# MATHunesa

Jurnal Ilmiah Matematika *Volume 8 No.1 Tahun 2020 ISSN 2716-506X* 

# PENENTUAN BIAYA TRANSPORTASI MINIMUM PADA PEMILIHAN RUTE PENGIRIMAN MENGGUNAKAN METODE CLARK AND WRIGHT SAVING HEURISTIC

### Muh. Mufid Siraj

Jurusan Matematika, FMIPA, Universitas Negeri Surabaya *e*-mail : muh.mufidsiraj@gmail.com

### Yuliani Puji Astuti, S.Si., M.Si.

Jurusan Matematika, FMIPA, Universitas Negeri Surabaya e-mail: yuliani.matunesa@gmail.com

### Abstrak

Sistem transportasi memiliki peran yang sangat penting terhadap pelayanan kepada setiap pelanggan karena harus menjamin mobilitas produk serta di waktu yang sama harus dapat meminimalisasi biaya transportasi. Dalam proses distribusi pada umumnya timbul berbagai masalah, salah satunya adalah masalah rute pengiriman sehingga menjadi kurang optimalnya biaya transportasi yang dikeluarkan. Permasalahan kurang optimalnya rute pengiriman ini termasuk dalam *Vehicle Routing Problem*. Untuk itu perlu dilakukan upaya pengoptimalan rute pengiriman dengan suatu metode yang tepat. Metode yang digunakan pada penelitian ini ialah metode *Clark and Wright Saving Heuristic*. Paper ini membahas tentang penentuan biaya transportasi minimum pada pemilihan rute pengiriman menggunakan metode *Clark and Wright Saving Heuristic* pada pengiriman kopi. Hasil penerapan metode ini pada masalah perusahaan diperoleh rute yang optimal serta biaya transportasi yang dikeluarkan juga optimal. Total jarak tempuh dan biaya transportasi perusahaan sebesar 12.551,4 km dan Rp 22.550.372,-. Sedangkan total jarak tempuh dan biaya transportasi menggunakan metode *Clark and Wright Saving Heuristic* sebesar 7.324,3 km dan Rp 12.777.454,-. Dengan demikian jika metode *Clark and Wright Saving Heuristic* diterapkan di perusahaan tersebut akan meminimumkan total jarak tempuh dan biaya transportasi yang dikeluarkan.

Kata kunci: Distribusi, Vehicle Routing Problem, Clark and Wright Saving Heuristic

#### Abstract

The transportation system has a very important role in service to each customer because it must guarantee product mobility and at the same time be able to minimize transportation costs. In the distribution process in general, various problems arise, one of which is the problem of shipping routes so that transportation costs are less than optimal. Problems with suboptimal delivery routes are included in the Vehicle Routing Problem. For this reason, it is necessary to optimize the shipping route with an appropriate method. The method used in this study is the Clark and Wright Saving Heuristic method. This paper discusses the determination of minimum transportation costs in the selection of shipping routes using the Clark and Wright Saving Heuristic method to the company's problems obtained optimal routes and transportation costs incurred are also optimal. The total distance and transportation costs of the company are 12,551.4 km and Rp. 22,550,372.-. While the total mileage and transportation costs using the Clark and Wright Saving Heuristic method are 7,324.3 km and Rp. 12,777,454, -. Thus if the Clark and Wright Saving Heuristic method is applied in the company, it will minimize the total mileage and transportation costs incurred..

Keywords: Distribution, Vehicle Routing Problem, Clark and Wright Saving Heuristic

### 1. PENDAHULUAN

PT Jujur Perkasa Transport merupakan sebuah perusahaan yang beroperasi dalam bidang jasa pengiriman menggunakan transportasi darat dan berpusat di Buduran, Sidoarjo. Perusahaan ini didirikan pada tahun 2008 oleh Risma Laurent. Permasalahan yang dialami oleh perusahaan ini adalah seringnya keterlambatan dalam proses pengiriman barang dari perusahaan ke pelanggan. Selain itu, perusahaan juga kurang optimal dalam merencanakan sistem pendistribusian kopi yang

tepat. Kurang optimalnya sistem pendistribusian tersebut terletak pada penentuan rute distribusi ke pelanggan dan mengakibatkan kurang efektifnya jarak pengiriman yang ditempuh dan biaya transportasi yang dikeluarkan perusahaan menjadi mahal. Permasalahan kurang optimalnya sistem transportasi ini merupakan salah satu dari berbagai permasalahan pengiriman barang yang harus segera diselesaikan oleh perusahaan. Dalam sistem transportasi, rute-rute pengiriman dapat menjadi pembeda besar kecilnya biaya transportasi yang dikeluarkan oleh

