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Abstrak 

Penelitian ini merupakan studi teoretis dalam bidang matematika murni yang mengkaji sifat konvergensi 
barisan dan kelengkapan pada ruang metrik Euclidean. Fokus utama terletak pada ruang Euclidean 
berdimensi hingga ℝn  yang dilengkapi dengan metrik Euclidean standar 𝑑𝑒: ℝ𝑛 × ℝ𝑛 → ℝ . Metode yang 
digunakan dalam penelitian ini adalah studi pustaka dengan mengumpulkan dan mempelajari berbagai 
sumber pustaka. Pada penelitian ini akan ditunjukkan bahwa (ℝ𝑛, 𝑑𝑒) merupakan ruang metrik. Selain itu, 
akan disajikan sifat-sifat dari ruang Euclidean dan ruang metrik yang akan digunakan untuk membuktikan 
konvergensi barisan pada ruang metrik Euclidean. Lebih lanjut, dengan menggunakan sifat-sifat dari barisan 
Cauchy, akan ditunjukkan (ℝ𝑛, 𝑑𝑒) merupakan ruang metrik lengkap. Penelitian ini menunjukkan bahwa 
konvergensi barisan dalam ruang metrik Euclidean ekuivalen dengan konvergensi barisan di ℝ. Konvergensi 
barisan di ℝn dilengkapi dengan norma Euclidean, yaitu norma yang berasal dari hasil kali dalam standar 
(dot product). Lebih lanjut, ruang metrik Euclidean dikategorikan sebagai ruang metrik lengkap, karena 
kelengkapannya berkaitan dengan sifat konvergensi barisan dan keberadaan barisan Cauchy yang 
konvergen di dalamnya. 

Kata Kunci: barisan Cauchy, konvergensi barisan, kelengkapan, ruang Euclidean, ruang metrik. 
  

Abstract 

This research is a theoretical study in pure mathematics that examines the convergence properties of sequences and 
completeness in Euclidean metric spaces. The main focus is on Euclidean spaces of finite dimension ℝn  equipped with 
the standard Euclidean metric 𝑑𝑒: ℝ𝑛 × ℝ𝑛 → ℝ. The method used in this research is a literature review, which involves 
collecting and studying various sources. In this study, it will be shown that (ℝ𝑛, 𝑑𝑒) is a metric space. Additionally, the 
properties of Euclidean spaces and metric spaces will be presented, which will be used to prove the convergence of 
sequences in Euclidean metric spaces. Furthermore, using the properties of Cauchy sequences, it will be shown that 
(ℝ𝑛, 𝑑𝑒) is a complete metric space. This research shows that the convergence of sequences in Euclidean metric spaces is 
equivalent to the convergence of sequences in ℝ. The convergence of sequences in ℝn  is equipped with the Euclidean 
norm, which is the norm derived from the standard inner product (dot product). Furthermore, Euclidean metric spaces 
are categorized as complete metric spaces because their completeness is related to the convergence properties of sequences 
and the existence of convergent Cauchy sequences within them. 
Keywords: Cauchy sequence, sequence convergence, completeness, Euclidean space, metric space.

 
 

PENDAHULUAN 

Ruang metrik merupakan konsep dasar dalam 

analisis matematika yang membahas jarak, limit, dan 

kontinuitas. Ruang metrik didefinisikan sebagai 

himpunan yang dilengkapi fungsi jarak (metrik) 

yang memenuhi sifat non-negatif, simetri, dan 

ketaksamaan segitiga (Rudin, 1953). Salah satu 
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contoh ruang metrik adalah ruang Euclidean 

berdimensi- 𝑛 (ℝn) dengan norma Euclidean yang 

berasal dari hasil kali dalam standar (Lay, dkk., 2016). 

Ruang Euclidean tidak hanya menjadi dasar dalam 

analisis real dan geometri, tetapi juga memiliki 

struktur yang kaya untuk dikaji secara teoretis. 

Dua konsep penting dalam ruang metrik adalah 

konvergensi barisan dan kelengkapan. Konvergensi 

berkaitan dengan limit barisan, sedangkan 

kelengkapan berkaitan dengan limit dari barisan 

Cauchy (Kreyszig, 1978). Menurut Soejono dan 

Sumarno (2004), barisan adalah susunan bilangan 

yang teratur dan berpola. Ruang metrik Euclidean 

diketahui lengkap (Rosenlicht, 1986), namun kajian 

mendalam mengenai hubungan antara konvergensi 

barisan dan kelengkapan masih relevan untuk dikaji. 

Kajian sebelumnya seperti oleh Rudin (1953) lebih 

menekankan ruang metrik dengan ℝn  sebagai 

contoh, sementara literatur lanjutan seperti Conway 

(1994) berfokus pada ruang Banach dan Hilbert, 

sehingga kajian mengenai ruang metrik Euclidean 

berdimensi hingga kerap terlewatkan. Studi oleh 

Nachbar (2017), Alzubaidi (2024), dan León-

Saavedra, dkk. (2019) turut membahas aspek 

kelengkapan dan konvergensi barisan dari berbagai 

sudut pandang. Rogers (2019) menyoroti hubungan 

ruang Euclidean dan ruang metrik, tetapi tidak secara 

langsung mengkaji aspek konvergensi barisan dan 

kelengkapan dalam ruang metrik Euclidean. 

Kesenjangan ini menunjukkan perlunya kajian yang 

membahas lebih dalam sifat konvergensi barisan dan 

kelengkapan pada ruang metrik Euclidean, 

khususnya berdimensi satu. Penelitian ini bertujuan 

menganalisis hal tersebut dengan merujuk pada 

literatur Shirali dan L (2006) serta pendekatan metrik 

dari buku Nachbar (2017). 

KAJIAN TEORI  

Bagian ini memuat teori dan konsep dasar yang 

dibutuhkan untuk menyelidiki konvergensi barisan 

dan kelengkapan pada ruang metrik Euclidean. 

Definisi 1 

Jika 𝑛 merupakan suatu bilangan bulat positif, maka 

tupel n berurutan adalah barisan dari n bilangan real 

(𝑢1, 𝑢2, . . . , 𝑢𝑛). Himpunan semua tupel 𝑛  berurutan 

disebut ruang berdimensi n dan dinotasikan dengan 

ℝn . Secara umum, vektor 𝒖  di ℝn  dinotasikan 

sebagai 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛)  (Anton dan Rorres, 

2014). 

Definisi 2 

Dua vektor 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛)  dan 𝒗 =

 (𝑣1, 𝑣2, . . . , 𝑣𝑛)  pada ℝn  disebut sama jika 

                  𝑢1 =  𝑣1, 𝑢1 =  𝑣2, . . . , 𝑢𝑛  =  𝑣𝑛. 

𝒖 +  𝒗 didefinisikan sebagai 

𝒖 +  𝒗 =  (𝑢1 + 𝑣1, 𝑢2 +  𝑣2, . . . , 𝑢𝑛 + 𝑣𝑛), 

dan jika 𝑘  adalah suatu skalar sebarang, maka 

kelipatan skalar ku didefinisikan sebagai 

𝑘𝒖 =  (𝑘𝑢1, 𝑘𝑢2, . . . , 𝑘𝑢𝑛) 

(Anton dan Rorres, 2005). 

