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Abstrak

Penelitian ini merupakan studi teoretis dalam bidang matematika murni yang mengkaji sifat konvergensi
barisan dan kelengkapan pada ruang metrik Euclidean. Fokus utama terletak pada ruang Euclidean
berdimensi hingga R" yang dilengkapi dengan metrik Euclidean standar d,: R" x R"™ - R. Metode yang
digunakan dalam penelitian ini adalah studi pustaka dengan mengumpulkan dan mempelajari berbagai
sumber pustaka. Pada penelitian ini akan ditunjukkan bahwa (R", d.) merupakan ruang metrik. Selain itu,
akan disajikan sifat-sifat dari ruang Euclidean dan ruang metrik yang akan digunakan untuk membuktikan
konvergensi barisan pada ruang metrik Euclidean. Lebih lanjut, dengan menggunakan sifat-sifat dari barisan
Cauchy, akan ditunjukkan (R", d,) merupakan ruang metrik lengkap. Penelitian ini menunjukkan bahwa
konvergensi barisan dalam ruang metrik Euclidean ekuivalen dengan konvergensi barisan di R. Konvergensi
barisan di R” dilengkapi dengan norma Euclidean, yaitu norma yang berasal dari hasil kali dalam standar
(dot product). Lebih lanjut, ruang metrik Euclidean dikategorikan sebagai ruang metrik lengkap, karena
kelengkapannya berkaitan dengan sifat konvergensi barisan dan keberadaan barisan Cauchy yang
konvergen di dalamnya.

Kata Kunci: barisan Cauchy, konvergensi barisan, kelengkapan, ruang Euclidean, ruang metrik.

Abstract

This research is a theoretical study in pure mathematics that examines the convergence properties of sequences and
completeness in Euclidean metric spaces. The main focus is on Euclidean spaces of finite dimension R" equipped with
the standard Euclidean metric d,: R™ X R™ — R. The method used in this research is a literature review, which involves
collecting and studying various sources. In this study, it will be shown that (R", d) is a metric space. Additionally, the
properties of Euclidean spaces and metric spaces will be presented, which will be used to prove the convergence of
sequences in Euclidean metric spaces. Furthermore, using the properties of Cauchy sequences, it will be shown that
(R™, d,) is a complete metric space. This research shows that the convergence of sequences in Euclidean metric spaces is
equivalent to the convergence of sequences in R. The convergence of sequences in R™ is equipped with the Euclidean
norm, which is the norm derived from the standard inner product (dot product). Furthermore, Euclidean metric spaces
are categorized as complete metric spaces because their completeness is related to the convergence properties of sequences
and the existence of convergent Cauchy sequences within them.

Keywords: Cauchy sequence, sequence convergence, completeness, Euclidean space, metric space.

kontinuitas. Ruang metrik didefinisikan sebagai

PENDAHULUAN himpunan yang dilengkapi fungsi jarak (metrik)
Ruang metrik merupakan konsep dasar dalam  yang memenuhi sifat non-negatif, simetri, dan

analisis matematika yang membahas jarak, limit, dan  }otaksamaan segitiga (Rudin, 1953). Salah satu
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contoh ruang metrik adalah ruang Euclidean
berdimensi- n (R") dengan norma Euclidean yang
berasal dari hasil kali dalam standar (Lay, dkk., 2016).
Ruang Euclidean tidak hanya menjadi dasar dalam
analisis real dan geometri, tetapi juga memiliki
struktur yang kaya untuk dikaji secara teoretis.

Dua konsep penting dalam ruang metrik adalah
konvergensi barisan dan kelengkapan. Konvergensi
berkaitan dengan limit barisan, sedangkan
kelengkapan berkaitan dengan limit dari barisan
Cauchy (Kreyszig, 1978). Menurut Soejono dan
Sumarno (2004), barisan adalah susunan bilangan
yang teratur dan berpola. Ruang metrik Euclidean
diketahui lengkap (Rosenlicht, 1986), namun kajian
mendalam mengenai hubungan antara konvergensi
barisan dan kelengkapan masih relevan untuk dikaji.

Kajian sebelumnya seperti oleh Rudin (1953) lebih
menekankan ruang metrik dengan R" sebagai
contoh, sementara literatur lanjutan seperti Conway
(1994) berfokus pada ruang Banach dan Hilbert,
sehingga kajian mengenai ruang metrik Euclidean
berdimensi hingga kerap terlewatkan. Studi oleh
Nachbar (2017), Alzubaidi (2024),
Saavedra, dkk. (2019) turut membahas aspek

kelengkapan dan konvergensi barisan dari berbagai

dan Leodn-

sudut pandang. Rogers (2019) menyoroti hubungan
ruang Euclidean dan ruang metrik, tetapi tidak secara
langsung mengkaji aspek konvergensi barisan dan
kelengkapan dalam ruang metrik Euclidean.
Kesenjangan ini menunjukkan perlunya kajian yang
membahas lebih dalam sifat konvergensi barisan dan
kelengkapan pada ruang metrik Euclidean,
khususnya berdimensi satu. Penelitian ini bertujuan
menganalisis hal tersebut dengan merujuk pada
literatur Shirali dan L (2006) serta pendekatan metrik

dari buku Nachbar (2017).

