MATHunesa

Jurnal Ilmiah Matematika *Volume 6 No. 3 Tahun 2018 ISSN 2301-9115*

KARAKTERISASI KONGRUENSI UNIMODULAR MATRIKS LAPLACIAN GRAF SEDERHANA

Atirotun Nufus

Jurusan Matematika, FMIPA, Universitas Negeri Surabaya *e*-mail: <u>atirotunnufus@mhs.unesa.ac.id</u>

Agung Lukito

Jurusan Matematika, FMIPA, Universitas Negeri Surabaya e-mail: agunglukito@unesa.ac.id

Abstrak

Misalkan G graf sederhana. Matriks Laplacian L(G) graf G adalah L(G) = D(G) - A(G), dimana D(G) matriks diagonal dengan entri derajat titik dan A(G) matriks adjasensi graf G. Skripsi ini mengkaji karakterisasi kongruensi unimodular matriks Laplacian graf sederhana. Hasil utamanya adalah bahwa matriks Laplacian $L(G_1)$, $L(G_2)$ yang terkait dengan graf G_1 , G_2 adalah kongruen dengan matriks unimodular jika dan hanya jika G_1 dan G_2 adalah isomorfik sikel.

Kata kunci: graf, matriks Laplacian, isomorfisme sikel, matriks unimodular, kongruensi unimodular.

Abstract

Let G be a simple graph. The Laplacian matrix L(G) of graph G is L(G) = D(G) - A(G), where D(G) is the diagonal matrix of vertex degree and A(G) is the adjacency matrix of graph G. The essay will explain characterization of unimodular congruence of the Laplacian matrix of a simple graph. The main result is that the Laplacian matrix $L(G_1), L(G_2)$ associated with graphs G_1, G_2 are congruent by a unimodular matrix if only if G_1 and G_2 are cycle isomorphic.

Keyword: graph, Laplacian matrix, cycle isomorphism, unimodular matrix, unimodular congruence.

PENDAHULUAN

Pada tahun 1736, Leonhard Euler memperkenalkan teori graf untuk yang pertama kalinya. Saat itu ia berusaha membuktikan cara dalam sekali waktu untuk melewati empat daerah yang terhubung dengan tujuh jembatan Konigsberg di atas sungai Pregel di Kaliningrad, Rusia. Masalah jembatan Konigsberg tersebut dapat dipecahkan dengan graf dimana keempat daerah dianggap sebagai titik (vertex) dan ketujuh jembatan sebagai sisi (edge) yang menghubungkan pasangan titik yang sesuai. (Munir 2010:354)

Teori graf adalah cabang matematika diskrit yang mengalami perkembangan sangat pesat dalam beberapa puluh tahun terakhir ini. Karena teori graf memudahkan kita untuk menggambarkan atau menyatakan suatu persoalan agar mudah dimengerti dan diselesaikan. Sehingga aplikasi teori graf dalam kehidupan sehari-hari sangat banyak. Dalam berbagai bidang ilmupun aplikasi teori graf juga sangat luas seperti: Ilmu Komputer, Teknik, Sains bahkan Bisinis dan Ilmu Sosial.

Salah satu topik tentang kongruensi dua graf yaitu dua graf G_1 dan G_2 kongruen jika ada matriks unimodular E sehingga $L(G_2) = E^t L(G_1) E$ (Watkins 1990:35). Dimana matriks Laplacian L(G) pada graf yaitu L(G) = D(G) - A(G) yang merupakan selisih dari matriks diagonal dan matriks adjasensi (Merris 1994:144). Sedangkan matriks unimodular E adalah matriks persegi yang entri-entrinya bilangan bulat dengan det $E = \pm 1$ (Watkins 1990:35).

Pada tahun 1994, William E. Watkins menulis jurnal yang berjudul "Unimodular Congruence of the Laplacian Matrix of a Graph". Jurnal tersebut menjelaskan tentang hubungan matriks unimodular dengan kongruensi matriks laplacian dan keisomorfikan pada dua graf.

Oleh karena itu, dalam skripsi ini penulis akan mengkaji lebih lanjut tentang syarat-syarat karakterisasi kongruensi unimodular matriks laplacian pada graf.

KAJIAN TEORI

Graf

Definisi 2.1 Sebuah graf G adalah pasangan (V(G), E(G)), dimana V(G) adalah himpunan berhingga tak-kosong yang elemen-elemennya disebut titik (vertex) dan E(G) adalah himpunan berhingga (mungkin kosong) pasangan tak-berurutan dari titik-titik di G disebut sisi (edge).

(Budayasa 2007:1-2)

Definisi 2.2 Order titik adalah banyak titik pada graf G dinotasikan dengan |V(G)|, sedangkan order sisi adalah banyaknya sisi pada graf G dinotasikan dengan |E(G)|. Graf trivial adalah graf yang memiliki order titik 1.

(Diestel 2000:2)

Definisi 2.3 Gelung (loop) adalah sisi graf yang titik ujungnya sama disebut sedangkan dua sisi atau lebih yang menghubungkan dua titik berbeda pada graf disebut sisi rangkap (multiple edges). Graf sederhana adalah graf yang tidak mempunyai gelung dan tidak memiliki sisi rangkap, sedangkan graf rangkap (multigraph) adalah graf tidak memiliki gelung tetapi yang memiliki sisi rangkap.

(Budayasa 2007:3)

Definisi 2.4 Sebuah subgraf (subgraph) pada graf G adalah sebuah graf yang setiap titiknya berada dalam V(G) dan semua sisinya berada dalam E(G).

(Wilson 1985:11)

Definisi 2.5 Sebuah jalan *(walk)* di *G* adalah sebuah barisan hingga (tak-kosong) yang suku — sukunya bergantian,titik dan sisi seperti berikut

$$W = (v_0, e_1, v_1, e_2, v_2, \cdots, e_k, v_k)$$

sedemikian hingga titik v_{i-1} dan v_i adalah titik — titik akhir e_i untuk $1 \le i \le k$. Titik v_0 disebut titik awal, v_k disebut titik akhir, $v_1, v_2, \cdots, v_{k-1}$ disebut titik internal dan k menyatakan panjang jalan W. Sebuah yang titik awal dan titik akhirnya sama disebut *jalan tertutup*.

(Budayasa 2007:6)

Definisi 2.6 Jalan yang semua sisinya berbeda disebut jejak (*trail*). Jejak yang berawal dan berakhir dititik yang sama disebut *jejak tertutup*.

(Budayasa 2007:6)

Definisi 2.7 Lintasan (*path*) adalah jalan yang semua titik dan sisinya berbeda. Lintasan yang memiliki titik awal dan akhir sama disebut *lintasan tertutup*, sedangkan *lintasan terbuka* adalah lintasan yang tidak memiliki titik awal ada akhir sama.