Teorema 3 

Untuk sebarang vektor 𝒖, 𝒗, 𝒘 pada ℝn  dan sebarang 

skalar 𝑎, 𝑏 ∈  ℝ, berlaku: 

i. (𝒖 +  𝒗)  +  𝒘 =  𝒖 +  (𝒗 +  𝒘) (sifat asosiatif 

pada penjumlahan) 

ii. 𝒖 +  𝟎 =  𝒖 =  𝟎 +  𝒖 (identitas penjumlahan) 

iii. 𝒖 + (−𝒖)  =  𝟎 =  (−𝒖)  +  𝒖 (invers 

penjumlahan) 

iv. 𝒖 +  𝒗 =  𝒗 +  𝒖 (sifat komutatif pada 

penjumlahan) 

v. 𝑎(𝒖 +  𝒗)  =  𝑎𝒖 +  𝑎𝒗 (sifat distributif pada 

penjumlahan vektor) 

vi. (𝑎 +  𝑏)𝒖 =  𝑎𝒖 +  𝑏𝒖 (sifat distributif pada 

penjumlahan skalar) 

vii. (𝑎𝑏)𝒖 =  𝑎(𝑏𝒖) (sifat asosiatif perkalian) 

viii. 1𝒖 = 𝒖 (identitas perkalian) 

(Lipschutz dan Lipson, 2001). 

Definisi 4 

Jika 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛)  dan 𝒗 =

 (𝑣1, 𝑣2, . . . , 𝑣𝑛)merupakan vektor di ℝn , maka hasil 

kali dalam dari 𝒖  dan 𝒗  dinotasikan dengan 𝒖 ·  𝒗 

dan didefinisikan sebagai berikut 

𝒖 ·  𝒗 =  𝑢1𝑣1  + 𝑢2𝑣2 + . . . + 𝑢𝑛𝑣𝑛  

(Anton dan Rorres,  2004). 

Teorema 5 

Misalkan 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛) , 𝒗 =  (𝑣1, 𝑣2, . . . , 𝑣𝑛) , 

dan 𝒘 =  (𝑤1, 𝑤2, . . . , 𝑤𝑛)  ∈  ℝn  dan 𝜆 ∈   ℝ . Hasil 

kali dalam di ℝn memenuhi sifat-sifat berikut: 

i. 𝒖 ·  𝒗 =  𝒗 ·  𝒖 
ii. (𝒖 +  𝒗)  ·  𝒘 =  𝒖 ·  𝒘 +  𝒖 ·  𝒘 

iii. (𝜆𝒖) ·  𝒗 =  𝜆(𝒖 ·  𝒗) 
iv. 𝒖 ·  𝒖 ≥  𝟎. Lebih lanjut, 𝒖 ·  𝒖 =  𝟎 ⟺  𝒖 =  𝟎 
(Anton dan Rorres, 2014). 

Definisi 6 

Misalkan 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛)  ∈  ℝn, norma 
(panjang) yang dinotasikan sebagai ||𝒖||  dari 
vektor 𝒖 didefinisikan sebagai 

||𝒖|| = √𝑢1
2 + 𝑢2

2 + ⋯ + 𝑢𝑛
2 

(Nicholson, 2013). 
Teorema 7 
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Misalkan 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛) , 𝒗 =  (𝑣1, 𝑣2, … , 𝑣𝑛)  ∈
 ℝn  dan 𝜆 ∈   ℝ. Norma di ℝn  memenuhi sifat-sifat 
berikut: 

i. ||𝒖||  ≥  0 
ii. ||𝒖||  =  0 jika dan hanya jika 𝒖 =  𝟎 

iii. ||𝜆𝒖||  =  |𝜆| ||𝒖|| 
(Greub, 2012). 
Definisi 8 

Misalkan 𝒖 =  (𝑢1, 𝑢2, . . . , 𝑢𝑛) dan 𝒗 =
 (𝑣1, 𝑣2, … , 𝑣𝑛) merupakan vektor di ℝn , 
didefinisikan jarak antara vektor 𝒖 dan 𝒗  sebagai 
fungsi 𝑑 ∶  ℝn  ×  ℝn  →  ℝ, yaitu 

𝑑(𝒖, 𝒗)  =  ||𝒖 −  𝒗|| 
(Nicholson, 2013). 
Teorema 9 

Untuk setiap 𝒖, 𝒗 ∈  ℝn, berlaku 
|𝒖 ·  𝒗|  ≤  ||𝒖|| ||𝒗|| 

(Hoffman, 2019). 
Teorema 10 
Untuk setiap 𝒖, 𝒗, 𝒘 ∈  ℝn dan 𝑑(𝒖, 𝒘) 
didefinisikan sebagai jarak antara vektor 𝒖  dan 
vektor 𝒗, berlaku 
i. ||𝒖 +  𝒗||  ≤  ||𝒖|| + ||𝒗|| 

ii. 𝑑(𝒖, 𝒘)  ≤  𝑑(𝒖, 𝒗)  +  𝑑(𝒗, 𝒘) 
(Shurman, 2016). 
Definisi 11 
Barisan bilangan real (ℝ)  merupakan fungsi yang 
didefinisikan pada bilangan asli ℕ =  {1, 2, . . . , } dan 
rangenya berada di bilangan real (Bartle dan Sherbet, 
2000). 
Teorema 12 

Barisan konvergen di ℝ  memiliki tepat satu limit 
(Bartle dan Sherbet, 2000). 
Definisi 13 

Barisan dalam ruang Euclidean berdimensi-𝑛, yang 
dilambangkan sebagai ℝn  adalah fungsi dari 
himpunan bilangan asli ℕ ke ℝn. Dengan kata lain, 
suatu barisan (𝒙𝑘)  dalam ℝn  adalah himpunan 

terurut dari vektor-vektor: (𝒙𝑘) = (𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑛
𝑘) , 

dengan 𝑥𝑖
𝑘  ∈  ℝ, 𝑖 =  1, 2, … , 𝑛, 𝑘 ∈  ℕ 

(Rudin, 1953). 
Definisi 14 
Barisan bilangan real (𝑥𝑛)  dikatakan terbatas jika 
terdapat bilangan real 𝑀 >  0  sedemikian 
sehingga |𝑥𝑛|  ≤  𝑀 untuk semua 𝑛 ∈  ℕ (Bartle dan 
Sherbet, 2000). 
Definisi 15 

Barisan 𝑋 = (𝑥𝑛) di ℝ dikatakan konvergen ke 𝑥  ∈
  ℝ atau 𝑥 merupakan limit dari barisan (𝑥𝑛), jika 
∀ 𝜀 >  0, ∃ 𝑘(𝜀)  sehingga untuk semua 𝑛 ≥  𝑘(𝜀) 
berlaku 

|𝑥𝑛  −  𝑥|  <  𝜀 
(Bartle dan Sherbet, 2000). 
Teorema 16 

Jika barisan (𝑥𝑛)  konvergen, maka (𝑥𝑛)  terbatas 
(Bartle dan Sherbet, 2000). 
Definisi 17 

Misalkan (𝒙𝑘) merupakan barisan titik-titik di ℝn 
dan misalkan 𝒙  adalah titik di ℝn . Barisan 
(𝒙𝑘)dikatakan konvergen ke 𝒙 dengan syarat ∀ 𝜀 >

 0, ∃ 𝑁 ∈  ℕ sehingga 
𝑑(𝒙𝑘 , 𝒙)  <  𝜀 untuk semua indeks 𝑘 ≥  𝑁 
(Fitzpatrick, 2009). 
Teorema 18 

Jika 𝐼𝑛 ≔ [𝑎𝑛 , 𝑏𝑛]  dengan 𝑛 ∈  ℕ  adalah suatu 
barisan bersarang dari interval tertutup dan terbatas, 
dengan panjang interval 𝑏𝑛 − 𝑎𝑛  memenuhi 

𝑖𝑛𝑓{𝑏𝑛 − 𝑎𝑛 ∶  𝑛 ∈  ℕ}  =  0 
maka bilangan 𝜉 yang termuat di interval In untuk 
semua 𝑛 ∈  ℕ  adalah tunggal (Bartle dan Sherbet, 
2000). 
Teorema 19 (Bolzano-Weierstrass) 

Setiap barisan terbatas di ℝ  memiliki subbarisan 
konvergen (Bartle dan Sherbet, 2000). 
Definisi 20 

Barisan Cauchy adalah barisan (𝒙𝑛) dengan sifat 
∀ 𝜀 >  0, ∃ 𝑁 ∈  ℕ, sehingga 
∥ 𝒙𝑛 − 𝒙𝑚 ∥ <  𝜀dengan 𝑚, 𝑛 ≥  ℕ 
(Hoffman, 2019). 
Teorema 21 

Setiap barisan konvergen di ℝn  adalah barisan 
Cauchy (Rosenlicht, 1986). 
Teorema 22 

Setiap barisan Cauchy di ℝn konvergen (Rosenlicht, 
1986). 
Teorema 23 

Ruang bilangan real ℝ  merupakan ruang yang 
lengkap (Nachbar, 2017). 