KAJIAN TEORI

Bagian ini memuat teori dan konsep dasar yang
dibutuhkan untuk menyelidiki konvergensi barisan
dan kelengkapan pada ruang metrik Euclidean.
Definisi 1
Jika n merupakan suatu bilangan bulat positif, maka
tupel n berurutan adalah barisan dari n bilangan real
(ug,uy,...,u,). Himpunan semua tupel n berurutan
disebut ruang berdimensi n dan dinotasikan dengan
R"™ . Secara umum, vektor u di R"™ dinotasikan
sebagai u = (uy,uy,...,u,) (Anton dan Rorres,
2014).

Definisi 2
Dua
(v1,v,,...,v,) padaR" disebut sama jika

Fig

vektor u = (uy,uy,...,u,) dan v =

U = Uy, Up = Ve, Uy = V.
u + v didefinisikan sebagai
U+ v = (U + v,uU+ vy, Uy + vy,
dan jika k adalah suatu skalar sebarang, maka
kelipatan skalar ku didefinisikan sebagai
ku = (kuy, ku,, ..., kuy,)
(Anton dan Rorres, 2005).
Teorema 3
Untuk sebarang vektor u, v, w pada R" dan sebarang
skalar a,b € R, berlaku:
i (wu+v)+w=u++ (v+ w) (sifat asosiatif
pada penjumlahan)
ii. u + 0 = u = 0 + u (identitas penjumlahan)

iii. u 4+ (—u) =0 =(—u) +u (invers
penjumlahan)
ivu+v=v+u (siftat komutatif pada

penjumlahan)
v. a(u + v) = au + av (sifat distributif pada
penjumlahan vektor)
vi. (a + b)u = au + bu (sifat distributif pada
penjumlahan skalar)
vii. (ab)u = a(bu) (sifat asosiatif perkalian)
viii. 1u = u (identitas perkalian)
(Lipschutz dan Lipson, 2001).
Definisi 4
Jika u = (uqg,uy,..., uy) dan v =
(v1,v,,...,vy) merupakan vektor di R", maka hasil
kali dalam dari u dan v dinotasikan dengan u - v
dan didefinisikan sebagai berikut
U -V = wy + Uyt Uy,
(Anton dan Rorres, 2004).
Teorema 5
Misalkan u = (uq,Uy,...,Uy) , ¥V = (U, V..., V),
dan w = (wy,w,,...,w,) € R" dan 1 € R. Hasil
kali dalam di R"™ memenuhi sifat-sifat berikut:
iu-v=v-u
i(u+v) - w=u-wt+tu-w
iii. (Aw) - v = A(u - v)
iv.u - u = 0.Lebihlanjut, u - u =0 © u =0
(Anton dan Rorres, 2014).
Definisi 6
Misalkan u = (ug,uy,...,u,) € R, norma
(panjang) yang dinotasikan sebagai |[[u|| dari
vektor u didefinisikan sebagai

[lul| = \/uf +u++ul

(Nicholson, 2013).
Teorema 7
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Misalkan u = (uq,uy,...,Uy), v = (V1,Vq,...,V,) €
R® dan 4 € R. Norma di R® memenuhi sifat-sifat

berikut:
i |lull =0
ii. ||u|| = 0jika dan hanyajikau = 0
iii. [[Au|] = [4] [[u]|
(Greub, 2012).
Definisi 8
Misalkan u = (U, Uy,...,Uy) dan v =
(vy,v3,...,v,) merupakan vektor di R" ,

didefinisikan jarak antara vektor u dan v sebagai
fungsid : R" x R — R, yaitu

dwv) = [lu - 7|
(Nicholson, 2013).
Teorema 9
Untuk setiap u,v € R", berlaku

lu - v < [[ullv]]
(Hoffman, 2019).
Teorema 10
Untuk setiap u,v,w € R" dan d(u,w)
didefinisikan sebagai jarak antara vektor u dan
vektor v, berlaku
i u+ vl < [lu]l + [l
ii. du,w) < d(u,v) + d(v,w)
(Shurman, 2016).
Definisi 11
Barisan bilangan real (R) merupakan fungsi yang
didefinisikan pada bilangan asli N = {1, 2,...,} dan
rangenya berada di bilangan real (Bartle dan Sherbet,
2000).
Teorema 12
Barisan konvergen di R memiliki tepat satu limit
(Bartle dan Sherbet, 2000).
Definisi 13
Barisan dalam ruang Euclidean berdimensi-n, yang
dilambangkan sebagai R" adalah fungsi dari
himpunan bilangan asli N ke R". Dengan kata lain,
suatu barisan (x¥) dalam R" adalah himpunan

terurut dari vektor-vektor: (x*) = (xk, x%,..,x¥) ,
denganxf € R,i = 1,2,..,n,k € N

(Rudin, 1953).

Definisi 14

Barisan bilangan real (x,) dikatakan terbatas jika
terdapat bilangan real M > 0 sedemikian
sehingga |x,| < M untuk semuan € N (Bartle dan
Sherbet, 2000).

