0 16_2 —5922710 —Q,0
\ —%3}_—221 0 0,0 —%022710)
dengan persamaan karakteristik
M+a2+a,22+a;d+a, =0 (25)

di
parameter q, M, ky, k,,V, dan f.

mana a;i=1.4 , yang bergantung pada

Untuk menentukan interval kestabilan dari solusi
trivial, akan diterapkan tabel kriteria Routh-Hurwitz
Tabel 3. Tabel Kriteria Routh - Hurwitz

Baris Kolom 1 Kolom 2 Kolom 3
A% 1 a, a,
A3 a, as 0
A2 by b, 0
A c 0
A0 d,

yang menghasilkan 2 kondisi yakni :
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rh-A. 6,, + 6,, >0,

rh-C. pyo* + p;0% + p, >0,
di
parameter q, M, k;,k,,V, dan . Dari rh-C diperoleh

(26)

mana p;i=0,1,2 yang bergantung pada

solusi untuk o yaitu

\/_011022

dengan o3 4 selalu bernilai imajiner. Dari (27), untuk

+ } (911 + 922)
T4 911922

(49,9561, 0,5 + Q120Q21)
09,

(27)

O12 =

mendapatkan nilai real dari g;, harus memenuhi
kondisi 40,0,6,,0,, + Q,,Q,; > 0 dan 6,,0,, <0.
Dengan demikian, nilai dari parameter detuning o
berada pada interval berikut :
o, <0< o0, (28)
dan interval kestabilan dari solusi trivial di sekitar
anti - resonansi kombinasi parametrik berikut :
No + €0y <N < 1Ny + €0,. (29)
Solusi non-trivial sistem dapat muncul saat
berada di
menggunakan transformasi
X; = R; cos(w;t + ;)
= —R;@; sin(@;t +9y),
di mana R;merupakan amplitudo dan 1; merupakan
fase dengani = 1,2. Substitusi (30) ke (18), dengan
menggunakan transformasi (30) akan diperoleh

& _
R{ = 25 Sin(al‘t + lpl) Fi(fl,f],_,fz,fé, t)

_7701'

luar solusi trivial sistem. Dengan

(30)

(31)

Y =
7]0

Ruas kanan dari (31) di-averaged pada interval

COS((U t+ Ip ) F (xllxllXZIxZI t)

[O,i,)—iir], dengan i = 1,2 terhadap t sehingga

21
Wi

< €
n4®;

+1) Fi(%y, X1, %5, %, t)) dt

sin(a;t

(32)

cos(w;t
o Wity

+ wl.) Fi(fl'f{' fz;fé; t)) dt.

Setelah di-averaged pada interval [O,%] terhadap t

penskalaan ulang :2 ,
0

dan melakukan faktor

diperoleh :
’ 1 Q12 2
Ry = ) 5611 R1o + _—Sm(lp1 ¥,)
(33)
3 .., 3
B3 (5 RYE + ZRleag),
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[ = 0o+ 3 D2 cosap, — ;)
Y =— 2 1R1C5¢1 V),
, Q
Ry = 922 2Mo + 2R = si n(y, —¥,)
3 3 _
~B,n} (§R%w% +ZR%R2w2),
| = —0,0+ 7210 o5, — )
¥y = T cos(y ),
Dimensi dari (33) dapat dikurangi dengan
memisalkan variabel fase ¢ =, —1; dan (33)
menjadi
, 1Q
R = 911R1770 +_ 2 sin n(y; — ;)
3
+B]_T]g (§R3_2+ R szz)
' Q .
Ry = 922R2770 2R *s n(y, —P1) (34)
3 3
~Bn; (5 R3w? +ZRfR252),
- g (Q21R1 Q12R2) cos
¢'=—amy + 4\@,R, @R, ¢

Titik kesetimbangan dari (34) diperoleh dengan
mengnolkan ruas kanan dari (34) sehingga R; =
0,R, =0, dan ¢' =0 . titik
kesetimbangan tersebut sulit dilakukan karena

Namun, analisis
mengandung persamaan kubik, sehingga analisis
titik kesetimbangan dan kestabilannya dilakukan

dengan simulasi numerik.