METODE  

Penelitian ini merupakan penelitian teoritis yang 

bersifat kualitatif analitik dengan pendekatan analisis 

berdasarkan definisi, teorema, lemma, dan proposisi 

pada ruang ℝn . Penelitian ini tidak melibatkan 

pengumpulan data, namun bersumber dari literatur 

dan penalaran logis. Metode yang digunakan adalah 

studi pustaka dengan mengumpulkan dan 

mempelajari berbagai sumber pustaka berupa buku, 

jurnal, dan hasil penelitian sebelumnya yang 

berkaitan dengan konvergensi barisan dan 

kelengkapan pada ruang metrik Euclidean. 

HASIL DAN PEMBAHASAN 

Pada bagian ini akan dibahas mengenai konsep 

dasar ruang metrik. Selanjutnya, setelah mengetahui 

konsep dasar ruang metrik, akan diberikan konsep 

ruang metrik Euclidean. Di dalam ruang ℝn, operasi 

penjumlahan vektor dan perkalian skalar menjadi 

fondasi strukturalnya. Namun, ruang ℝn juga dapat 

dianalisis lebih dalam dari sudut pandang analisis 
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matematis, yakni sebagai ruang metrik dengan 

konsep jarak dan limit menjadi pusat kajian. Sebelum 

memasuki bagian utama pada pembahasan, akan 

diberikan konsep ruang metrik sebagai dasar untuk 

pengembangan ruang metrik Euclidean yaitu sebagai 

berikut. 

Definisi 24 

Ruang metrik (𝑋, 𝑑) adalah himpunan 𝑋  yang 

elemen- elemennnya disebut titik, dengan pemetaan 

𝑑 ∶  𝑋 ×  𝑋 →  ℝ  yang disebut jarak (metrik) 

sedemikian sehingga, untuk setiap 𝑥, 𝑦, 𝑧 ∈  𝑋 , 

memenuhi aksioma berikut: 

i. 𝑑(𝑥, 𝑦)  ≥  0 (definit positif); 

ii. 𝑑(𝑥, 𝑦)  =  0 ⇔  𝑥 =  𝑦; 

iii. 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥) (simetris); dan 

iv. 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧).  (ketaksamaan 

segitiga) 

(Sohrab, 2003). 

Selanjutnya diberikan contoh-contoh metrik 

beserta pembuktiannya, yaitu sebagai berikut: 

Contoh 25 

Diberikan sebarang himpunan tak kosong 𝑋 dan 𝑑 ∶

 𝑋 ×  𝑋 →  ℝ. Didefinisikan dengan 

𝑑(𝑥, 𝑦) = {
1.  𝑗𝑖𝑘𝑎 𝑥 ≠ 𝑦
0, 𝑗𝑖𝑘𝑎 𝑥 = 𝑦

  

𝑑  adalah sebuah metrik pada 𝑋  dan (𝑋, 𝑑)  adalah 

ruang metrik diskrit (Bartle dan Sherbet, 2000). 

Bukti. 

Akan dibuktikan fungsi 𝑑 merupakan metrik pada 𝑋, 

yaitu: 

1) Untuk 𝑥, 𝑦 ∈  𝑋, 𝑑(𝑥, 𝑦)  hanya dapat bernilai 

0 dan 1. Maka jelas bahwa 𝑑(𝑥, 𝑦)  ≥  0. 

2) Akan ditunjukkan bahwa 𝑑(𝑥, 𝑦)  =  0 ⟺

 𝑥 =  𝑦. 

(⟸)  Jika 𝑥 =  𝑦 , maka menurut definisi 

metrik diskrit didapat 𝑑(𝑥, 𝑦)  =  0.  

(⟹) Jika 𝑑(𝑥, 𝑦)  =  0, maka menurut definisi 

metrik diskrit didapat 𝑥 =  𝑦. 

3) Akan ditunjukkan ∀ 𝑥, 𝑦 ∈  𝑋  berlaku 

d(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥). 

a. Jika 𝑥 =  𝑦 , maka 𝑑(𝑥, 𝑦)  =  0  sehingga 

𝑑(𝑦, 𝑥)  =  0 berdasarkan sifat simetris. 

b. Jika 𝑥 ≠  𝑦 , maka 𝑑(𝑥, 𝑦)  =  1  sehingga 

berdasarkan sifat simetris didapatkan 

𝑑(𝑦, 𝑥)  =  1. 

Dengan demikian, terbukti dalam dua kasus 

bahwa 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥)  untuk 𝑥 =  𝑦  dan 

𝑥 ≠  𝑦. 

4) Akan ditunjukkan bahwa d (𝑥, 𝑧)  ≤

 𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧) . Ambil sebarang 𝑥, 𝑦, 𝑧 ∈

 𝑋. Ada dua kemungkinan yaitu 𝑥 =  𝑦 atau 

𝑥 ≠  𝑦. 

a. Jika 𝑥 =  𝑦  maka 𝑑(𝑥, 𝑦)  =  0 ≤

 𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦). 

b. Untuk kasus 𝑥 ≠  𝑦 ada 3 kemungkinan, 

yaitu: 

i. Jika 𝑥 ≠  𝑦 , maka 𝑦 ≠  𝑧  sehingga 

didapat 𝑑(𝑥, 𝑦)  =  1 , 𝑑(𝑥, 𝑧)  =  0 , 

dan 𝑑(𝑦, 𝑧)  =  1 . Akibatnya, 

𝑑(𝑥, 𝑦)  =  1 ≤  0 + 1 ≤  𝑑(𝑥, 𝑧) +

𝑑(𝑦, 𝑧). 

ii. Jika 𝑥 ≠  𝑧 , maka 𝑦 =  𝑧 sehingga 

didapat 𝑑(𝑥, 𝑦)  =  1 , 𝑑(𝑥, 𝑧)  =  1 , 

dan 𝑑(𝑦, 𝑧)  =  0 . Akibatnya, 

𝑑(𝑥, 𝑦)  =  1 ≤  1 + 0 ≤  𝑑(𝑥, 𝑧) +

𝑑(𝑦, 𝑧). 

iii. Jika 𝑧 ≠  𝑥  dan 𝑧 ≠  𝑦  maka 

𝑑(𝑥, 𝑦)  =  1 ≤  1 + 1 ≤  𝑑(𝑥, 𝑧)  +

𝑑(𝑦, 𝑧).  

Dengan demikian, ketaksamaan segitiga 

terpenuhi. Jadi, 𝑑(𝑥, 𝑦) terbukti metrik pada 

𝑋 dan (𝑋, 𝑑)  merupakan ruang metrik 

diskrit. ■ 

Contoh 26 

Pada himpunan ℝ dapat didefinisikan metrik yaitu 

𝑑 ∶  ℝ ×  ℝ →  ℝ  dengan 𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|  untuk 

setiap 𝑥, 𝑦 ∈  ℝ (Rahmasari, 2016). 

Bukti. 

Akan dibuktikan fungsi 𝑑 merupakan metrik pada 𝑋. 

1) Jelas bahwa 𝑑(𝑥, 𝑦)  ≥  0 karena |𝑥 −  𝑦|  ≥  0. 

2) Akan ditunjukkan bahwa 𝑑(𝑥, 𝑦)  =  0 ⟺

 𝑥 =  𝑦. 