Definisi 15

Barisan X = (x,,) di R dikatakan konvergen ke x €
R atau x merupakan limit dari barisan (x,,), jika
Ve > 0,3 k(e) sehingga untuk semua n = k()
berlaku
[x, — x| < €
(Bartle dan Sherbet, 2000).
Teorema 16
Jika barisan (x,) konvergen, maka (x,) terbatas
(Bartle dan Sherbet, 2000).
Definisi 17
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Misalkan (x*) merupakan barisan titik-titik di R"
dan misalkan x adalah titik di R" . Barisan
(x*)dikatakan konvergen ke x dengan syarat V & >
0,3 N € Nsehingga

d(x¥,x) < & untuk semua indeks k > N
(Fitzpatrick, 2009).
Teorema 18

Jika I, :=[a, b,] dengan n € N adalah suatu
barisan bersarang dari interval tertutup dan terbatas,
dengan panjang interval b,, — a,, memenubhi

inf{b, —a,: n € N} =0
maka bilangan ¢ yang termuat di interval In untuk
semua n € N adalah tunggal (Bartle dan Sherbet,
2000).
Teorema 19 (Bolzano-Weierstrass)
Setiap barisan terbatas di R memiliki subbarisan
konvergen (Bartle dan Sherbet, 2000).
Definisi 20
Barisan Cauchy adalah barisan (x™) dengan sifat
Ve > 0,3N € N, sehingga
I x* —x™ || < edenganm,n = N
(Hoffman, 2019).
Teorema 21
Setiap barisan konvergen di R" adalah barisan
Cauchy (Rosenlicht, 1986).
Teorema 22
Setiap barisan Cauchy di R" konvergen (Rosenlicht,
1986).
Teorema 23
Ruang bilangan real R merupakan ruang yang
lengkap (Nachbar, 2017).

METODE

Penelitian ini merupakan penelitian teoritis yang
bersifat kualitatif analitik dengan pendekatan analisis
berdasarkan definisi, teorema, lemma, dan proposisi
pada ruang R" . Penelitian ini tidak melibatkan
pengumpulan data, namun bersumber dari literatur
dan penalaran logis. Metode yang digunakan adalah
studi

mempelajari berbagai sumber pustaka berupa buku,

pustaka dengan mengumpulkan dan

jurnal, dan hasil penelitian sebelumnya yang

berkaitan dengan konvergensi barisan dan

kelengkapan pada ruang metrik Euclidean.

HASIL DAN PEMBAHASAN

Pada bagian ini akan dibahas mengenai konsep
dasar ruang metrik. Selanjutnya, setelah mengetahui
konsep dasar ruang metrik, akan diberikan konsep
ruang metrik Euclidean. Di dalam ruang R", operasi
penjumlahan vektor dan perkalian skalar menjadi
fondasi strukturalnya. Namun, ruang R" juga dapat
dianalisis lebih dalam dari sudut pandang analisis



matematis, yakni sebagai ruang metrik dengan
konsep jarak dan limit menjadi pusat kajian. Sebelum
memasuki bagian utama pada pembahasan, akan
diberikan konsep ruang metrik sebagai dasar untuk
pengembangan ruang metrik Euclidean yaitu sebagai
berikut.

Definisi 24

Ruang metrik (X,d) adalah himpunan X yang
elemen- elemennnya disebut titik, dengan pemetaan
d: X x X > R yang disebut (metrik)
sedemikian sehingga, untuk setiap x,y,z € X ,

jarak

memenuhi aksioma berikut:
i. d(x,y) = 0 (definit positif);
ii. dix,y) =0 x =y;
iii. d(x,y) = d(y,x) (simetris); dan

iv. d(x,z) < d(x,y) + d(y,2). (ketaksamaan
segitiga)
(Sohrab, 2003).

Selanjutnya diberikan contoh-contoh metrik
beserta pembuktiannya, yaitu sebagai berikut:
Contoh 25

Diberikan sebarang himpunan tak kosong X dand :
X x X - R Didefinisikan dengan

_ (L jikax+y
d(x’y)_{o,jikax=y

d adalah sebuah metrik pada X dan (X,d) adalah
ruang metrik diskrit (Bartle dan Sherbet, 2000).
Bukti.
Akan dibuktikan fungsi d merupakan metrik pada X,
yaitu:
1) Untuk x,y € X,d(x,y) hanya dapat bernilai
0 dan 1. Maka jelas bahwa d(x,y) = 0.
2) Akan ditunjukkan bahwa d(x,y) = 0 <
X =y.
(&) Jika x = y, maka menurut definisi
metrik diskrit didapat d(x,y) = 0.
(=) Jikad(x,y) = 0, maka menurut definisi
metrik diskrit didapatx = y.
3) Akan ditunjukkan Vx,y € X berlaku
d(x,y) = d(y,x).
a. Jika x = y, maka d(x,y) = 0 sehingga
d(y,x) = 0 berdasarkan sifat simetris.
b. Jika x # y, maka d(x,y) = 1 sehingga
berdasarkan sifat simetris didapatkan
d(y,x) = 1.
Dengan demikian, terbukti dalam dua kasus
bahwa d(x,y) = d(y,x) untuk x = y dan
X * Y.