(Budayasa 2007:6)

Definisi 2.8 Sebuah sikel adalah sebuah jejak tertutup yang memiliki titik awal dan semua titik internalnya berbeda.

(Budayasa 2007:6)

Definisi 2.9 Sebuah graf *G* disebut terhubung *(connected)* jika untuk setiap dua titik di *G* terdapat sebuah sebuah lintasan yang menghubungkan kedua titik tersebut dan disebut tak-terhubung *(disconnected)* jika tidak ada lintasan yang menghubungkan dua titik tersebut.

(Budayasa 2007:8)

Definisi 2.10 Komplemen graf G, dinotasikan dengan \bar{G} . Graf \bar{G} adalah graf sederhana yang memiliki himpunan titik yang sama dengan himpunan titik G dan apabila dua titik G dan G berhubungan langsung maka titik G dan G didak berhubungan langsung.

(Budayasa 2007:9)

Definisi 2.11 Derajat titik v pada graf G ditulis dengan deg(v) adalah banyak sisi yang terkait langsung dengan titik v

(Munir 2010:652)

Teorema 2.1 (Teorema Jabat Tangan)

Jika G sebuah graf maka

$$\sum_{v \in V(G)} deg(v) = 2|E(G)|$$

Bukti:

Ambil sembarang sisi $e \in G$, sisi e menghubung-kan dua titik sembarang v_i dan v_j di G. Maka sisi e memberikan nilai satu untuk $deg(v_i)$ dan nilai satu untuk $deg(v_i)$. Jika $v_i = v_j$ maka sisi e adalah gelung di titik v_i memberikan nilai dua untuk derajat v_i . Karena e sisi sembarang maka hal tersebut juga berlaku untuk sisi— sisi yang lain beserta titik— titik yang terkait pada sisi— sisi tersebut di G. Jadi jumlah derajat dari semua titik— titik di G adalah dua kali banyak sisi di graf G.

Fungsi

Definisi 2.12 Suatu fungsi ϕ dari suatu himpunan A ke suatu himpunan B adalah sebuah aturan yang memasangkan setiap anggota $a \in A$ tepat satu anggota $b \in B$. Himpunan A disebut daerah asal (domain) dari ϕ dan himpunan B disebut daerah lawan (codomain) dari ϕ .

(Gallian 2010:18)

Defnisi 2.13 Fungsi ϕ dari suatu himpunan A ke suatu himpunan B disebut satu-satu jika $\forall a_1, a_2 \in A$, $\phi(a_1) = \phi(a_2)$ maka $a_1 = a_2$.

(Gallian 2010:19)

Definisi 2.14 Suatu fungsi $\phi : A \to B$ disebut onto B jika $\forall b \in B$ ada paling sedikit satu elemen $a \in A$ sehingga $\phi(a) = b$.

(Gallian 2010:20)

Definisi 2.15 Fungsi ϕ disebut fungsi bijektif jika ia fungsi satu-satu dan juga fungsi onto. (Munir 2010:133)

Representasi Matriks Graf

Definisi 2.16 Matriks segitiga atas adalah matriks dengan elemen-elemen di atas diagonal bernilai 0.

(Munir 2010:99)

Definisi 2.17 Matriks adjasensi A(G) graf G dengan n titik adalah matriks $n \times n$ dengan baris dan kolom dilabeli dengan V(G) dimana entri (i,j) sama dengan 1 jika titik i dan j berhubungan langsung (ada sisi yang menghubungkan) dan 0 jika titik i dan j tidak berhubungan langsung.

(Merris 1994:143)

Definisi 2.18 Matriks D(G) adalah matriks diagonal dari graf G berukuran $n \times n$ dimana n menyatakan order titik pada graf G, dengan entri sebagai berikut

$$\begin{bmatrix} \mathbf{d}_{ij} \end{bmatrix} = \begin{cases} deg(v_i), & \text{ jika } \mathbf{v}_i = \mathbf{v}_j \\ 0, & \text{ jika } \mathbf{v}_i \neq \mathbf{v}_j \end{cases}$$
(Merris 1994:144)

Definisi 2.19 Diberikan graf G dengan himpunan titik $V(G) = \{1, \dots, n\}$ dan himpunan sisi $E(G) = \{e_1, \dots, e_n\}$, Matriks Laplacian graf G dinotasikan L(G) adalah matriks L(G) = D(G) - A(G), dengan D(G) matriks diagonal pada Definisi 2.18.

(Merris 1994:144)

Definisi 2.20 Matriks insidensi N(G) dari graf berarah G adalah matriks berukuran $n \times m$ dimana n menyatakan order titik dan m menyatakan order sisi dengan entri sebagai berikut

$$\begin{bmatrix} \mathbf{n}_{ij} \end{bmatrix} = \begin{cases} +1 \text{ jika titik } \mathbf{v}_i \text{ adalah titik awal sisi } e_k = (\mathbf{v}_i, \mathbf{v}_j) \\ -1 \text{ jika titik } \mathbf{v}_i \text{ adalah titik akhir sisi } e_k = (\mathbf{v}_i, \mathbf{v}_j) \\ 0 \text{ lainnya} \end{cases}$$
(Biggs 1974:23)

Proposisi 2.2

Diberikan matriks insidensi N(G) graf berarah G dan matriks adjasensi A(G) graf G. Maka

$$N(G)N(G)^t = D(G) - A(G)$$

dengan D(G) matriks diagonal dari G pada Definisi 2.17.

Bukti:

 $(N(G)N(G)^t)_{ij}$ adalah hasil kali baris $deg(v_i)$ dan $deg(v_j)$ pada N(G). Jika $i \neq j$, maka semua baris yang memiliki entri bukan nol di kolom yang sama jika dan hanya jika ada sisi yang menghubungkan v_i dan v_j . Pada kasus ini dua entri bukan nol adalah +1 dan -1 sehingga $(N(G)N(G)^t)_{ij} = -1$. Dengan cara yang sama, $(N(G)N(G)^t)_{ii}$ adalah hasil kali pada $deg(v_i)$ dengan diri sendiri dan karena nilai entri ± 1 di $deg(v_i)$ adalah derajat v_i .

Definisi 2.21 Matriks unimodular E adalah matriks persegi yang entri – entrinya bilangan bulat dengan det $E = \pm 1$. (Watkins 1990:35)

Definisi 2.22 Trace matriks A berukuran $n \times n$ adalah jumlah entri pada diagonal utama dinotasikan oleh

$$trace(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

dimana a_{ii} merupakan entri pada diagonal baris ke-i dan kolom-i.