(⟸) Jika 𝑥 =  𝑦 , maka 𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|  =

      |𝑥 −  𝑥|  =  0. 

(⟹)  Jika 𝑑(𝑥, 𝑦)  =  0 , maka |𝑥 −  𝑦|  =  0 . 

Kemudian, kuadratkan kedua ruas, diperoleh 

(|𝑥 −  𝑦|)2 =  0 

(𝑥 −  𝑦)2    =  0 

           𝑥 −  𝑦 =  √0 

         𝑥 −  𝑦 =  0 

                   𝑥 =  𝑦 

Dengan demikian, terbukti bahwa 𝑑(𝑥, 𝑦)  =

 0 ⟺  𝑥 =  𝑦. 

3) Akan ditunjukkan ∀ 𝑥, 𝑦 ∈  𝑋  berlaku 

𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥), yaitu 

𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|  

=  |  − (𝑦 −  𝑥)|  
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=  |  −  1| |𝑦 −  𝑥| 

=  1 |𝑦 −  𝑥| 

=  |𝑦 −  𝑥| 

=  𝑑(𝑦, 𝑥) 

Dengan demikian, terbukti bahwa 𝑑(𝑥, 𝑦)  =

      𝑑(𝑦, 𝑥). 

4) Akan ditunjukkan bahwa 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +

 𝑑(𝑦, 𝑧). Ambil sebarang 𝑥, 𝑦, 𝑧 ∈  𝑋, diperoleh: 

𝑑(𝑥, 𝑧)  =  |𝑥 −  𝑧|  

=  |𝑥 −  𝑦 +  𝑦 −  𝑧| 

≤  |𝑥 −  𝑦| + |𝑦 −  𝑧| 

=  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧) 

Jadi, 𝑑(𝑥, 𝑦) terbukti metrik pada 𝑋. ■ 

Definisi 27 

Barisan pada ruang metrik (𝑋, 𝑑)  adalah fungsi 𝑓 ∶

 ℕ →  𝑋  dengan domain ℕ  dan daerah hasilnya 

termuat dalam 𝑋 . Barisan dinotasikan dengan (𝑥𝑛 ∶

 𝑛 ∈  ℕ) (Anwar dan Manuharawati, 2021). 

Definisi 28 

Suatu barisan (𝑥𝑛) dari titik-titik dalam suatu ruang 

metrik (𝑋, 𝑑) dikatakan konvergen ke 𝑥 ∈  𝑋 , 

dinotasikan dengan 𝑥𝑛  →  𝑥 untuk 𝑛 →  ∞  atau 

lim
𝑛→∞

𝑥𝑛 = 𝑥  

jika barisan bilangan real tak-negatif 𝑑(𝑥𝑛, 𝑥)  →  0 

saat 𝑛 →  ∞ ; dengan kata lain, ∀ 𝜀 >  0, ∃ 𝑁 ∈  ℕ 

sedemikian sehingga 𝑑(𝑥𝑛, 𝑥)  <  𝜀  untuk 𝑛 ≥  𝑁 

(Yunus, 2005). 

Contoh 29 

Diberikan ruang metrik (ℝ, 𝑑) dengan 𝑑(𝑥, 𝑦)  =

|𝑥 −  𝑦| untuk setiap 𝑥, 𝑦 ∈  ℝ. Barisan (𝑥𝑛) dengan 

𝑥𝑛  =  1 − 
1

𝑛
 untuk 𝑛 =  1, 2, . .. adalah barisan yang 

konvergen ke 1 pada ruang metrik (ℝ, 𝑑) 

(Rahmasari, 2016). 

Bukti. 

Diambil sebarang 𝜀 >  0, menurut sifat Archimedes 

terdapat bilangan asli 𝑁 ∈  ℕ  dengan 𝑁 >  
1

𝜀
, 

sehingga untuk setiap 𝑛 ≥  𝑁 berlaku 

|𝑥𝑛 −  1|  = |1 − 
1

𝑛
− 1|   

= |− 
1

𝑛
| 

=
1

𝑛
 

≤
1

𝑁
 <  𝜀 

Terbukti bahwa (𝑥𝑛) konvergen ke 1.■ 

Contoh 30 

Pada ruang metrik biasa (ℝ, 𝑑)  dengan 𝑑(𝑥, 𝑦)  =

 |𝑥 − 𝑦|,  barisan  (𝑥𝑛)  dengan 𝑥𝑛  =  
1

𝑛+3
  konvergen 

ke 0 (Rohma, 2024). 

Bukti. 

Diambil sebarang 𝜀 >  0, menurut sifat Archimedes 

terdapat bilangan asli 𝑁 ∈  ℕ  dengan 𝑁 >
1

ℇ
, 

sehingga untuk setiap 𝑛 ≥  𝑁 berlaku 

|𝑥𝑛 −  0|  = | 
1

𝑛+3
− 0|   

  = |
1

𝑛 + 3
| 

=
1

𝑛 + 3
 

≤
1

𝑁
 <  𝜀 

Terbukti bahwa (𝑥𝑛) konvergen ke 0.■ 

Selanjutnya, diberikan Teorema 4.8 terkait 

hubungan barisan konvergen dan limit. 

Teorema 31 

Sebuah barisan konvergen pada metrik (𝑋, 𝑑) 

memiliki tepat satu limit (Kreyszig, 1978). 

Bukti. 

Misalkan (𝑥𝑛)  konvergen ke titik 𝑥  dan 𝑦 , akan 

dibuktikan 𝑥 =  𝑦. Karena (𝑥𝑛) konvergen ke titik 𝑥 

dan 𝑦 , terdapat bilangan bulat 𝑁1  dan 𝑁2  sehingga 

untuk setiap 𝑛 ≥  𝑁1, berlaku 

𝑑(𝑥𝑛, 𝑥)  <
ε

2
  

dan untuk setiap 𝑛 ≥  𝑁2, berlaku 

𝑑(𝑥𝑛, 𝑦)  <
ε

2
  

Misalkan 𝑁 =  𝑚𝑎𝑘𝑠{𝑁1, 𝑁2}, diperoleh 
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦) 

<
ε

2
+

ε

2
= ε 

Perhatikan bahwa untuk sebarang 𝜀 >  0  berlaku 
𝑑(𝑥, 𝑦)  <  𝜀, sehingga diperoleh bahwa 𝑑(𝑥, 𝑦)  =  0. 
Artinya, 𝑥 =  𝑦, sehingga Sebuah barisan konvergen 
pada metrik (𝑋, 𝑑) memiliki tepat satu limit.■ 
Lemma 32 

Diberikan 𝑋 =  (𝑋, 𝑑)  suatu ruang metrik. Jika 

(𝑥𝑛)  →  𝑥 dan (𝑦𝑛)  →  𝑦 pada 𝑋 , maka 𝑑(𝑥𝑛, 𝑦𝑛)  →

 𝑑(𝑥, 𝑦) (Kreyszig, 1978). 

Bukti. 