4) Akan ditunjukkan bahwa d g)icg,z) <
d(x,y) + d(y,z). Ambil sebarang x,y,z €
X. Ada dua kemungkinan yaitu x = y atau
X # Y.
a. Jika x =y maka
d(x,z) + d(z,y).
b. Untuk kasus x # y ada 3 kemungkinan,

dlx,y) =0 <

yaitu:

i. Jika x # y, maka y # z sehingga
didapat d(x,y) = 1, d(x,z) = 0,
dan d(y,z) =1 Akibatnya,
dx,y) =1 <0+1 < d(x,2)+
d(y, z).

ii. Jika x # z, maka y = z sehingga
didapat d(x,y) = 1, d(x,z) = 1,
dan d(y,z) = 0 Akibatnya,
dx,y) =1 <1+0 < d(x2)+
d(y, z).

iii. Jika z # x dan z # y maka
dx,y) =1 <1+1 < d(x,2) +
d(, z).

Dengan demikian, ketaksamaan segitiga
terpenuhi. Jadi, d(x,y) terbukti metrik pada
X dan (X,d) merupakan ruang metrik
diskrit. m

Contoh 26

Pada himpunan R dapat didefinisikan metrik yaitu

d: R x R - R dengan d(x,y) = |x — y| untuk

setiap x,y € R (Rahmasari, 2016).

Bukti.

Akan dibuktikan fungsi d merupakan metrik pada X.
1) Jelasbahwad(x,y) = Okarena|x — y| = 0.
2) Akan ditunjukkan bahwa d(x,y) = 0 &

X =y.

(&) Jika x = y, maka d(x,y) = |[x — y| =
[x — x| = 0.

(=) Jika d(x,y) = 0, maka |x — y| = 0.
Kemudian, kuadratkan kedua ruas, diperoleh

(Ix —yh*=0
(x-y? =0
x—y =40
x—y =20

x =Yy

Dengan demikian, terbukti bahwa d(x,y) =
0= x =y.

3) Akan
d(x,y) = d(y,x), yaitu
dx,y) = |x = vyl

== -]

ditunjukkan Vx,y € X  berlaku
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=] =1y = x|

=1ly — «|

=y -«

= d(y,x)
Dengan demikian, terbukti bahwa d(x,y) =
d(, x).

4) Akan ditunjukkan bahwa d(x,z) < d(x,y) +
d(y, z). Ambil sebarang x,y,z € X, diperoleh:
d(x,z) = |x — z|

=|x-y+y—z
Slx—yl+ 1y — 2|

d(x,y) + d(y,2)

Jadi, d(x,y) terbukti metrik pada X.
Definisi 27
Barisan pada ruang metrik (X, d) adalah fungsi f :

N - X dengan domain N dan daerah hasilnya
termuat dalam X. Barisan dinotasikan dengan (x;, :
n € N) (Anwar dan Manuharawati, 2021).

Definisi 28

Suatu barisan (x,) dari titik-titik dalam suatu ruang
metrik (X,d) dikatakan konvergen ke x € X ,
dinotasikan dengan x,, = x untukn — oo atau

jika barisan bilangan real tak-negatif d(x, x) — 0

saat n — oo; dengan kata lain, Ve > 0,3N € N
sedemikian sehingga d(x, x) < ¢ untuk n > N
(Yunus, 2005).

Contoh 29

Diberikan ruang metrik (R,d) dengan d(x,y)
|x — y| untuk setiap x,y € R. Barisan (x,) dengan
X, =1 — %untuk n = 1,2,.. adalah barisan yang
konvergen ke ruang metrik (R,d)
(Rahmasari, 2016).

Bukti.

Diambil sebarang e > 0, menurut sifat Archimedes

1 pada

terdapat bilangan asli N € N dengan N > :,
&
> N berlaku

1%, — 1 =|1 —%—1|
1
;|

sehingga untuk setiap n

1
_T’l
1

<e&

Terbukti bahwa (x,) konvergen ke 1.m
Contoh 30
Pada ruang metrik biasa (R,d) dengan d(x,y) =

|x — y|, barisan (x,) dengan x, = —

ke 0 (Rohma, 2024).

konvergen
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Bukti.
Diambil sebarang ¢ > 0, menurut sifat Archimedes

terdapat bilangan asli N € N dengan N > =
€
> N berlaku

sehingga untuk setiap n
1
T n+3

1
Ix, — O =|——0
n+3
1

n+3
| 1
< N < €

Terbukti bahwa (x,) konvergen ke 0.m

Selanjutnya, diberikan Teorema 4.8 terkait
hubungan barisan konvergen dan limit.
Teorema 31
Sebuah barisan konvergen pada metrik (X,d)
memiliki tepat satu limit (Kreyszig, 1978).
Bukti.
Misalkan (x,) konvergen ke titik x dan y, akan
dibuktikan x