(Serre 2002: 25)

Definisi 2.23 Matriks blok atau matriks partisi adalah matriks yang dipartisi atau diblok menjadi beberapa matriks yang ukurannya lebih kecil dengan cara membuat garis horizontal dan vertikal diantara baris dan kolom matriks. Matriks-matriks kecil hasil dari partisi matriks tersebut disebut submatriks.

(Ilhamsyah 2017:194)

Ruang Vektor

Definisi 2.24 Misalkan sebuah himpunan V dengan operasi penjumlahan dan perkalian skalar didefinisikan $\forall x, y \in V$ maka $x + y \in V$ dan $\forall x \in V, \alpha \in R$ maka $\alpha x \in V$. Himpunan V disebut ruang vektor (*vector space*) jika memenuhi aksioma berikut:

- 1. $x + y = y + x, \forall x, y \in V$
- 2. $(x + y) + z = x + (y + z), \forall x, y, z \in V$
- 3. $\exists 0 \in V$ sedemikian hingga $x + 0 = x, x \in V$
- 4. $\forall x \in V, \exists (-x) \in V \text{ sedemikian hingga } x + (-x) = 0$
- 5. $\alpha(x + y) = \alpha x + \alpha y, \forall \alpha \text{ dan } \forall x. y \in V$
- 6. $(\alpha + \beta)x = \alpha x + \beta x, \forall \alpha, \beta \text{ dan } \forall x \in V$
- 7. $(\alpha\beta)x = \alpha(\beta x), \forall \alpha, \beta \text{ dan } \forall x \in V$
- 8. $1 \cdot x = x, \forall x \in V$

(Leon 2006:118-119)

Definisi 2.25 Misalkan V ruang vektor F. Maka elemen $v_2, \cdots, v_n \in V$ dikatakan tak-bergantung linier jika $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$ dengan $\alpha_1, \cdots, \alpha_n \in R$, mengakibatkan $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

(Herstein 1996:185)

Definisi 2.26 Misalkan $E=(c_1 \quad c_2 \quad \cdots \quad c_n)$ dengan c_i adalah kolom ke-i matriks E. Untuk $i=1,2,\cdots,n$ definisikan fungsi $f_i\colon R^n\to R$ dengan $f_i(x)=xc_i$. Fungsi $f_i(x)$ disebut bentuk linier intergral.

(Jerrum 2010:6)

Teorema 2.3

Diberikan matriks unimodular E dan n bentuk linier integral yang dinotasikan dengan $f_k(x)$ sebagai berikut:

$$(f_1(x), \dots, f_n(x)) = xE$$
.

Maka f_1, f_2, \dots, f_n tak-bergantung linier

Bukti:

Misalkan $E=(c_1c_2\cdots c_n)$ dengan c_k adalah kolom ke-k matriks E dan $xc_k=f_k(x); k=1,\cdots,n$. Maka $xE=(xc_1,xc_2,\cdots,xc_n)$

Karena kolom – kolom E tak-bergantung linier,

$$\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_n f_n = \mathbf{0}$$

$$\alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_n f_n(x) = \mathbf{0}(x)$$

$$\alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_n f_n(x) = 0$$

menjadi

$$\alpha_1 x c_1 + \dots + \alpha_n x c_n = \mathbf{0}(x)$$

$$\alpha_1 x c_1 + \dots + \alpha_n x c_n = 0$$

atau

$$x(\alpha_1c_1 + \cdots + \alpha_nc_n) = 0$$

Ini berimplikasi bahwa $\alpha_1c_1 + \cdots + \alpha_nc_n = \mathbf{0}$ karena E unimodular akibatnya f_1, f_2, \cdots, f_n tak-bergantung linier sehingga $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Definisi 2.27 Sebuah n-tupel terurut (ordered n-tuple) (a_1, a_2, \dots, a_n) adalah sebuah barisan bilangan real dengan a_1 sebagai anggota pertama, a_2 sebagai anggota kedua, dan a_n sebagai anggota ke-n.

(Rosen 2007:122).

Permutasi

Definisi 2.28 Permutasi pada himpunan A adalah fungsi bijektif dari A ke A. Dinotasikan dengan $\sigma: A \to A$ dengan $\forall a \in A$ maka $\sigma(a) \in A$.

(Gallian 2010:95)

Definisi 2.29 Pemutasi σ disebut sikel dengan panjang m atau sikel-m dinotasikan dengan $\sigma=(a_1,a_2,\cdots,a_m)$ dengan $\sigma(a_i)=a_{i+1},i=1,\cdots,m-1,\ \sigma(a_m)=a_1,\sigma(a_k)=a_k,k\neq 1,2,\cdots m.$

(Gallian 2010:98)

Teorema 2.4

Setiap permutasi pada himpunan berhingga merupakan komposisi sikel-sikel yang saling asing (disjoint).

Bukti:

Misalkan α permutasi pada $A=\{1,2,\cdots,n\}$. Tulis α dalam bentuk sikel yang saling asing, kita mulai dengan memilih sebarang anggota A, katakanlah a_1 , dan misalkan

 $a_2=\alpha(a_1),$ $a_3=\alpha(\alpha(a_1))=\alpha^2(a_1),$ dan seterusnya, hingga kita tiba $a_1=\alpha^m(a_1)$ untuk beberapa m. Kita tahu bahwa m ada karena barisan $a_1,\alpha(a_1),\alpha^2(a_1),\cdots$ pasti terbatas; sehingga akhirnya harus ada pengulangan, katakanlah $\alpha^i(a_1)=\alpha^j(a_1)$ untuk beberapa i dan j dengan i < j. Maka $a_1=\alpha^m(a_1)$ dimana m=j-i. Kami ungkapkan hubungan di antara a_1,a_2,\cdots,a_m sebagai

$$\alpha = (a_1, a_2, \cdots, a_m) \cdots$$

Tiga titik ujung menunjukkan kemungkinan bahwa himpunan A masih tersisa dalam proses. Dalam kasus seperti itu, kita hanya perlu memilih sebarang anggota b_1 pada A yang tidak muncul pada sikel pertama dan proses membuat sikel baru seperti sebelumnya. Yaitu,

misalkan $b_2=\alpha(b_1), b_3=\alpha^2(b_1)$ dan seterusnya hingga kita mencapai $b_1=\alpha^k(b_1)$ untuk beberapa k. Sikel baru ini tidak memiliki anggota yang sama dengan sikel sebelumnya. Jika demikian maka $\alpha^i(a_1)=\alpha^j(b_1)$ untuk beberapa i dan j. Tetapi karena $\alpha^{i-j}(a_1)=b_1$ dan karena $b_1=a_t$ untuk beberapa t. Ini kontradiksi dengan b_1 yang telah dipilih. Dengan melanjutkan proses ini hingga kita menghabiskan anggota A, permutasi yang kita peroleh sebagai berikut

 $\alpha = (a_1, a_2, \cdots, a_m)(b_1, b_2, \cdots, b_k) \cdots (c_1, c_2, \cdots, c_s).$ Dengan cara ini, kita memperoleh bahwa setiap permutasi bisa ditulis sebagai komposisi sikel-sikel yang saling asing.