Perhatikan bahwa 𝑑  merupakan metrik. Sehingga 

berlaku ketaksamaan segitiga, yaitu 

𝑑(𝑥𝑛, 𝑦𝑛)  ≤  𝑑(𝑥𝑛, 𝑥)  +  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑦𝑛) 

𝑑(𝑥, 𝑦)  ≤  𝑑(𝑥, 𝑥𝑛)  +  𝑑(𝑥𝑛, 𝑦𝑛)  +  𝑑(𝑦𝑛 , 𝑦) 

sehingga didapatkan  

𝑑(𝑥𝑛, 𝑦𝑛)  −  𝑑(𝑥, 𝑦)  ≤  𝑑(𝑥𝑛, 𝑥)  +  𝑑(𝑦, 𝑦𝑛) 

−(𝑑(𝑥, 𝑥𝑛)  +  𝑑(𝑦𝑛 , 𝑦))  ≤  𝑑(𝑥𝑛, 𝑦𝑛)  −  𝑑(𝑥, 𝑦) 

dan akibatnya 

−(𝑑(𝑥, 𝑥𝑛)  +  𝑑(𝑦𝑛 , 𝑦))  ≤  𝑑(𝑥𝑛, 𝑦𝑛)  −  𝑑(𝑥, 𝑦)       

≤  𝑑(𝑥𝑛, 𝑥)  +  𝑑(𝑦, 𝑦𝑛) 

dan didapatkan 

|𝑑(𝑥𝑛, 𝑦𝑛 )  −  𝑑(𝑥, 𝑦)|  ≤  𝑑(𝑥𝑛, 𝑥)  +  𝑑(𝑦𝑛 , 𝑦). 
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Perhatikan bahwa (𝑥𝑛)  →  𝑥  dan (𝑦𝑛)  →  𝑦 , artinya 

𝑑(𝑥𝑛, 𝑥)  →  0 dan 𝑑(𝑦𝑛 , 𝑦)  →  0, diperoleh 

𝑑(𝑥𝑛, 𝑥)  +  𝑑(𝑦𝑛, 𝑦)  →  0 

hal tersebut mengimplikasikan 

|𝑑(𝑥𝑛, 𝑦𝑛)  −  𝑑(𝑥, 𝑦)|  →  0 

ketika  𝑛 →  ∞ . Sehingga 𝑑(𝑥𝑛, 𝑦𝑛)  →  𝑑(𝑥, 𝑦)  Jadi 

terbukti jika (𝑥𝑛)  →  𝑥 dan 

(𝑦𝑛)  →  𝑦 pada 𝑋, maka 𝑑(𝑥𝑛, 𝑦𝑛)  →  𝑑(𝑥, 𝑦). ■ 

Definisi 33 

Diberikan ruang metrik (𝑋, 𝑑). Suatu barisan (𝑥𝑛) di 

𝑋 disebut sebagai barisan Cauchy jika untuk setiap 

𝜀 >  0  terdapat 𝑁 ∈  ℕ  sedemikian sehingga untuk 

setiap bilangan asli 𝑚, 𝑛 ≥  𝑁  berlaku 𝑑(𝑥𝑚, 𝑥𝑛) <

 𝜀 (Dahoklory dan Patty, 2023). 

Contoh 34 

Diberikan ruang metrik (ℝ, 𝑑) dengan 𝑑(𝑥, 𝑦) =  |𝑥 −

𝑦|. Barisan (𝑥𝑛) = (
𝑛+1

𝑛
) merupakan barisan Cauchy 

di ruang metrik (ℝ, 𝑑) (Rohma, 2024). 

Bukti. 

Dari Definisi 4.10 pada ruang metrik, diambil 

sebarang 𝜀 >  0, menurut sifat Archimedes terdapat 

bilangan asli 𝑁 ∈  ℕ dengan 𝑁 >
2

ℇ
, sehingga untuk 

setiap 𝑛, 𝑚 ≥  𝑁 berlaku 

|𝑥𝑛 − 𝑥𝑚|  = | 
𝑛+1

𝑛
−

𝑚+1

𝑚
|   

  = |(
𝑛

𝑛
+

1

𝑛
) − (

𝑚

𝑚
+

1

𝑚
)| 

= |(1 +
1

𝑛
) − (1 +

1

𝑚
)| 

= |
1

𝑛
−

1

𝑚
| 

≤ |
1

𝑛
| + |

1

𝑚
| 

=
1

𝑛
+

1

𝑚
 

=
1

𝑁
+

1

𝑁
 

=
2

𝑁
<

2

𝑛
<  𝜀 

Sehingga terbukti bahwa barisan (𝑥𝑛) = (
𝑛+1

𝑛
) 

adalah barisan Cauchy di ruang metrik (ℝ, 𝑑) 

dengan 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. 

Lemma 35 

Setiap barisan konvergen di ruang metrik (𝑋, 𝑑) 

adalah sebuah barisan Cauchy (Dahoklory dan Patty, 

2023). 

Bukti. 

Misalkan (𝑥𝑛) sebuah barisan di 𝑋 dengan lim
𝑛→∞

𝑥𝑛  =

 𝑥, artinya ∀𝜀 >  0 , terdapat bilangan asli 𝑁 

sehingga 𝑑(𝑥, 𝑥𝑛) <
𝜀

2
 untuk semua 𝑚, 𝑛 ≥  𝑁, maka 

diperoleh 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥) + 𝑑(𝑥, 𝑥𝑛) 

<
𝜀

2
 +

𝜀

2
= 𝜀 

Jadi (𝑥𝑛) adalah barisan Cauchy. ■ 

Definisi 36 

Suatu ruang metrik (𝑋, 𝑑) disebut ruang metrik 

lengkap jika setiap barisan Cauchy di 𝑋 merupakan 

barisan konvergen (dalam arti memiliki limit yang 

merupakan anggota dari 𝑋) (Maddox, 1970). 

Selanjutnya, diberikan contoh ruang metrik 

lengkap dan ruang metrik tidak lengkap sebagai 

berikut. 

Contoh 37 

Misalkan 𝐶[0, 1] menunjukkan semua fungsi kontinu 

pada interval [0, 1] di ℝ. Untuk fungsi 𝑓, 𝑔 di 𝐶[0, 1], 

didefinisikan 

𝑑∞(𝑓, 𝑔)  =  𝑠𝑢𝑝{|𝑓(𝑥)  −  𝑔(𝑥)| ∶  𝑥 ∈  [0, 1]}, 

ruang metrik (𝐶[0, 1], 𝑑∞) merupakan ruang metrik 

yang lengkap (Bartle dan Sherbet, 2000). 

Bukti. 

Misalkan (𝑓𝑛) adalah barisan Cauchy di (𝐶[0, 1], 𝑑∞), 

artinya ∀𝜀 >  0 , terdapat 𝐻 ∈  ℕ  sehingga untuk 

semua 𝑛. 𝑚 ≥  𝐻 berlaku 

|𝑓𝑛(𝑥)  − 𝑓𝑚(𝑥)|  <  𝜀, untuk setiap 𝑥 ∈  [0, 1].    

(4.1) 

Jadi, untuk setiap 𝑥 ∈  [0, 1], (𝑓𝑛(𝑥)) adalah barisan 

Cauchy. 

Selanjutnya, karena ℝ  lengkap, sehingga 

(𝑓𝑛(𝑥)) konvergen ke 𝑓(𝑥). Didefinisikan: 

𝑓(𝑥)  =  lim
𝑛→∞

𝑓𝑛(𝑥) , untuk setiap 𝑥 ∈  [0, 1] 

Dari Persamaan 4.1, untuk setiap n ≥  𝐻 dan setiap 

𝑥 ∈  [0, 1]. Berlaku 

|𝑓𝑛(𝑥)  −  𝑓(𝑥)|  ≤  𝜀, 

hal tersebut menunjukkan (𝑓𝑛)  konvergen uniform 

ke 𝑓  di [0, 1]. Perhatikan bahwa batas uniform dari 

barisan fungsi kontinu adalah kontinu. Akibatnya, 

𝑓 ∈  [0, 1].  Jadi, ruang metrik (𝐶[0, 1], 𝑑∞) 

merupakan ruang metrik yang lengkap. ■ 

Contoh 38 

Diberikan ruang metrik (ℚ, 𝑑) dari bilangan rasional, 

dengan metrik 

𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|, 

merupakan ruang metrik yang tidak lengkap (Bartle 

dan Sherbet, 2000). 

Bukti. 

Jika (𝑥𝑛) merupakan barisan bilangan rasional yang 

konvergen ke √2 , maka berdasarkan Lemma 4.12 
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(𝑥𝑛) adalah barisan Cauchy di ℚ.  Namun, √2  ∉  ℚ, 

sehingga (𝑥𝑛)  tidak konvergen di ℚ . Akibatnya, 

berdasarkan Definisi 4.13 (ℚ, 𝑑)bukan ruang metrik 

lengkap. ■ 

Selanjutnya, akan diberikan definisi ruang metrik 

Euclidean. 