SIMULASI NUMERIK

dilakukan

menggunakan nilai-nilai pada Tabel 4 berikut :
Tabel 4. Nilai Parameter untuk simulasi numerik

Simulasi numerik dengan

Parameter Nilai
& 0.1
K 0.8
k, 0.5
B 0.5
v V2.1
y 4

Pada rh-A, diperoleh batas-batas untuk 8;; dan 6,,
pada bidang M — q yang ditunjukkan pada Gambar
2 berikut :

Gambar 2. Batas daerah 841 dan 05,
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Gambar 2 menunjukkan bahwa terdapat tiga
daerah. Daerah I menunjukkan 6,; bernilai positif
dan 8,, bernilai negatif, jika dijumlahkan akan
menghasilkan nilai positif. Daerah II menunjukkan
0,; dan 6,, bernilai positif, jika dijumlahkan akan
mengasilkan nilai positif. Daerah III menunjukkan
bahwa 6,; bernilai negatif dan 6,, bernilai positif,
jika dijumlahkan akan menghasilkan nilai positif.
Hal ini menunjukkan bahwa nilai-nilai Parameter
pada Tabel 4 memungkinkan rh-A terpenuhi. Dalam
daerah II pada Gambar 6 menunjukkan getaran
eksitasi sendiri dapat diredam sepenuhnya oleh
eksitasi parametrik karena 6;; dan 6,, bernilai
positif, jika dijumlahkan akan bernilai positif. Dari
rh-A dapat disimpulkan bahwa hanya satu dari 6,
dan 6,, saja yang  bernilai negatif dan nilai
absolutnya harus lebih kecil daripada nilai absolut
yang positif.

Sedangkan pada rh-C diperoleh batas kestabilan
pada bidang ¢ — g yang sesuai kondisi (28). Dengan
menggunakan nilai Set I yang memungkinkan
syarat rh-A terpenuhi, diperoleh daerah kestabilan
solusi trivial berikut :

66  -04 -02 02 04 0’

I M=01 M=03 — M=04]

Gambear 3. Daerah kestabilan dari solusi trivial di bidang
0 —qdengannilaiM =0.1, M = 0.3,dan M = 0.4

daerah
peredaman getaran eksitasi sendiri oleh eksitasi

Gambar 3 menunjukkan bentuk dari
parametrik pada bidang o —q. Pada daerah di
antara dua kurva, getaran eksitasi sendiri dapat
diredam sepenuhnya. Sedankan daerah yang berada
di luar kurva merupakan daerah solusi trivial tidak
stabil dan menghasilkan solusi non-trivial. Dengan
memperbesar nilai rasio massa M, maka daerah
kestabilan solusi trivial juga semakin luas.

Terdapat cara lain untuk melihat daerah
kestabilan solusi trivial, yaitu dengan mengambil
daerah pada bidang n — q yang memenuhi kondisi
(29), diperoleh daerah kestabilan solusi trivial

berikut :

[—e=01—=e=03 e=0s3]

Gambar 4. Daerah kestabilan dari solusi trivial ketika
M = 0.3 pada bidang 7 — q dengan nilai & bervariasi

Gambar 4 menunjukkan bentuk dari daerah
peredaman getaran eksitasi sendiri oleh eksitasi
parametrik pada bidang n—gq . Pada daerah di
antara dua kurva, getaran eksitasi sendiri dapat
diredam sepenuhnya. Garis kombinasi parametrik
anti-resonansi n, = Q, — Q; merupakan daerah yang
stabil. dengan memperbesar nilai amplitudo e dari
eksitasi parametrik maka daerah kestabilan solusi
trivial juga semakin luas. Hal ini menunjukkan
bahwa & merupakan parameter yang sangat efektif
untuk memperbesar daerah peredaman getaran
eksitasi sendiri oleh getaran eksitasi parametrik.

Tabel 4

memungkinkan syarat rh-A dan rh-C terpenubhi,

Nilai-nilai ~ Parameter = pada
sehingga memiliki solusi trivial stabil Namun,
diluar solusi trivial dapat muncul solusi non-trivial.
Berikut adalah simulasi numerik untuk solusi trivial
dan solusi non-trivial.
1. Solusi Trivial
Solusi trivial dibagi menjadi dua kasus,
yakni pada saat kasus resonansi eksak ¢ =0
dan kasus resonansi non-eksak o # 0.

a. Kasusresonansi eksak (o = 0)
1

R,
R,

Simpangan
e o o
o

0 50 100 150 200
t

Gambar 5. Plot Ry dan R, di daerah I untuk
Parameter Set [ ketika M = 0.1 danq = 0.8
saato =0
Gambar 5 menunjukkan pergerakan
dan R, di daerah I

berdasarkan Gambar 2 yang semakin kecil

amplitudo R,

dan konvergen menuju nol. Dari kurva
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tersebut menunjukkan bahwa getaran
eksitasi sendiri dapat diredam penuh oleh
eksitasi parametrik. Hal ini sesuai dengan
Gambar 3 di mana pada saat diambil nilai
M =01 dan q=0.8 pada saat =0,
getaran eksitasi sendiri dapat diredam
sepenuhnya oleh eksitasi parametrik yang
merepresetasikan bahwa solusi trivial
stabil.

b. Kasus resonansi non-eksak (g # 0)

[——R,0
LX)

>

Simpangan
o o o o
S % 8§

)
[

)