PEMBAHASAN

Bentuk Kuadratik

Definisi 3.1 Misalkan G graf terhubung sederhana dengan himpunan titik $V(G) = \{v_1, v_2, \cdots, v_n\}$ dan himpunan sisi E(G). Bentuk kuadratik integral graf G pada n—tupel tak-tentu x didefinisikan sebagai:

$$Q(x) = \sum_{(v_i, v_j) \in E(G)} (x(v_i) - x(v_j))^2$$

dimana jumlahnya adalah semua sisi $(v_i, v_j) \in E(G)$.

(Watkins 1994:43)

Proposisi 3.1

Bentuk kuadratik integral $Q(x) = \sum_{(v_i,v_j)\in E(G)} \left(x(v_i)-x(v_j)\right)^2$ dapat direpresentasikan dalam bentuk matriks simetris L(G), yaitu :

$$Q(x) = xL(G)x^{t}$$
(Watkins 1994:43)

Bukti:

i.
$$Q(x) = \sum_{(v_i, v_j) \in E(G)} (x(v_i) - x(v_j))^2$$

$$= \sum_{(v_i, v_j) \in E(G)} (x(v_i)^2 - 2x(v_i)x(v_j) + x(v_j)^2)$$

Untuk setiap i dengan $(v_i, v_j) \in E(G)$ terdapat $d_i = deg(v_i)$ suku $x(v_i)^2$ dan d_i suku $-2x(v_i)x(v_i)$.

$$\begin{aligned} &\text{ii.} \quad xL(G)x^t = x\Big(D(G) - A(G)\Big)x^t \\ &= (x(v_1) \quad x(v_2) \quad \dots \quad x(v_n)) \begin{pmatrix} \deg(v_1) & -a_{12} & \dots & -a_{1n} \\ -a_{21} & \deg(v_2) & \vdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & \deg(v_n) \end{pmatrix} \begin{pmatrix} x(v_1) \\ x(v_2) \\ \vdots \\ x(v_n) \end{pmatrix} \\ &= (x(v_1) \quad x(v_2) \quad \dots \quad x(v_n)) \begin{pmatrix} \deg(v_1)x(v_1) - a_{12}x(v_2) + \dots - a_{1n}x(v_n) \\ -a_{21}x(v_1) + \deg(v_2)x(v_2) + \dots - a_{2n}x(v_n) \\ -a_{n1}x(v_1) - a_{n2}x(v_2) + \dots + \deg(v_n)x(v_n) \end{pmatrix}$$

$$\begin{split} = deg(v_1)x(v_1)x(v_1) - a_{12}x(v_1)x(v_2) + \cdots \\ &- a_{1n}x(v_1)x(v_n) - a_{21}x(v_2)x(v_1) \\ &+ deg(v_2)x(v_2)x(v_2) + \cdots \\ &- a_{2n}x(v_2)x(v_n) + \cdots - a_{n1}x(v_n)x(v_1) \\ &- a_{n2}x(v_n)x(v_2) + \cdots \\ &+ deg(v_n)x(v_n)x(v_n) \\ = deg(v_1)x(v_1)^2 - a_{12}x(v_1)x(v_2) + \cdots - a_{1n}x(v_1)x(v_n) \\ &- a_{21}x(v_2)x(v_1) + deg(v_2)x(v_2)^2 + \cdots \\ &- a_{2n}x(v_2)x(v_n) + \cdots - a_{n1}x(v_n)x(v_1) \\ &- a_{n2}x(v_n)x(v_2) + \cdots + deg(v_n)x(v_n)^2 \end{split}$$

Dari penjabaran tersebut dapat disimulasikan sebagai berikut:

	$x(v_1)$	$x(v_2)$	$x(v_3)$		$x(v_n)$
$x(v_1)$	d_1	$-a_{12}$	$-a_{13}$:	$-a_{1n}$
$x(v_2)$	$-a_{21}$	d_2	$-a_{23}$		$-a_{2n}$
$x(v_3)$	$-a_{31}$	$-a_{32}$	d_3		$-a_{3n}$
:	i	i	i	Α.	:
$x(v_n)$	$-a_{n1}$	$-a_{n2}$	$-a_{n3}$		d_n

Pada diagonal utama nilai koefisien disimbolkan dengan d_i untuk setiap titik $i=1,2,\cdots,n$ dimana d_i bernilai $deg(v_i)$ dan nilai koefisien di luar diagonal utama disimbokan dengan $-a_{ij}$ dimana $-a_{ij}$ bernilai $-2a_{ij}$ karena ada tepat d_i nilai titik v_j $\ni a_{ij}=1$, jika titik v_i dan v_j terhubung langsung dan $-a_{ij}$ bernilai 0 jika titik v_i dan v_j tak-terhubung langsung.

Misalkan titik v_1 dan v_2 terhubung langsung, dapat disimulasikan sebagai berikut:

	$x(v_1)$	$x(v_2)$	$x(v_3)$		$x(v_n)$
$x(v_1)$	$\left(\begin{array}{c} \end{array} \right)$	(a)	$-a_{13}$:	$-a_{1n}$
$x(v_2)$		d_2	$-a_{23}$:	$-a_{2n}$
$x(v_3)$	$-a_{31}$	$-a_{32}$	d_3	:	$-a_{3n}$
:	1	1	:	Α.	:
$x(v_n)$	$-a_{n_1}$	$-a_{n2}$	$-a_{n3}$		d_n

Titik v_1 dan v_2 terhubung langsung maka koefisien $x(v_1)^2$ adalah $deg(v_1)$, koefisien $x(v_2)^2$ adalah $deg(v_2)$ dan koefisien $x(v_1)x(v_2)$ adalah $-2a_{12}$ karena $-a_{12}=-a_{21}$.

Secara umum, karena matriks $xL(G)x^t$ adalah matriks simetris berkuran $n \times n$ dimana n merupakan orde titik graf G dapat disimpulkan bahwa titik v_i dan v_j yang terhubung langsung maka koefisien $x(v_i)^2$ adalah $deg(v_i)$ dan koefisien $x(v_i)x(v_j)$ adalah $-2a_{ij}$ karena $-a_{ij} = -a_{ji}$.