Misalkan   diberikan   himpunan   tak   kosong   𝑋,   

dengan 𝑋 =  ℝ𝑛  =  {𝒙 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∶  𝑥𝑖  ∈

 ℝ, 1 ≤  𝑖 ≤  𝑛}  adalah himpunan bilangan real 

dengan 𝑛 -tupel. 𝒙 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛)  dan 𝒚 =

 (𝑦1, 𝑦2, . . . , 𝑦𝑛)  ∈  ℝ𝑛  dapat menjadi ruang vektor 

dengan memperkenalkan operasi standar 

penjumlahan dan perkalian skalar melalui: 

                  𝒙 +  𝒚 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) + (𝑦1, 𝑦2, . . . , 𝑦𝑛)  

=  (𝑥1  +  𝑦1, 𝑥2  +  𝑦2, . . . , 𝑥𝑛  +  𝑦𝑛), 

𝜆𝒙 =  𝜆(𝑥1, 𝑥2, … , 𝑥𝑛): =  (𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛),  

𝜆 ∈  ℝ, 𝒙, 𝒚 ∈   ℝ𝑛, 

Untuk ℝ𝑛  diperkenalkan fungsi jarak (metrik) 

standar sebagai berikut: 

Yang memenuhi sifat-sifat berikut:  

(𝑚1) 𝑑𝑒(𝒙, 𝒚)  ≥  0 ∀ 𝒙, 𝒚 ∈  ℝ𝑛.  

(𝑚2)  𝑑𝑒(𝒙, 𝒚)  =  0 ⇔  𝒙 =  𝒚.  

(𝑚3) 𝑑𝑒(𝒙, 𝒚)  =  𝑑𝑒(𝒚, 𝒙)∀𝒙, 𝒚 ∈  ℝ𝑛.  

(𝑚4) 𝑑𝑒(𝒙, 𝒛) ≤ 𝑑𝑒(𝒙, 𝒚) + 𝑑𝑒(𝒚, 𝒛)∀𝒙, 𝒚, 𝒛 ∈  ℝ𝑛  

Definisi 39 

Himpunan pasangan (ℝ𝑛, 𝑑𝑒) disebut ruang metrik 

Euclidean jika 

i. ℝ𝑛 adalah sebuah himpunan. 

ii. 𝑑𝑒 ∶  ℝ𝑛  ×  ℝ𝑛 →  [0, ∞)  memenuhi (𝑚1) −

(𝑚4). 

(Shirali dan L). 

Selanjutnya, diberikan contoh-contoh ruang metrik 

Euclidean beserta buktinya, yaitu sebagai berikut. 

Contoh 40 

Diberikan 𝑋 =  ℝ yang merupakan ruang Euclidean 

berdimensi-1 dan didefinisikan 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| 

Pasangan (ℝ, 𝑑)  adalah ruang metrik (Kreyszig, 

1978). 

Bukti. 

Akan dibuktikan fungsi 𝑑  merupakan metrik pada 

ℝ, yaitu: 

1) Diketahui bahwa nilai mutlak suatu bilangan real 

selalu tidak negatif, yaitu |𝑥 − 𝑦|  ≥  0. Sehingga 

𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|  ≥  0. 

2) Akan ditunjukkan bahwa 𝑑(𝑥, 𝑦)  =  0 ⟺  𝑥 =

 𝑦. 

(⟸)  Jika 𝑥 =  𝑦 , maka didapat 𝑑(𝑥, 𝑦)  =  |𝑥 −

        𝑥|  =  0. 

(⟹) Jika 𝑑(𝑥, 𝑦)  =  0 , maka |𝑥 −  𝑦|  =  0 , 

menurut definisi nilai mutlak, didapat 

|𝑥 − 𝑦| = {
(𝑥 − 𝑦), 𝑗𝑖𝑘𝑎 𝑥 ≥ 𝑦

−(𝑥 − 𝑦), 𝑗𝑖𝑘𝑎 𝑥 < 𝑦
 

Jika 𝑥 ≥  𝑦 , maka (𝑥 −  𝑦)  =  0 →  𝑥 =  𝑦  dan 

jika 𝑥 <  𝑦, maka −(𝑥 −  𝑦)  =  0 → 𝑥 =  𝑦. 

3) Akan ditunjukkan ∀ 𝑥, 𝑦 ∈  𝑅  berlaku 𝑑(𝑥, 𝑦)  =

 𝑑(𝑦, 𝑥). Dari sifat nilai mutlak, didapat |𝑥 −  𝑦|  =

 |𝑦 −  𝑥|  ∀ 𝑥, 𝑦 ∈  𝑅 . sehingga 𝑑(𝑥, 𝑦)  =  |𝑥 −

 𝑦|  =  |𝑦 −  𝑥|  =  𝑑(𝑦, 𝑥). 

4) Akan ditunjukkan bahwa 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +

 𝑑(𝑦, 𝑧). Ambil sebarang 𝑥, 𝑦, 𝑧 ∈  ℝ. Diperoleh 

𝑑(𝑥, 𝑧)  =  |𝑥 −  𝑧|  

=  |𝑥 −  𝑦 +  𝑦 −  𝑧| 

≤  |𝑥 −  𝑦|  +  |𝑦 −  𝑧| 

=  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧) 

Sehingga ketaksamaan segitiga terpenuhi 

Jadi, 𝑑(𝑥, 𝑦) terbukti metrik pada ℝ  dan (ℝ, 𝑑) 

merupakan ruang metrik. ■ 

Contoh 41 

Misalkan 𝑉 adalah ruang vektor atas bilangan real, 

yaitu terdapat fungsi norma: 

||  ·  || ∶  𝑉 →  ℝ 

||  ·  || adalah ruang bernorma yang memenuhi sifat-

sifat berikut. 

i.  ||𝒙||  =  0 jika dan hanya jika 𝒙 =  𝟎. 
ii. ||𝒙 +  𝒚||  ≤  ||𝒙|| + ||𝒚||. 

iii. ||𝛼𝒙||  =  |𝛼| ||𝒙|| 

Dari norma, didefinisikan fungsi metrik sebagai 

berikut. 

𝑑𝑛(𝒙, 𝒚) ∶=  ||𝒙 −  𝒚|| 

Sebagaimana di ruang vektor Euclidean terdapat 

konsep norma, sehingga akan ditunjukkan (𝑋, 𝑑𝑛) 

adalah ruang metrik bernorma. 

Bukti. 

Akan dibuktikan fungsi 𝑑𝑛 merupakan metrik pada 

𝑋, yaitu: 

1) Berdasarkan Teorema 2.7, norma selalu tidak 

negatif, akibatnya 𝑑𝑛  =  ||𝒙 − 𝒚||  ≥  0. 

2) Akan ditunjukkan bahwa 𝑑𝑛(𝒙, 𝒚)  =  0 ⟺  𝒙 =

 𝒚 . Berdasarkan Teorema 2.7, diperoleh ||𝒙 −

 𝒚||  =  0 ⟺  𝒙 =  𝒚 , akibatnya 𝑑𝑛(𝒙, 𝒚)  =  0 ⟺

 𝒙 =  𝒚. 

3) Akan ditunjukkan ∀ 𝒙, 𝒚 ∈  𝑋 berlaku 𝑑𝑛(𝒙, 𝒚)  =

 𝑑𝑛(𝒚, 𝒙). Ambil sebarang 𝒙, 𝒚 ∈  𝑋. Diperoleh 

𝑑𝑛(𝒙, 𝒚) = ||𝒙 − 𝒚||  

= √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
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= √∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

= ||𝒚 − 𝒙|| 

= 𝑑𝑛(𝒚, 𝒙) 

Sehingga 𝑑𝑛(𝒙, 𝒚)  = 𝑑𝑛(𝒚, 𝒙). 