0 100 200 300 400 500 600
t

Gambar 6. Plot R; dan R, di daerah III untuk
Parameter Set I ketika M = 0.4 dang =1.1
saato = 0.2

0

Gambar 6 menunjukkan pergerakan
amplitudo R; dan R, di daerah 1II
berdasarkan Gambar 2 yang semakin kecil
dan konvergen menuju nol. Dari kurva
tersebut menunjukkan bahwa getaran

eksitasi sendiri dapat diredam penuh oleh
eksitasi parametrik. Hal ini sesuai dengan
Gambar 3 di mana pada saat diambil nilai
M =04 dan g =1.1 pada saat 0 =0.2,
getaran eksitasi sendiri dapat diredam
sepenuhnya oleh eksitasi parametrik yang
merepresetasikan bahwa
stabil.
2. Solusi Non-trivial

solusi trivial

Solusi non-trivial dibagi menjadi dua kasus,
yakni pada saat kasus resonansi eksak ¢ =0
dan kasus resonansi non-eksak ¢ # 0.

a. Kasusresonansi eksak (o = 0)

586

R,
R,(1)

® ©

Simpangan
5 & & <

o
[N

=

=

0

0 50 100 150 200
t

Gambar 7. Plot R; dan R, di daerah I untuk
Parameter Set [ ketika M = 0.3 danq = 0.2
saato =0

Gambar 7 menunjukkan pergerakan
dan R, di daerah 1
berdasarkan Gambar 2 dengan mengambil

amplitudo R,

nilaiM = 0.3, ¢ = 0.2 pada saato = 0. Dari

kurva tersebut menunjukkan bahwa
getaran eksitasi sendiri dapat teredam
sebagian oleh eksitasi parametrik.

1

R,(1)

99 | Ry |

08

Simpangan
o ©o o o o
w x> o o N

o
S

o

0
0 50 100 150 200

Gambar 8. Plot Ry dan R, di daerah III untuk
Parameter Set [ ketika M = 0.3 danq = 1.6
saato =0

Gambar 8 menunjukkan pergerakan
daerah III
berdasarkan Gambar 2 dengan mengambil

amplitudo R; dan R, di

nilaiM = 0.3, g = 1.6 pada saat o = 0. Dari
kurva tersebut menunjukkan bahwa nilai
R, lebih besar dari R, yang artinya getaran
eksitasi sendiri tidak dapat diredam oleh
eksitasi parametrik.

Kasus resonansi non-eksak (o # 0)
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R,
)

o
©

Simpangan
o © © o o
o o N @

S

.

0 50

o
w

o
o

o

0
100

t
Gambar 9. Plot R; dan R, di daerah [ untuk
Parameter Set I ketika M = 0.1 danq = 0.4
saato = 0.2

150 200

Gambar 9 menunjukkan pergerakan
dan R, di I
berdasarkan Gambar 2 dengan mengambil
nilai M = 0.1, ¢ = 0.4 pada saat 0 =0.2.

amplitudo R, daerah

Dari kurva tersebut menunjukkan bahwa
getaran eksitasi sendiri dapat teredam
sebagian oleh eksitasi parametrik.

1

R ()

08
R, ()

08

Simpangan
o o o o
2 o o N

o
w

o
0

o

0
0 50 100

t

150 200

Gambar 10. Plot R; dan R, di daerah III untuk
Parameter Set I ketika M = 0.1 danq = 1.2
saato = 0.2

Gambar 10 menunjukkan pergerakan
dan R, di 111
berdasarkan Gambar 2 dengan mengambil

amplitudo R, daerah
nilaiM = 0.3, ¢ = 1.2 pada saato = 0. Dari
kurva tersebut menunjukkan bahwa nilai
R, lebih besar dari R, yang artinya getaran
eksitasi sendiri tidak dapat diredam oleh
eksitasi parametrik.

PENUTUP
SIMPULAN

Berdasarkan hasil analisis menunjukkan bahwa
peredaman bergantung pada dua kondisi. Kondisi
pertama menyatakan bahwa peredaman bergantung
pada parameter peredam 6;; dan 6,, di mana
jumlah kedua parameter tersebut harus positif.
Kondisi kedua yaitu terkait kombinasi parametrik
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anti-resonansi dengan melibatkan frekuensi eksitasi
parametrik. Hasil juga menunjukkan bahwa dengan

memperbesar nilai amplitudo & dari eksitasi

parametrik dapat memperluas daerah peredaman
eksitasi sendiri. Selain itu, di luar solusi trivial juga
dapat muncul solusi non-trivial.

SARAN

Untuk penelitian selanjutnya, dapat dianalisis
bifurkasi dengan menjalankan parameter lain serta
dapat memodelkan sistem dengan menambah gaya
eksternal pada salah satu elemen atau kedua
elemen.
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