Berdasarkan (i) dan (ii) diperoleh $Q(x) = xL(G)x^{t}$.

Kongruensi Graf dan Isomorfisme Sikel

Definisi 3.2 Dua graf G_1 dan G_2 adalah kongruen jika ada matriks unimodular E sehingga $E^tL(G_1)E = L(G_2)$.(Watkins 1990:35)

Definisi 3.3 Dua bentuk kuadratik integral $Q_1(x)$, $Q_2(x)$ yang berkaitan dengan graf G_1 , G_2 dikatakan kongruen dengan matriks unimodular E jika $Q_2(x) = Q_1(xE)$.

(Watkins 1994:44)

Teorema 3.2

Jika dua bentuk kuadratik integral $Q_1(x)$ dan $Q_2(x)$ kongruen dengan matriks unimodular E maka $L(G_2) = EL(G_1)E^t$

(Watkins 1990:35-36

Bukti:

 $Q_1(x)$ adalah bentuk kuadratik integral yang berkaitan dengan graf G_1 sehingga $Q_1(x) = xL(G_1)x^t$ karena $Q_1(xE)$ maka x = xE dan $x^t = (xE)^t = E^tx^t$ sehingga $Q_1(xE) = xEL(G_1)E^tx^t$.

 $Q_2(x)$ adalah bentuk kuadratik integral yang berkaitan dengan graf G_2 sehingga $Q_2(x) = xL(G_2)x^t$.

Karena

$$Q_2(x) = Q_1(xE)$$

maka

$$xL(G_2)x^t = x(EL(G_1)E^t)x^t$$

sehingga

$$L(G_2) = E^t L(G_1) E$$
.

Definisi 3.4 Isomorfisme sikel dari graf G_1 ke G_2 adalah fungsi bijektif $\phi: E(G_1) \to E(G_2)$ sehingga X adalah himpunan sikel di G_1 jika dan hanya jika ϕX adalah himpunan sikel di G_2 . Graf G_1 dan G_2 disebut isomorfik sikel jika ada isomorfisme sikel dari G_1 ke G_2 .

(Watkins 1994:44)

Lemma 3.3

Diberikan graf G dengan himpunan titik $\{v_1, v_2, \dots, v_n\}$. Jika $\{(s(1), t(1)), \dots, (s(m), t(m))\}$ adalah sikel-m di G maka $\sum_{k=1}^{m} (x_{s(k)} - x_{t(k)}) = 0$.

Bukti:

Misalkan $\{(s(1), t(1)), \dots, (s(m), t(m))\}$ adalah sikel maka $\{s(1), s(2), \dots, s(m)\} = \{t(1), t(2), \dots, t(m)\}$ sehingga $\exists \sigma$ adalah sebuah permutasi pada $\{1, 2, \dots, m\} \ni s(i) = t(\sigma(i)), \forall i = 1, 2, \dots, m.$

$$\sum_{k=1}^{m} (x_{s(k)} - x_{t(k)}) = x_{s(1)} - x_{t(1)} + x_{s(2)} - x_{t(2)} + \cdots$$

$$+ x_{s(m)} - x_{t(m)}$$

$$= x_{s(1)} - x_{t(\sigma(1))} + x_{s(2)} - x_{t(\sigma(2))} + \cdots$$

$$+ x_{s(m)} - x_{t(\sigma(m))} = 0. \blacksquare$$

Teorema 3.4

Misalkan dua graf G_1 dan G_2 kongruen dengan himpunan titik $\{1,\cdots,n\}$. Misalkan

$$E(G_1) = \{(s(k), t(k)): k = 1, \dots, N\}$$

dan

$$E(G_2) = \{(i(k), j(k)): k = 1, \dots, M\}.$$

Maka

- 1. $N = M \operatorname{dan}$
- 2. Sisi-sisi G_1 dan G_2 dapat diurutkan sehingga untuk setiap himpunan bagian S dari $\{1,2,\cdots,N\}$ dengan m elemen, $\{(s(k),t(k)):k\in S\}$ adalah sikel-m di G_1 jika dan hanya jika $\{(i(k),j(k)):k\in S\}$ adalah sikel-m di G_2 .

(Watkins 1990:39

Bukti:

Diberikan matriks unimodular E sehingga $EL(G_1)E^t = L(G_2)$.

1. Dengan diberikan matriks unimodular E dapat definisikan n bentuk linear integral yang dinotasikan dengan $f_k(x)$, yang disingkat sebagai f_k dengan

 $(f_1, \cdots, f_n) = xE$.

Maka

$$xEL(G_1)E^t x^t = \sum_{k=1}^{N} (f_{s(k)} - f_{t(k)})^2$$
$$xL(G_2)x^t = \sum_{k=1}^{M} (x_{i(k)} - x_{j(k)})^2$$

dan karena

$$\sum_{k=1}^{N} (f_{s(k)} - f_{t(k)})^{2}$$

$$= \sum_{k=1}^{M} (x_{i(k)} - x_{j(k)})^{2}$$
(2)

selisih pada ruas kiri pers. (2) dinyatakan sebagai berikut

$$f_{s(k)} - f_{t(k)} = a_1 x_1 + \dots + a_n x_n$$

dengan $a_i = c_{i,s(k)} - c_{i,t(k)}$, c_s kolom matriks E. Berdasarkan Teorema 2.3, f_1, \cdots, f_n adalah takbergantung linear dan karena $s(k) \neq t(k)$, paling sedikit salah satu koefisien $a_i \neq 0$. Tetapi ketika dipilih $x = (1, \cdots, 1)$ pada pers. (2), ruas kanan pers. (2) adalah nol sehingga $a_1 + \cdots + a_n = f_{s(k)}(1) - f_{t(k)}(1) = 0$. Akibatnya paling sedikit dua koefisien $a_i \neq 0$.