4) Akan ditunjukkan bahwa 𝑑𝑛(𝒙, 𝒛)  ≤  𝑑𝑛(𝒙, 𝒚)  +

 𝑑𝑛(𝒚, 𝒛). Ambil sebarang 𝒙, 𝒚, 𝒛 ∈  ℝ. Diperoleh 

𝑑𝑛(𝒙, 𝒛)  =  ||𝒙 −  𝒛||  

=  ||𝒙 −  𝒚 +  𝒚 −  𝒛|| 

≤  ||𝒙 −  𝒚|| + ||𝒚 −  𝒛|| 

= 𝑑𝑛(𝒙, 𝒚) + 𝑑𝑛(𝒚, 𝒛)   

Sehingga ketaksamaan segitiga terpenuhi. 

Jadi, 𝑑𝑛(𝒙, 𝒚)  terbukti metrik pada 𝑋  dan (𝑋, 𝑑𝑛) 

merupakan ruang metrik. ■ 

 Selanjutnya, diberikan pembuktian mengenai 

konvergensi barisan di ruang metrik Euclidean pada 

Teorema 4.19 berikut. 

Teorema 42 

Misalkan 𝑋 = ℝ𝑛, dengan 

𝑑𝑒(𝒙, 𝒚) = (∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1
2

 

dimana 𝒙 = (𝑥1. 𝑥2, … , 𝑥𝑛)  dan 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈

ℝ𝑛 . (𝒙𝑘) = (𝑥1
𝑘 . 𝑥2

𝑘 , … , 𝑥𝑛
𝑘) , dengan 𝑘 = 1,2, … 

anggota dari barisan di  ℝ𝑛  konvergen ke 𝒙 =

(𝑥1. 𝑥2, … , 𝑥𝑛) jika dan hanya jika ∀𝑖 = 1,2, … , 𝑛, (𝑥𝑖
𝑘) 

konvergen ke 𝑥𝑖 di ℝ. 

Bukti. 

(⟹)  Akan ditunjukkan bahwa jika (𝒙𝑘) =

(𝑥1
𝑘 . 𝑥2

𝑘 , … , 𝑥𝑛
𝑘) , dengan 𝑘 = 1,2, …  anggota dari 

barisan di  ℝ𝑛 konvergen ke 𝒙 = (𝑥1. 𝑥2, … , 𝑥𝑛) maka 

∀𝑖 = 1,2, … , 𝑛, (𝑥𝑖
𝑘) konvergen ke 𝑥𝑖 di ℝ. 

Perhatikan bahwa jika (𝒙𝑘) konvergen ke 𝒙, artinya 

untuk setiap 𝜀 > 0 , terdapat 𝑁 ∈  ℕ  sehingga untuk 

setiap 𝑘 ≥ 𝑁  berlaku 𝑑𝑒(𝒙𝑘 , 𝒙) < 𝜀 . Karena (𝑥𝑖
𝑘 − 𝑥𝑖)

2
≤

∑ (𝑥𝑖
𝑘 − 𝑥𝑖)

2𝑛
𝑖=1  sehingga 

|𝑥𝑖
𝑘 − 𝑥𝑖| = √(𝑥𝑖

𝑘 − 𝑥𝑖)2 

≤ √∑(𝑥𝑖
𝑘 − 𝑥𝑖)2

𝑛

𝑖=1

  

= 𝑑𝑒(𝒙𝑘 , 𝒙) 

Akibatnya, 

|𝑥𝑖
𝑘 − 𝑥𝑖| ≤ 𝑑𝑒(𝒙𝑘 , 𝒙) < 𝜀 

Sehingga berdasarkan Definisi 2.15 didapat 

lim
𝑘→∞

𝑥𝑖
𝑘 = 𝑥𝑖  

Jadi, ∀𝑖 = 1,2, … , 𝑛, (𝑥𝑖
𝑘) konvergen ke 𝑥𝑖 di ℝ. 

(⟸)  Akan ditunjukkan bahwa jika ∀𝑖 = 1,2, … , 𝑛, 

(𝑥𝑖
𝑘)  konvergen ke 𝑥𝑖  di ℝ maka (𝒙𝑘) =

(𝑥1
𝑘 . 𝑥2

𝑘 , … , 𝑥𝑛
𝑘) , dengan 𝑘 = 1,2, …  anggota dari 

barisan di  ℝ𝑛 konvergen ke 𝒙 = (𝑥1. 𝑥2, … , 𝑥𝑛). 

Untuk setiap 𝜀 > 0 . karena ∀𝑖 = 1,2, … , 𝑛,  (𝑥𝑖
𝑘) 

konvergen ke 𝑥𝑖  di ℝ, terdapat 𝑁𝑖 ∈ ℕ untuk setiap 

𝑘 ≥ 𝑁𝑖 , sehingga berlaku 

|𝑥𝑖
𝑘 − 𝑥𝑖| <

𝜀

√𝑛
 

kuadratkan kedua ruas, didapat 

(𝑥𝑖
𝑘 − 𝑥𝑖)2 <

𝜀2

𝑛
 

dan diperoleh 

∑(𝑥𝑖
𝑘 − 𝑥𝑖)

2
𝑛

𝑖=1

< 𝑛 ⋅
𝜀2

𝑛
= 𝜀2 

akibatnya, 

𝑑𝑒(𝒙𝑘 , 𝒙) = (∑(𝑥𝑖
𝑘 − 𝑥𝑖)

2
𝑛

𝑖=1

)

1
2

< (𝜀2)
1
2 = 𝜀 

Jadi, (𝒙𝑘) = (𝑥1
𝑘 . 𝑥2

𝑘 , … , 𝑥𝑛
𝑘) , dengan 𝑘 = 1,2, … 

anggota dari barisan di  ℝ𝑛  konvergen ke 𝒙 =

(𝑥1. 𝑥2, … , 𝑥𝑛). 

Selanjutnya, diberikan contoh barisan di ruang 

metrik Euclidean yang konvergen pada Contoh 4.20 

berikut. 

Contoh 43 

Diberikan (ℝ2, 𝑑𝑒), dengan 

𝑑𝑒(𝒙, 𝒚) = (∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1
2

 

Buktikan bahwa barisan (𝒙𝑘) = (1 +
1

𝑘
, 2 −

1

𝑘
) 

konvergen ke (1,2). 

Penyelesaian 

Akan ditunjukkan barisan (𝒙𝑘) = (1 +
1

𝑘
, 2 −

1

𝑘
) 

konvergen ke (1,2). Ambil sebarang 𝜀 >  0, menurut 

sifat Archimedes terdapat bilangan asli 𝑁 ∈  ℕ 

dengan 𝑁 >
√2

ℇ
, sehingga untuk setiap 𝑘 ≥  𝑁 

berlaku 

𝑑𝑒(𝒙𝑘 , 𝒙) = 𝑑𝑒(𝒙𝑘 , (1,2)) = ((𝑥1
𝑘 − 1)2 + (𝑥2

𝑘 − 2)2)
1
2 

= √(1 +
1

𝑘
− 1)

2

+ (2 −
1

𝑘
− 2)

2

 

= √(
1

𝑘
)

2

+ (−
1

𝑘
)

2

 

= √
2

𝑘2
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=
√2

𝑘
≤

√2

𝑁
< 𝜀 

Berdasarkan Definisi 4.5, terbukti bahwa (𝒙𝑘) 

konvergen ke (1,2). 

Selanjutnya, diberikan Proposisi 4.21 terkait 

barisan Cauchy di ruang metrik Euclidean. 

Proposisi 44 

Diberikan ruang metrik Euclidean (ℝ𝑛, 𝑑𝑒), misalkan 

(𝒙𝑘) barisan di ℝ𝑛. Barisan (𝒙𝑘)  merupakan barisan 

Cauchy ⟺ 𝑥𝑖
𝑘 merupakan barisan Cauchy. 