dan y, terdapat bilangan bulat N; dan N, sehingga

y. Karena (x,) konvergen ke titik x

untuk setiapn = Ny, berlaku

£
d(x,,x) < >

dan untuk setiapn = N,, berlaku

A0 y) <
Misalkan N = maks{Ny, N,}, diperoleh
d(x,y) < cg (x, écn) +d(xn,y)
<g+s=¢
Perhatikan bahwa untuk sebarang & > 0 berlaku
d(x,y) < g sehingga diperoleh bahwa d(x,y) = 0.
Artinya, x = y, sehingga Sebuah barisan konvergen
pada metrik (X, d) memiliki tepat satu limit.m
Lemma 32
Diberikan X = (X,d) suatu ruang metrik. Jika
(xp) = xdan (y,) = y pada X, maka d(x,,y,) —
d(x,y) (Kreyszig, 1978).
Bukti.
Perhatikan bahwa d merupakan metrik. Sehingga
berlaku ketaksamaan segitiga, yaitu
d(xn,yn) < d(xp,x) + d(x,y) + d,y)
d(x,y) < d(xxn) + d( Yn) + d(Vn,¥)
sehingga didapatkan
d(xn, Yn) — d(x,y) < d(xp,x) + d(¥,¥0)
—([@xxn) + dy)) < d(xp y) — d(x,y)
dan akibatnya
—(d(x,xn) + d(p, ) < A y) — d(x,Y)
< d(xnx) + d(,yn)
dan didapatkan

|[d(tn yn) — d(x,¥)| < d(xn,x) + A, )



Perhatikan bahwa (x,) = x dan (3,) — y, artinya
d(xn,,x) - 0dand(y,,y) — 0, diperoleh

d(Xpx) + d(yny) = 0
hal tersebut mengimplikasikan

|d(xn, y) — d(x,y)| = 0
ketika n » oo . Sehingga d(xn,yn) — d(x,y) Jadi
terbukti jika (x,,) — x dan
(yn) = ypadaX, makad(x, y,) = d(x,y). [
Definisi 33
Diberikan ruang metrik (X, d). Suatu barisan (x,) di
X disebut sebagai barisan Cauchy jika untuk setiap
& > 0 terdapat N € N sedemikian sehingga untuk
setiap bilangan asli m,n = N berlaku d(x,, x,) <
€ (Dahoklory dan Patty, 2023).
Contoh 34
Diberikan ruang metrik (R, d) dengan d(x,y) = [x —

y|. Barisan (x,) = (nTH) merupakan barisan Cauchy

di ruang metrik (R, d) (Rohma, 2024).

Bukti.

Dari Definisi 4.10 pada ruang metrik, diambil
sebarang ¢ > 0, menurut sifat Archimedes terdapat
bilangan asli N € N dengan N > é, sehingga untuk

setiapn,m = N berlaku
n+1 m+1

R

=[G =G o)l

[+ 5)-(1+5)

_|1 1
_Tl m
1 1
<[+ |5
n m
_1 1
_Tl m
_1+1
"N N
_2_2_
"N " n €

Sehingga terbukti bahwa barisan (x,) = (n—ﬂ)

n

adalah barisan Cauchy di ruang metrik (R,d)
dengan d(x,y) = |x —y|.

Lemma 35

Setiap barisan konvergen di ruang metrik (X,d)
adalah sebuah barisan Cauchy (Dahoklory dan Patty,
2023).

Bukti.

Misalkan (x,,) sebuah barisan di X dengan rlll_)rgo X, =

x, artinya Ve > 0, terdapat bilangan asli N

sehingga d(x, x,) < g untuk semuam,n > I\Eﬁgmaka
diperoleh
At xn) < dty,x) +d(x,x,)
<“+=e

Jadi (x,,) adalah barisan Cauchy.m
Definisi 36
Suatu ruang metrik (X,d) disebut ruang metrik
lengkap jika setiap barisan Cauchy di X merupakan
barisan konvergen (dalam arti memiliki limit yang
merupakan anggota dari X) (Maddox, 1970).

Selanjutnya, diberikan contoh ruang metrik
lengkap dan ruang metrik tidak lengkap sebagai
berikut.
Contoh 37
Misalkan C[0, 1] menunjukkan semua fungsi kontinu
pada interval [0, 1] di R. Untuk fungsi f, g di C[0, 1],
didefinisikan

deo(f,9) = sup{lf(x) — g(x)|: x € [0,1]}

ruang metrik (C[0, 1], d,,) merupakan ruang metrik
yang lengkap (Bartle dan Sherbet, 2000).
Bukti.
Misalkan (f;,) adalah barisan Cauchy di (C[0, 1], ds),
artinya Ve > 0, terdapat H € N sehingga untuk
semuan.m = H berlaku

Ifn(X) = (0] < &
(4.1)

Jadi, untuk setiap x € [0, 1], (f,(x)) adalah barisan
Cauchy.

untuk setiap x € [0,1].