Suku $(f_{s(k)} - f_{t(k)})^2$ menyumbangkan $a_1^2 + \cdots + a_n^2$ ke jumlah koefisien monomial berbentuk $x_i^2 : i = 1, \cdots, n$ pada ruas kiri pers. (2). Dalam bahasa matriks jumlah koefisien monomial berbentuk x_i^2 pada ruas kiri pers. (2) adalah trace $EL(G_1)E^t$. Karena paling sedikit dua $a_i \neq 0$, diperoleh a_1^2 +

- $\dots + a_n^2 \ge 2$. Dengan demikian trace $(EL(G_1)E^t) \ge 2N$ sedangkan berdasarkan Teorema 2.1 trace $(L(G_2)) = 2M$ sehingga $M \ge N$. Dengan cara sama, $N \ge M$ jadi terbukti M = N.
- 2. Selanjutnya akan ditunjukkan bahwa himpunan sisi $E(G_1)$ dan $E(G_2)$ dapat diurutkan kembali sehingga

$$f_{s(k)}(x) - f_{t(k)}(x) = x_{i(k)} - x_{j(k)}$$
 untuk $k = 1, \dots, N$. (3)

Karena N = M diperoleh $a_1^2 + \dots + a_n^2 = 2$ untuk setiap $f_{s(k)} - f_{t(k)}$, $k = 1, \dots, N$. Ini berarti ada tepat dua koefisien $a_i \neq 0$ dan keduanya ± 1 . Perhatikan bahwa selisih $f_{s(1)} - f_{t(1)}$ berkorespondesi dengan sisi pertama (s(1), t(1)) di G_1 . Dengan membalik urutan s(1) dan t(1) jika dibutuhkan, maka diperoleh asumsi bahwa $f_{s(1)} - f_{t(1)} = x_a \pm x_b$ untuk suatu $1 \le a \ne b \le n$. Sehingga $(f_{s(1)} (f_{t(1)})^2 = x_a^2 \pm 2x_a x_b + x_b^2$ menyumbangkan ± 2 ke jumlah koefisien monomial berbentuk $x_i x_i : 1 <$ $a = i \neq j < n$ pada ruas kiri pers. (2). Dalam bahasa matriks, jumlah ini adalah jumlah semua entri di luar diagonal di $EL(G_1)E^t$. Dari ruas kanan pers. (2) diperoleh jumlah semua entri di luar diagonal $L(G_2)$ adalah -2M. Karena M = N, koefisien $x_a x_b$ adalah -2 bukan +2. Sehingga $f_{s(1)} - f_{t(1)} = x_a - x_b$ dan koefisien $x_a x_b$ pada ruas kiri pers. (2) bukan nol itu berarti bahwa koefisien $x_a x_b$ pada ruas kanan pers. (2) bukan nol. Sehingga (a, b) adalah sisi di G_2 . Dengan penomoran ulang sisi di G2 diasumsikan bahwa (i(1), j(1)) = (a, b) dan dengan demikian

$$f_{s(1)}(x) - f_{t(1)}(x) = x_{i(1)} - x_{j(1)}$$

Dengan mengurangkan suku ke k = 1 dari kedua ruas pers. (2) diperoleh

$$\sum_{k=2}^{N} (f_{s(k)} - f_{t(k)})^{2} = \sum_{k=2}^{M} (x_{i(k)} - x_{j(k)})^{2}$$

Dengan argumen induktif ditunjukkan bahwa sisisisi sisanya, bernomor $k=2,\dots,N$, bisa diurutkan kembali sehingga pers. (3) berlaku untuk semua $k=1,\dots,N$.

Misalkan $\{(s(1), t(1)), \dots, (s(m), t(m))\}$ adalah sikel-m di G_1 . Maka

$$\sum_{k=1}^{m} f_{s(k)} - f_{t(k)} = 0$$

tetapi karena bentuk linear f_k tak-bergantung linear dan $\{(s(1),t(1)),\cdots,(s(m),t(m))\}$ adalah sikel-m di G_1 , tidak ada proper subset dari selisih $\{f_{s(k)}-f_{t(k)}: k=1,2,\cdots,m\}$ jumlahnya nol karena jika diambil salah satu fungsi maka nilai fungsi yang lain adalah sama dengan fungsi lain ataupun kombinasi linier fungsi lain. Dari pers. (3) diperoleh

$$\sum_{k=1}^{m} x_{i(k)} - x_{j(k)} = 0$$

Jadi $\{i(1), i(2), \cdots, i(m) = \{j(1), j(2), \cdots, (m)\}\}$. Sehingga ada sebuah permutasi σ pada $\{1, 2, \cdots, m\}$ sedemikian hingga $j(k) = i(\sigma(k))$ untuk $k = 1, 2, \cdots, m$. Akan ditunjukkan bahwa $\{(i(1), j(1)), \cdots, (i(m), j(m))\}$ adalah sikel-m di G_2 , yang mana adalah ekuivalen untuk menunjukkan bahwa σ adalah sikel dan titik $i(1), i(2), \cdots, i(m)$ berbeda.

Andaikan σ bukan sikel, misalkan $\sigma^r 1 = 1$ untuk r < m maka $\{(i(1), i(\sigma 1)), (i(\sigma 1), i(\sigma^2 1)), \cdots, (i(\sigma^{r-1} 1), i(1))\}$ adalah lintasan tertutup di G_2 dan proper subset pada $\{(i(1), j(1)), \cdots, (i(m), j(m))\}$. Jadi proper subset dari selisih $\{x_{i(k)} - x_{j(k)} : k = 1, 2, \cdots, m\}$ jumlahnya nol dan juga dari pers. (3) proper subset dari selisih $\{f_{s(k)} - f_{t(k)} : k = 1, 2, \cdots, m\}$ jumlahnya nol, ini tidak mungkin. Oleh karena itu σ adalah sikel dan $\{(i(1), j(1)), \cdots, (i(m), j(m))\} = \{(i(1), i(\sigma 1)), (i(\sigma 1), i(\sigma^2 1)), \cdots, (i(\sigma^{m-1} 1), i(1))\}$

Titik $i(1), i(\sigma 1), \dots, i(\sigma^{m-1} 1)$ berbeda karena jika $i(\sigma^p 1) = i(\sigma^q 1)$ untuk beberapa $1 \le p < q < m$ maka $\{(i(\sigma^{p}1), i(\sigma^{p+1}1)), \cdots, (i(\sigma^{q-1}1), i(\sigma^{q}1))\}$ adalah lintasan tutup di G2 dan sehingga proper subset dari selisih $\{x_{i(k)} - x_{j(k)} : k = 1, 2, \dots, m\}$ jumlahnya nol. Tetapi dengan menggunakan pers. (3) proper subset dari selisih $\{f_{s(k)} - f_{t(k)} : k = \}$ $1,2,\cdots,m$ } jumlahnya nol, ini tidak mungkin. Oleh karena itu $\{(i(1), j(1)), \dots, (i(m), j(m))\}$ adalah sikel-m di G_2 . Dengan argument yang sama ditunjukkan bahwa jika $\{(i(1),j(1)),\cdots,(i(m),j(m))\}$ adalah sikel- m di G_2 maka $\{(s(1),t(1)),\cdots,(s(m),t(m))\}$ adalah sikel-m di G_1 .

Berdasarkan (1) dan (2) Teorema 3.4 terbukti.