Bukti. 

(⟹) Akan ditunjukkan bahwa jika (𝒙𝑘)  merupakan 

barisan Cauchy maka 𝑥𝑖
𝑘  merupakan barisan Cauchy. 

Misalkan (𝒙𝑘) = (𝑥1
𝑘 . 𝑥2

𝑘 , … , 𝑥𝑛
𝑘)  merupakan 

barisan Cauchy, maka 𝑥𝑖
𝑘  merupakan barisan 

Cauchy. Artinya, untuk setiap 𝜀 > 0, terdapat 𝑁 ∈  ℕ 

sehingga untuk setiap 𝑚, 𝑘 ≥ 𝑁 berlaku 

𝑑𝑒(𝒙𝑘 , 𝒙𝑚) = (∑(𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)
2

𝑛

𝑖=1

)

1
2

< 𝜀 

Perhatikan bahwa, karena  (𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)
2

≤ ∑ (𝑥𝑖
𝑘 −𝑛

𝑖=1

𝑥𝑖
𝑚)

2
 sehingga 

|𝑥𝑖
𝑘 − 𝑥𝑖

𝑚| = √(𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)2 

≤ √∑(𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)2

𝑛

𝑖=1

  

= 𝑑𝑒(𝒙𝑘 , 𝒙𝑚) < 𝜀 

Berdasarkan Definisi 2.20 diperoleh bahwa setiap 

komponen vektor 𝑥𝑖
𝑘adalah barisan Cauchy di ℝ. 

(⟹)  Akan ditunjukkan 𝑥𝑖
𝑘  merupakan barisan 

Cauchy maka (𝒙𝑘)  merupakan barisan Cauchy. 

Misalkan 𝑥𝑖
𝑘  adalah barisan Cauchy. Artinya,  

∀𝜀 > 0 , terdapat 𝑁𝑖 ∈ ℕ  untuk setiap 𝑚, 𝑘 ≥ 𝑁𝑖 , 

sehingga berlaku 

|𝑥𝑖
𝑘 − 𝑥𝑖

𝑚| <
𝜀

√𝑛
 

kuadratkan kedua ruas, didapat 

(𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)2 <
𝜀2

𝑛
 

dan diperoleh 

∑(𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)
2

𝑛

𝑖=1

< 𝑛 ⋅
𝜀2

𝑛
= 𝜀2 

akibatnya, 

𝑑𝑒(𝒙𝑘 , 𝒙𝑚) = (∑(𝑥𝑖
𝑘 − 𝑥𝑖

𝑚)
2

𝑛

𝑖=1

)

1
2

< (𝜀2)
1
2 = 𝜀 

Berdasarkan Definisi 4.10, (𝒙𝑘)  merupakan barisan 

Cauchy. 

Selanjutnya, diberikan Teorema 4.22 terkait 

kelengkapan pada ruang metrik Euclidean. ■ 

Teorema 45 

Misalkan 𝑋 = ℝ𝑛, dengan 

𝑑𝑒(𝒙, 𝒚) = (∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1
2

 

dimana 𝒙 = (𝑥1. 𝑥2, … , 𝑥𝑛)  dan 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈

ℝ𝑛. (ℝ𝑛, 𝑑𝑒) adalah ruang metrik lengkap. 

Bukti. 

Misalkan (𝒙𝑘)  adalah barisan Cauchy di ℝ𝑛 . 

Berdasarkan Proposisi 4.21 didapat bahwa 𝑥𝑖
𝑘  

merupakan barisan Cauchy di ℝ . Selanjutnya, 

berdasarkan Teorema 2.23 diperoleh bahwa ℝ 

lengkap. Karena ℝ  lengkap, artinya setiap barisan 

Cauchy-nya konvergen, sehingga 𝑥𝑖
𝑘  konvergen ke 

𝑥𝑖  di ℝ . Lebih lanjut, berdasarkan Teorema 4.19 

diperoleh bahwa (𝒙𝑘)  konvergen ke 𝒙. ■ 

Berdasarkan teorema 4.22, dapat disimpulkan 

bahwa (ℝ𝑛, 𝑑𝑒)  merupakan ruang metrik lengkap. 

Hal tersebut berdasarkan bukti jika barisan di ℝ𝑛 

adalah barisan Cauchy, maka setiap komponen 

vektornya juga merupakan barisan Cauchy di ℝ . 

Karena ℝ  merupakan ruang yang lengkap, artinya 

setiap barisan Cauchy-nya konvergen, sehingga 

setiap komponen vektor di ℝ𝑛  konvergen ke suatu 

bilangan real.  Selanjutnya, konvergensi barisan di 

setiap komponen vektor di ℝ𝑛  yang merupakan 

bilangan real ekuivalen dengan konvergensi barisan 

di ruang Euclidean, sehingga dapat disimpulkan 

bahwa setiap barisan Cauchy di ℝ𝑛  merupakan 

barisan konvergen. 

Dari pembuktian-pembuktian yang telah 

dilakukan, didapat bahwa ruang vektor berdimensi-

𝑛  atau ruang Euclidean terdiri dari komponen-

komponen vektor real, sehingga dalam melakukan 

analisis konvergensi barisan pada ruang metrik 

Euclidean hanya perlu memeriksa apakah setiap 

komponen-komponen vektor real tersebut 

konvergen ke suatu bilangan real dan berlaku 

sebaliknya. Dengan meninjau komponen-komponen 

vektor real, akan dengan mudah menerapkan sifat-

sifat barisan di bilangan real yang telah dipelajari 

dalam analisis real. 

Adanya hubungan antara konvergensi barisan 

dan barisan Cauchy di bilangan real yang ekuivalen 

dengan hubungan antara konvergensi barisan dan 
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barisan Cauchy pada ruang Euclidean menjadi dasar 

dalam membuktikan kelengkapan pada ruang metrik 

Euclidean. Suatu ruang metrik dikatakan lengkap 

jika setiap barisan Cauchynya konvergen, karena 

barisan Cauchy secara definisi menggunakan konsep 

jarak atau metrik, sehingga dalam membuktikan 

kelengkapan pada ruang Euclidean, diperlukan 

fungsi jarak atau metrik.  

Dengan demikian, dapat disimpulkan bahwa 

konvergensi barisan dan barisan Cauchy memegang 

peran penting dalam menentukan kelengkapan 

ruang metrik Euclidean dengan basis standar ℝ𝑛 . 

Konsep ini juga dapat diterapkan pada ruang 

Euclidean 𝔼𝑛 , meskipun pembuktiannya mungkin 

memerlukan penyesuaian sesuai sifat dan definisi 

metrik yang digunakan pada ruang tersebut. 

PENUTUP 

SIMPULAN 

Konvergensi barisan pada ruang metrik 

Euclidean memiliki kesamaan sifat dengan 

konvergensi barisan pada ruang Euclidean, terutama 

sifat-sifat barisan yang konvergen di ℝ. Hal tersebut 

terjadi karena ruang Euclidean terdiri dari hasil kali 

kartesius antara ruang-ruang bilangan real. Lebih 

lanjut, konvergensi barisan di ℝ𝑛 dilengkapi dengan 

norma Euclidean, yaitu norma yang berasal dari hasil 

kali dalam standar (dot product). Ruang metrik 

Euclidean merupakan ruang metrik lengkap, 

kelengkapan ruang metrik Euclidean berhubungan 

dengan konvergensi barisan dan barisan Cauchy 

pada ruang metrik Euclidean. 

SARAN 

Penelitian ini menggunakan ruang metrik 

Euclidean dengan basis standar (ℝ𝑛), sehingga pada 

penelitian selanjutnya diharapkan untuk 

menggunakan ruang metrik Euclidean (𝔼𝑛). 
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