Selanjutnya, karena R lengkap,
(fu(x)) konvergen ke f (x). Didefinisikan:
f(x) = 1llim fn(x), untuksetiapx € [0,1]

sehingga

Dari Persamaan 4.1, untuk setiap n = H dan setiap
x € [0,1]. Berlaku

Ifn(x) = fO] < &
hal tersebut menunjukkan (f,) konvergen uniform
ke f di [0, 1]. Perhatikan bahwa batas uniform dari
barisan fungsi kontinu adalah kontinu. Akibatnya,
f € [0,1]. Jadi, (€[0,1],dw)
merupakan ruang metrik yang lengkap. m
Contoh 38
Diberikan ruang metrik (Q, d) dari bilangan rasional,

ruang  metrik

dengan metrik
d(xy) =[x =yl
merupakan ruang metrik yang tidak lengkap (Bartle
dan Sherbet, 2000).
Bukti.
Jika (x;) merupakan barisan bilangan rasional yang

konvergen ke v2, maka berdasarkan Lemma 4.12
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(x,,) adalah barisan Cauchy di Q. Namun, V2 ¢ Q,
sehingga (x,) tidak konvergen di Q. Akibatnya,
berdasarkan Definisi 4.13 (Q, d)bukan ruang metrik
lengkap. L]
Selanjutnya, akan diberikan definisi ruang metrik
Euclidean.
Misalkan diberikan himpunan tak kosong X,
X =R" = {x = (x1,%,,..

R,1 < i < n} adalah himpunan bilangan real

dengan oXp)t X; €

dengan n -tupel. x = (x1,%,...,x,) dan y =

1,¥Y2,..-,¥n) € R* dapat menjadi ruang vektor
dengan  memperkenalkan  operasi  standar
penjumlahan dan perkalian skalar melalui:
X+y =Xy X) + VuYareosVn)
= (01 + yuxz + Yo X + W),

Ax = A0, %0, o, X)) = (Axq, Axy, oo, AXy),
A E€ERxy € R,

Untuk R"™ diperkenalkan fungsi jarak (metrik)
standar sebagai berikut:
Yang memenubhi sifat-sifat berikut:
(ml)d.(x,y) = 0Vx,y € R™
(m2) do(x,y) = 0 & x = y.
(m3)d.(x,y) = d.(y,x)Vx,y € R™.
(m4)d.(x,z) < d.(x,y) +d.(y,2)Vx,y,z € R"
Definisi 39
Himpunan pasangan (R", d,) disebut ruang metrik
Euclidean jika
i. R™adalah sebuah himpunan.
d,: R* X R* - [0,0)
(m4).
(Shirali dan L).
Selanjutnya, diberikan contoh-contoh ruang metrik

ii. memenuhi  (m1l) —

Euclidean beserta buktinya, yaitu sebagai berikut.
Contoh 40

Diberikan X = R yang merupakan ruang Euclidean
berdimensi-1 dan didefinisikan

d(x,y) = |x =yl
Pasangan (R,d) adalah ruang metrik (Kreyszig,
1978).
Bukti.

Akan dibuktikan fungsi d merupakan metrik pada

R, yaitu:

1) Diketahui bahwa nilai mutlak suatu bilangan real
selalu tidak negatif, yaitu [x —y| = 0. Sehingga
dix,y) = |x —y| =2 0.

2) Akan ditunjukkan bahwa d(x,y) = 0 & x =
y.

(&) Jika x = y, maka didapat d(x,y) = |x —
x| = 0.
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(=) Jika d(xy) =0,
menurut definisi nilai mutlak, didapat
(x—y),jikax =y
—(x—y),jikax <y
Jika x =2 y, maka (x —y) = 0 - x = y dan

maka |x— y| =0,

o=yl ={

jlkax < y,maka—(x —y) = 0 ->x = y.

3) Akan ditunjukkan Vx,y € R berlaku d(x,y) =
d(y, x). Dari sifat nilai mutlak, didapat |x — y| =
lv — x| Vx,y € R. sehingga d(x,y) = |x —
vl =1ly — x| = d(y,x).

4) Akan ditunjukkan bahwa d(x,z) < d(x,y) +
d(y,z). Ambil sebarang x,y,z € R. Diperoleh
d(x,z)

|x — 7|
lx —y+y -2
lx =yl + 1y -z
d(x,y) + d(y,2)
Sehingga ketaksamaan segitiga terpenuhi
Jadi, d(x,y) terbukti metrik pada R dan (R, d)
merupakan ruang metrik.
Contoh 41
Misalkan V adalah ruang vektor atas bilangan real,

VAN

yaitu terdapat fungsi norma:
-1V -R
[| - || adalah ruang bernorma yang memenubhi sifat-
sifat berikut.
i. ||x|| = 0jika dan hanyajikax = 0.
i lx + yll < [lx[] + [yl
llax|| = |a| ||x]]
Dari norma, didefinisikan fungsi metrik sebagai
berikut.

iil.

dn(x,y) == |[lx = yl|

Sebagaimana di ruang vektor Euclidean terdapat

konsep norma, sehingga akan ditunjukkan (X, d,)

adalah ruang metrik bernorma.

Bukti.

Akan dibuktikan fungsi d,, merupakan metrik pada

X, yaitu:

1) Berdasarkan Teorema 2.7, norma selalu tidak
negatif, akibatnyad, = ||x —y|| = 0.

2) Akan ditunjukkan bahwa d,(x,y) = 0 © x =
y . Berdasarkan Teorema 2.7, diperoleh ||x —
yl| = 0 & x =y, akibatnya d,(x,y) = 0 &
x =Y.