Dua Tipe Operasi Tertentu pada Graf

Definisi 3.5 Dua graf G_1 dan G_2 isomorfik sikel melalui dua tipe operasi tertentu, yaitu:

1. Operasi Tipe 1

Pemasangan kembali salah satu titik misal a pada salah satu komplemen graf G_1 ke sebarang titik b pada komplemen graf G_1 lainnya, dimana titik a merupakan titik yang sama pada dua komponen graf G_1 . Andaikan komplemen graf bagian G_1 memiliki satu titik yang sama, misalkan H_1 dan K_1 komplemen graf bagian G_1 yang memiliki satu titik

yang sama yaitu a. Jika $(a, c_1), \dots, (a, c_s)$ atau sisisisi H_1 pada titik a diganti dengan $(b, c_1), \dots, (b, c_s)$ untuk memperoleh H_2 . Maka H_2 adalah sebuah salinan isomorfik H_1 yang menghimpit titik b di $K_2 = K_1$ untuk membentuk graf baru G_2 .

2. Operasi Tipe 2

Penukaran dua titik yang sama pada dua komplemen graf G_1 . Andaikan komplemen graf bagian G_1 memiliki dua titik yang sama, misalkan H_1 dan K_1 komplemen graf bagian G_1 yang memiliki dua titik yang sama yaitu a, b. Jika $(a, c_1), \cdots, (a, c_s)$ dan $(b, d_1), \cdots, (b, d_t)$ atau sisi-sisi H_1 pada titik a, b diganti dengan sisi $(a, d_1), \cdots, (a, d_t)$ dan $(b, c_1), \cdots, (b, c_s)$ untuk memperoleh H_2 . Maka H_2 adalah salinan isomorfik H_1 yang menghimpit titik a, b di $K_2 = K_1$, tetapi sebaliknya H_1 menghimpit K_1 di G_1 . Graf baru G_2 berisi komplemen graf bagian H_2 dan K_2 . Dengan kata lain, operasi tipe II menukar H_1 disekitar titik a, b.

(Watkins 1994:44)

Teorema 3.5

Diberikan graf G_1 dan G_2 dengan n titik. Jika G_1 dapat ditransformasikan ke G_2 dengan barisan operasi tipe I dan tipe II, maka untuk setiap penetapan urutan dan orientasi sisi G_1 , ada urutan dan orientasi sisi G_2 serta matriks unimodular E sedemikian hingga $EN(G_1) = N(G_2)$.

(Watkins 1994:46)

Bukti:

Kita akan membuktikan bahwa matriks unimodular E memenuhi $EN(G_1)=N(G_2)$ dengan G_2 diperoleh dari G_1 melalui operasi tunggal tipe I dan tipe II. Karena operasi ganda pasti memenuhi, misalkan graf G_1 , G_2 dan G_3 dengan n titik serta operasi * sebagai operasi ganda. Maka diperoleh $E^1N(G_1)=N(G_2)$ dan $E^2N(G_2)=N(G_3)$ sehingga diperoleh $E^1E^2N(G_1)=E^2N(G_2)=N(G_3)$. Karena E^1 dan E^2 matriks unimodular maka komposisi E^1E^2 juga unimodular. Oleh karena itu kita hanya mengurusi operasi tunggal.

a) Diberikan H_1 dan K_1 komplemen graf bagian G_1 yang memiliki hanya satu titik sama. Andaikan $V(H_1) = \{v_1, v_3, v_4, \cdots, v_r\}$ dan $V(K_1) = \{v_1, v_2, v_{r+1}, \cdots, v_n\}$. Tentukan orientasi setiap sisi G_1 dan konstruksi $N(G_1)$ dengan mendaftarkan sisi H_1 sebagai kolom paling kiri $N(G_1)$. Maka $N(G_1)$ memiliki bentuk matriks block sebagai berikut:

$$N(G_1) = \begin{bmatrix} u & w \\ 0 & v \\ A & O \\ O & B \end{bmatrix} \tag{4}$$

dimana baris dipartisi menjadi block ukuran 1,1,r-2, n-2 dan kolom dipartisi menjadi block ukuran $|E(H_1)|$, $|E(K_1)|$. Andaikan G_2 diperoleh dari G_1 dengan memisahkan H_1 dari K_1 pada titik v_1 dan menghimpitkan ulang ketitik v_2 pada K_1 . Itu berarti pergantian sisi (v_1,c) di H_1 pada 1 titik dengan sisi (v_2,c) . Sehingga sisi G_2 memiliki urutan dan orientasi sebagai berikut:

$$N(G_2) = \begin{bmatrix} 0 & w \\ u & v \\ A & O \\ O & B \end{bmatrix}$$

Diberikan

$$E = \begin{bmatrix} 1 & 0 & e & 0 \\ 0 & 1 & -e & 0 \\ 0 & 0 & I_{r-2} & 0 \\ 0 & 0 & 0 & I_{n-r} \end{bmatrix}$$

Dimana e adalah 1 dengan r-2 semua vector entri 1. Tentu E adalah matriks unimodular karena E adalah matriks segitiga atas sehingga det $E=\pm 1$, sehingga dengan perhitungan langsung diperoleh

$$EN(G_1) = \begin{bmatrix} u + eA & w \\ -eA & v \\ A & O \\ O & B \end{bmatrix}$$

karena setiap kolom $N(G_1)$ berisi satu +1, satu -1 dan n-2 nol, yang entri dalam setiap jumlah kolom nol, oleh sebab itu u+eA=0 sehingga $EN(G_1)=N(G_2)$.

b) Diberikan H_1 dan K_1 komplemen graf bagian G_1 memiliki titik v_1 dan v_2 yang sama. Andaikan $V(H_1) = \{v_1, v_2, v_3, \cdots, v_r\}$ dan $V(K_1) = \{v_1, v_2, v_{r+1}, \cdots, v_n\}$. Tentukan orientasi sisi G_1 dan kontruksi $N(G_1)$ dengan mendaftarkan sisi H_1 sebagai kolom paling kiri $N(G_1)$. Maka $N(G_1)$ memiliki bentuk matriks block sebagai berikut:

$$N(G_1) = \begin{bmatrix} u & w \\ y & v \\ A & O \\ O & B \end{bmatrix}$$
 (5)

Graf baru G_2 diperoleh dari G_1 dengan mengganti semua sisi (v_1, c) , (v_2, d) pada titik v_1 dan v_2 di H_1 dengan sisi (v_2, c) , (v_1, d) ke bentuk graf bagian H_2 pada G_2 . Diberikan

$$E = \begin{bmatrix} 1 & 0 & e & O \\ 0 & 1 & -e & O \\ O & O & -I_{r-2} & O \\ O & O & O & I_{n-r} \end{bmatrix}$$

Tentu E adalah matriks unimodular karena E adalah matriks segitiga atas sehingga $\det E = \pm 1$ tergantung banyak n-r jika genap -1 dan jika ganjil +1, sehingga dengan perhitungan langsung sebagai berikut

$$EN(G_1) = \begin{bmatrix} u + eA & w \\ y + eA & v \\ -A & O \\ O & B \end{bmatrix}$$

Setiap jumlah kolom $N(G_1)$ adalah nol, sehingga u + y + eA = 0 dan itu berlaku

$$EN(G_1) = \begin{bmatrix} -y & w \\ -u & v \\ -A & 0 \\ 0 & B \end{bmatrix} = N(G_2)$$

dimana arah sisi di H_2 adalah kebalikan arah sisi di H_1 .