3) Akan ditunjukkan V x,y € X berlaku d,(x,y) =
d, (¥, x). Ambil sebarang x,y € X. Diperoleh

dn(x,y) = ||lx = Il




i(%‘ —x;)?
i=1

|ly — x|
= dn(y,%)
Sehingga d, (x,y) = d,(y,x).

4) Akan ditunjukkan bahwa d,(x,z) < d,(x,y) +
d,(y,z). Ambil sebarang x,y,z € R. Diperoleh
dn(x,2) = ||x — 2|

=llx-y+y—z|

[lx = yl| + |ly — zl|

=dy(x,y) + dn(y,2)
Sehingga ketaksamaan segitiga terpenuhi.

Jadi, d,(x,y) terbukti metrik pada X dan (X,d,)

merupakan ruang metrik. ]

IA

Selanjutnya, diberikan pembuktian mengenai
konvergensi barisan di ruang metrik Euclidean pada
Teorema 4.19 berikut.

Teorema 42
Misalkan X = R", dengan

n 2
de(x,7) = (Z(xl- —yi)Z)
=1
dimana x = (xq.x,...,x,) dan ¥y = (¥4, V2, ., Y) €

R™ . (x%) = (xF.xk, .., xk)

anggota dari barisan di R" konvergen ke x =

dengan k=12,..

(x1-X3, ., %) jika dan hanya jika Vi = 1,2, ...,n, (x)
konvergen ke x; di R.

Bukti.
(=) Akan ditunjukkan bahwa jika (x*)=
(xf.x%, .., xf) , dengan k=12,.. anggota dari

barisan di R™ konvergen ke x = (x1.x5, ..., x,,) maka
Vi =1,.2,...,n, (x) konvergen ke x; di R.

Jadi, Vi =1,2,...,n, (x{‘) konvergen ke x; di ]RFig

(&) Akan ditunjukkan bahwa jika Vi =1,2,...,n,
R maka (x*)=
xk) , dengan k =12,.. anggota dari

(xF) konvergen ke x; di
(xk.xk, ..,
barisan di R" konvergen ke x = (x1.x5, ..., X).
Untuk setiap € > 0. karenaVi = 1,2, ...,n, (xll‘)
konvergen ke x; di R, terdapat N; € N untuk setiap

k = N;, sehingga berlaku

|k — x; <=

Jn

kuadratkan kedua ruas, didapat
2

€
kK x)2 < —

(k= x)? <=

dan diperoleh
n 82
2
Z(xlk —-x;) <n-—= &2
i=1

akibatnya,

de(xk,x) = (Z(x{{ — xi)2> < (82)% =

Jadi, (x*)=(xf.xf, .. xn)
anggota dari barisan di

(%1-%, ey Xp)-
Selanjutnya, diberikan contoh barisan di ruang

dengan k=1,2,..
R" konvergen ke x =

metrik Euclidean yang konvergen pada Contoh 4.20
berikut.
Contoh 43

Diberikan (R?,d,), dengan
1

n 2
de(%,y) = (Z(xi —yi)2>

=1
Buktikan bahwa barisan (x*) = (1 + %,2 - %)
konvergen ke (1,2).

Perhatikan bahwa jika (x*) konvergen ke x, artinyd’enyelesaian

untuk setiap & >0, terdapat N € N sehingga untulAkan ditunjukkan barisan (x*) = (1 +%,2 —%)

setiap k > N berlaku d,(x*,x) < ¢. Karena (xf‘ - x,-)z <konvergen ke (1,2). Ambil sebarang ¢ > 0, menurut

I (xk — x;)” sehingga

|xf = x| = ,/(xf —x;)?

= d,(x*,x)

Akibatnya,
| — x| < do (2%, %) <€
Sehingga berdasarkan Definisi 2.15 didapat
lim xf =x;

k—oo

sifat Archimedes terdapat bilangan asli N € N

dengan N > g , sehingga untuk setiap kK = N
berlaku

do (6, %) = do(%,(1,2)) = (¢ = 1 + (xk — 2)2)2
=J(1+;_1)2+<2_;_2)
- @ +(-%)

2
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~I%
=[5

= < <ég

4.

Q1

Berdasarkan Definisi , terbukti bahwa (x*)
konvergen ke (1,2).

Selanjutnya, diberikan Proposisi 4.21 terkait
barisan Cauchy di ruang metrik Euclidean.
Proposisi 44
Diberikan ruang metrik Euclidean (R", d,), misalkan
(x*) barisan di R". Barisan (x*) merupakan barisan
Cauchy & x{ merupakan barisan Cauchy.

Bukti.
(=) Akan ditunjukkan bahwa jika (x*) merupakan
barisan Cauchy maka x{ merupakan barisan Cauchy.