Matriks insdensi (4) untuk operasi tipe I adalah kasus khusus pada matriks insidensi (5) untuk operasi tipe II dimana y=0. Bahkan operasi tipe I adalah operasi tipe II dimana tidak ada sisi di H_1 pada titik b.

Berdasarkan a) dan b) Teorema 3.5 terbukti.

Teorema 3.6

Diberikan graf G_1 dan G_2 dengan n titik. Jika untuk setiap penetapan urutan dan orientasi sisi G_1 , ada urutan dan orientasi sisi G_2 serta matriks unimodular E sedemikian hingga $EN(G_1) = N(G_2)$ maka ada matriks unimodular E sedemikian hingga $L(G_2) = EL(G_1)E^t$.

(Watkins 1994:46)

Bukti:

Berdasarkan Proposisi 2.2 diperoleh $L(G) = N(G)N(G)^t$ dengan menghiraukan urutan dan orientasi sisi G ke bentuk N(G). Sehingga jika $EN(G_1) = N(G_2)$ maka $L(G_1)E^t = EN(G_1)N(G)^tE^t = EN(G_2)N(G_2)^t = L(G_2)$.

Akibat 3.7

Diberikan graf G_1 dan G_2 dengan n titik. Jika G_1 dapat ditransformasikan ke G_2 dengan barisan operasi tipe I dan tipe II maka ada matriks unimodular E sedemikian hingga $L(G_2) = EL(G_1)E^t$.

PENUTUP

Berdasarkan pembahasan yang sudah dijabarkan pada skripsi yang berjudul Karakterisasi Kongruensi Unimodular Matriks Laplacian pada Graf, bahwa syaratsyarat yang terkait pada Karakterisasi Kongruensi Unimodular Matriks Laplacian pada Graf adalah sebagai berikut:

- 1. Jika dua bentuk kuadratik integral $Q_1(x)$ dan $Q_2(x)$ yang berkaitan dengan graf G_1 dan G_2 kongruen dengan matriks unimodular E maka $L(G_2) = EL(G_1)E^t$.
- 2. Misalkan dua graf G_1 dan G_2 kongruen dengan himpunan titik $\{1, \dots, n\}$. Misalkan $E(G_1) =$

- $\{(s(k), t(k)): k = 1, \dots, N\}$ dan $E(G_2) = \{(i(k), j(k)): k = 1, \dots, M\}.$ Maka
- a. $N = M \, dan$
- b. Sisi-sisi G_1 dan G_2 dapat diurutkan sehingga untuk setiap himpunan bagian S dari $\{1,2,\cdots,N\}$ dengan m elemen, $\{(s(k),t(k)):k\in S\}$ adalah sikel-m di G_1 jika dan hanya jika $\{(i(k),j(k)):k\in S\}$ adalah sikel-m di G_2 .
- 3. Diberikan graf G_1 dan G_2 dengan n titik. Ada matriks unimodular E sedemikian hingga $L(G_2) = EL(G_1)E^t$ jika untuk setiap penetapan urutan dan orientasi sisi G_1 , ada urutan dan orientasi sisi G_2 serta matriks unimodular E sedemikian hingga $EN(G_1) = N(G_2)$, dengan $N(G_1)$ dan $N(G_2)$ matriks insidensi pada graf berarah G_1 dan G_2 .
- 4. Diberikan graf G_1 dan G_2 dengan n titik. Jika G_1 dapat ditransformasikan ke G_2 dengan dua barisan operasi tipe tertentu maka ada matriks unimodular E sedemikian hingga $L(G_2) = EL(G_1)E^t$.

Saran

Pada skripsi ini penulis hanya membahas tentang karakterisasi kongruensi unimodular matriks laplacian pada graf sederhana. Penulis menyarankan bagi pembaca untuk mengkaji lebih dalam tentang kongruensi unimodular matriks laplacian pada graf lainnya.

DAFTAR PUSTAKA

- Biggs, N. 1974. *Algebraic Graph Theory*. New York:Cambridge University Press.
- Budayasa, I.K. 2007. *Teori Graph dan Aplikasinya*. Surabaya: Unesa University Press.
- Diestel, R. 2000. *Graph Teory*. New York:Springer-Verlag.
- Gallian, J.A. 2010. *Contemporary Abstract Algebra*. Seventh Edition. Duluth: University of Minnesota Duluth.
- Herstein, I.N. 1996. *Abstract Algebra*. Third Edition. United States of Amerika:Prentice-Hall, Inc.
- Ilhamsyah, Helmi, Fransiskus F.2017. *Determinan dan Invers Matriks Blok* 2 × 2. Buletin Ilmiah Math. Stat. dan Terapannya. Vol.06(3): hal. 193-202.
- Jerrum, M.2010.Linear Algebra II:School of Mathematical Sciences. Queen Mary University of London, (Online), (http://www.maths.qmul.ac.uk/~twm/MTH6140/la26.pdf, diakses pada 26 September 2018).
- Leon, S.J. 2006. *Linier Algebra with Applications*. Seventh Edition. United States of America:Pearson Prentice Hall.

- Merris, R. 1994. *Laplacian matrices of graph : A survey*. Linear Algebra and Its Applications. Vol. 197(198): pp. 143-176.
- Munir, R. 2010. *Matematika Diskrit*. Bandung:Informatika Bandung.
- Rosen, K.H. 2007. Discrete Mathematics and Its Applications. Seventh Edition. New York:McGraw-Hill.
- Serre, D. 2002. *Matrices:Theory and Applications*. United States of Amerika:Springer-Verlag New York,Inc.
- William E.W. 1990. *The Laplacian Matrix of a Graph: Unimodular Congruence*. Linear and Multilinear Algebra. Vol.28: pp. 35-43.
- William E.W. 1994. *Unimodular Congruence of the Laplacian Matrix of a Graph*. Linear Algebra and Its Applications. Vol.201: pp. 43-49.
- Wilson, R.J. 1985. *Introduction to Graph The*ory. Third Edition. New York: Longman Inc.