Misalkan  (x*) = (x¥.x%, ..., x)
barisan Cauchy, maka xf merupakan barisan
Cauchy. Artinya, untuk setiap € > 0, terdapat N € N

merupakan

sehingga untuk setiap m, k = N berlaku

1
n 2
K ,my — k m)2
d.(xk,x )-(Z(xl-—xi)> <e
i=1

Perhatikan bahwa, karena (xf — xl-m)2 < Y (xF -

xl-m)z sehingga

it = x|

=d,(x¥,x™) < ¢
Berdasarkan Definisi 2.20 diperoleh bahwa setiap

komponen vektor x{adalah barisan Cauchy di R.
(=) Akan ditunjukkan xf merupakan barisan
Cauchy maka (x*¥) merupakan barisan Cauchy.
Misalkan x¥ adalah barisan Cauchy. Artinya,

Ve >0, terdapat N; € N untuk setiap m,k = N,
sehingga berlaku

€
Vn
kuadratkan kedua ruas, didapat

2
&
xM? < -

|x{‘ —xl-m| <

(xf =

dan diperoleh

n 2
2 &
E (xF —x") <n-;=62
=1
akibatnya,
1

ot =ar) ) <@k

n

d, (x, xm) = (Z

i=1
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Berdasarkan Definisi 4.10, (x*) merupakan barisan
Cauchy.

Selanjutnya, diberikan Teorema 4.22 terkait
kelengkapan pada ruang metrik Euclidean. m
Teorema 45
Misalkan X = R", dengan

n 2
de(x,y) = (Zcxi —yi)2>
i=1

dimana x = (x;.%,...,%,) dan y = (¥1, V2, -
R™ (R", d,) adalah ruang metrik lengkap.
Bukti.

Misalkan (x*) adalah barisan Cauchy di R™ .

Berdasarkan Proposisi 4.21 didapat bahwa x¥

' Yn) €

merupakan barisan Cauchy di R . Selanjutnya,
berdasarkan Teorema 2.23 diperoleh bahwa R
lengkap. Karena R lengkap, artinya setiap barisan
Cauchy-nya konvergen, sehingga x{* konvergen ke
x; di R. Lebih lanjut, berdasarkan Teorema 4.19
diperoleh bahwa (x*) konvergenke x. m

Berdasarkan teorema 4.22, dapat disimpulkan
bahwa (R" d.) merupakan ruang metrik lengkap.
Hal tersebut berdasarkan bukti jika barisan di R"
adalah barisan Cauchy, maka setiap komponen
vektornya juga merupakan barisan Cauchy di R.
Karena R merupakan ruang yang lengkap, artinya
setiap barisan Cauchy-nya konvergen, sehingga
setiap komponen vektor di R" konvergen ke suatu
bilangan real. Selanjutnya, konvergensi barisan di
setiap komponen vektor di R" yang merupakan
bilangan real ekuivalen dengan konvergensi barisan
di ruang Euclidean, sehingga dapat disimpulkan
bahwa setiap barisan Cauchy di R™ merupakan
barisan konvergen.

Dari pembuktian-pembuktian yang telah
dilakukan, didapat bahwa ruang vektor berdimensi-
n atau ruang Euclidean terdiri dari komponen-
komponen vektor real, sehingga dalam melakukan
analisis konvergensi barisan pada ruang metrik
Euclidean hanya perlu memeriksa apakah setiap
komponen-komponen  vektor real tersebut
konvergen ke suatu bilangan real dan berlaku
sebaliknya. Dengan meninjau komponen-komponen
vektor real, akan dengan mudah menerapkan sifat-
sifat barisan di bilangan real yang telah dipelajari
dalam analisis real.

Adanya hubungan antara konvergensi barisan
dan barisan Cauchy di bilangan real yang ekuivalen

dengan hubungan antara konvergensi barisan dan



barisan Cauchy pada ruang Euclidean menjadi dasar
dalam membuktikan kelengkapan pada ruang metrik
Euclidean. Suatu ruang metrik dikatakan lengkap
jika setiap barisan Cauchynya konvergen, karena
barisan Cauchy secara definisi menggunakan konsep
jarak atau metrik, sehingga dalam membuktikan
kelengkapan pada ruang Euclidean, diperlukan
fungsi jarak atau metrik.

Dengan demikian, dapat disimpulkan bahwa
konvergensi barisan dan barisan Cauchy memegang
peran penting dalam menentukan kelengkapan
ruang metrik Euclidean dengan basis standar R™.
Konsep ini juga dapat diterapkan pada ruang
Euclidean E", meskipun pembuktiannya mungkin
memerlukan penyesuaian sesuai sifat dan definisi
metrik yang digunakan pada ruang tersebut.

PENUTUP
SIMPULAN

Konvergensi barisan pada ruang metrik
Euclidean memiliki kesamaan sifat dengan

konvergensi barisan pada ruang Euclidean, terutama
sifat-sifat barisan yang konvergen di R. Hal tersebut
terjadi karena ruang Euclidean terdiri dari hasil kali
kartesius antara ruang-ruang bilangan real. Lebih
lanjut, konvergensi barisan di R" dilengkapi dengan
norma Euclidean, yaitu norma yang berasal dari hasil
kali dalam standar (dot product). Ruang metrik
Euclidean merupakan ruang metrik lengkap,
kelengkapan ruang metrik Euclidean berhubungan
dengan konvergensi barisan dan barisan Cauchy

pada ruang metrik Euclidean.

SARAN

Penelitian ini menggunakan ruang metrik
Euclidean dengan basis standar (R"), sehingga pada
selanjutnya

menggunakan ruang metrik Euclidean (E™).

penelitian diharapkan untuk
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