perusahaan. Permasalahan rute pengiriman ini termasuk dalam permasalahan rute kendaraan atau yang dikenal dengan Vehicle Routing Problem (VRP) dimana sejumlah kendaraan dengan kapasitas angkut kendaraan yang terbatas harus melayani sejumlah permintaan para pelanggan dan diharapkan dapat menemukan rute dengan biaya yang minimal. Tujuan umum VRP ialah meminimalkan jarak serta mampu mengoptimalkan biaya yang berhubungan dengan kuantitas alat transportasi yang dibutuhkan untuk melayani permintaan sejumlah pelanggan, menyepadankan kapasitas angkut kendaraan serta rute-rute dalam hal waktu perjalanan, dan mengurangi citra negatif sebagai dampak dari pelanggan yang tidak puas dengan pelayanan pengiriman barangnya, seperti salah satunya lalai dalam proses pengiriman (Toth dan Vigo, 2002).

mengatasi hal Upaya dalam digunakan suatu metode yang efektif dalam menyelesaikan permasalahannya yaitu metode Clark and Wright Saving Heuristic. Metode ini merupakan suatu algoritma digunakan untuk mengatasi permasalahan rute pengiriman barang menggunakan sejumlah kendaraan dengan mengatur rute-rute pada setiap langkahnya untuk memperoleh lebih optimalnya rute-rute serta menghitung nilai-nilai penghematan yang didapatkan dari penyusutan jarak tempuh dan waktu dalam jumlah yang lebih banyak dan dikaitkan dengan node-node yang terdaftar untuk membentuk sebuah rute yang lebih optimal. Metode ini kemudahan memiliki kelebihan yaitu dalam memodifikasi jika terdapat takrif berupa iumlah kendaraan, waktu pengiriman, kapasitas kendaraan, dan takrif yang lain sehingga dapat memberikan jalan keluar yangi optimal dan menghasilkan rute terbaik dengan biaya yang minimal..

### KAJIAN TEORI

### Distribusi

### **Definisi Distribusi**

adalah suatu rangkaian proses Distribusi pemindahan barang dari pihak distributor kepada pihak pelanggan dalam suatu supply chain. Dengan kata lain, distribusi ialah penghubung antara aktivitas produksi dan konsumsi (Chopra dan Meindl, 2001). Dalam proses distribusi banyak permasalahan yang sering dihadapi yang berhubungan dengan sistem optimasi distribusi antara lain (Harry dan Syamsudin, 2011):

1. Titik depot

> Titik ini merupakan pusat tempat sistem distribusi yang digunakan menyediakan dan menyimpan barang hasil produksi dalam manajemen distribusi. Untuk memperoleh waktu yang tepat dalam pengiriman barang kepada

pelanggan, keberadaan titik depot ini sangat berpengaruh terhadap proses distribusi.

Penentuan rute

Dalam proses distribusi, penentuan rute dalam pengiriman barang dari satu titik tujuan ke beberapa titik tujuan lainnya merupakan salah satu hal yang menjadi keputusan terpenting. Penentuan rute dalam pengiriman barang sangat berpengaruh terhadap biaya transportasi yang dikeluarkan.

### Vehicle Routing Problem (VRP)

Dantziq dan Ramser pertama kali memperkenalkan VRP pada tahun 1959. VRP merupakan suatu kendala dalam sistem distribusi yang memiliki tujuan untuk mendapatkan rute yang optimal dengan indikator beberapa alat transprtasi yang telah diketahui kapasitas angkutnya untuk mengabulkan permintaan pelanggan yang telah diketahui sebelumnya (Rahmi dan Murti, 2013). Rute disebut optimal jika rute mampu mengerjakan berbagai masalah operasional, yaitu memiliki waktu dan total jarak yang ditempuh minimum dalam mencukupi permintaan pelanggan serta kendaraan yang digunakan memiliki jumlah terbatas. Penentuan biaya transportasi yang minimal erat kaitannya dengan jarak yang minimal. Beberapa batasan atau kendala yang harus dipenuhi dalam VRP antara lain:

- 1. Masing-masing pelanggan hanya dikunjungi sekali dengan satu kendaraan,
- Setiap rute berawal dari depot dan berakhir menuju depot,
- Kendaraan yang digunakan dalam proses pengiriman bersifat homogen dengan kapasitas terbatas, sehingga permintaan pelanggan pada setiap rute yang dilewati tidak dapat melebihi kapasitas angkut kendaraan.
- Jika kapasitas angkut kendaraan sudah mencapai batas maksimal, maka pelanggan berikutnya akan dilayani oleh shift berikutnya

# Capacitated Vehicle Routing Problem (CVRP)

Dari berbagai jenis VRP, VRP memiliki salah satu bentuk dasar yaitu Capacitated Vehicle Routing Problem (CVRP). CVRP merupakan salah satu permasalahan optimasi dengan indikator sejumlah kendaraan dengan kapasitas angkut terbatas yang bersifat homogen dan sejumlah permintaan pelanggan yang telah diketahui kuantitasnya dilayani perusahaan sebelum pengiriman untuk menemukan rute-rute dengan biaya transportasi yang minimal. Untuk melayani permintaan sejumlah pelanggan dengan kuantitas yang tidak melampaui daya angkut kendaraan, maka digunakan CVRP di setiap kendaraan yang memiliki daya angkut kendaraan yang terbatas. Setiap kendaraan pengangkut dalam proses distribusi hanya dapat melakukan sekali pengiriman dari depot ke pelanggan lalu menuju depot kembali. Kapasitas kendaraan yang ada di perusahaan permintaan diharapkan dapat memenuhi semua pelanggan yang tersebar di wilayah pengiriman. CVRP

dibatasi oleh kapasitas kendaraan. Data yang diperlukan dalam CVRP antara lain :

- 1. Jumlah kopi yang dikirim,
- 2. Kapasitas dan jumlah kendaraan,
- 3. Jarak depot dengan tujuan dan jarak antar tujuan.

### Clark and Wright Saving Heuristic

Clark dan Wright menemukan metodenya sendiri pada tahun 1964 yang kemudian diterapkan sebagai suatu algoritma sebagai jalan keluar untuk permasalahan VRP dan ada perbaikan rute di setiap langkahnya yang bertujuan memperoleh rute-rute yang lebih optimal.

Metode ini telah diatur sesuai dengan karakteristik VRP, yaitu barang dari titik pusat harus dikirimkan kepada setiap pelanggan lalu kembali ke depot. Permasalahannya adalah dalam penentuan pengelompokkan pelanggan yang harus dioptimalkan seoptimal mungkin sehingga diperoleh solusi berupa biaya transportasi yang lebih optimal.

Langkah-langkah menentukan rute yang optimal dalam metode *Clark and Wright Saving Heuristic* antara lain:

- 1. Pengumpulan data berupa jumlah barang yang dikirim, kapasitas angkut dan jumlah kendaraan, dan jarak depot dengan tujuan dan jarak antar tujuan.
- 2. Menentukan node sebagai depot dan node-node tujuan
- 3. Membuat matriks jarak simetris antara depot dengan tujuan dan jarak antar tujuan. Berikut bentuk umum matriks jarak.

Gambar 1. Bentuk Umum Matriks Jarak

Dan berikut bentuk umum tabel matriks jarak seperti pada tabel 1.

Tabel 1. Matriks Jarak dalam Bentuk Tabel

| Dari/Ke | 1        | 2               | 3        |     | N        |
|---------|----------|-----------------|----------|-----|----------|
| 1       | $a_{11}$ | $a_{12}$        | $a_{13}$ | ••• | $a_{1n}$ |
| 2       | $a_{21}$ | $a_{22}$        | $a_{23}$ |     | $a_{2n}$ |
| 3       | $a_{31}$ | a <sub>32</sub> | $a_{33}$ | ••• | $a_{3n}$ |
| :       | :        | :               | :        | ••  | :        |

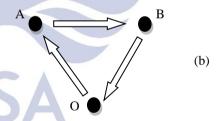
| N $a_{n1}$ | $a_{n2}$ | $a_{n3}$ | ••• | $a_{nn}$ |
|------------|----------|----------|-----|----------|
|------------|----------|----------|-----|----------|

#### Dimana

 $a_{11}$  = elemen pada matriks baris ke-1, kolom ke-1.

 $a_{1n}$  = elemen pada matriks baris ke-1, kolom ke-n

 $a_{ij}$  = elemen pada matriks baris ke-i, kolom ke-j.


 $a_{nn}$  = elemen pada matriks baris ke-n, kolom ke-n.

$$\operatorname{Jadi} \left\{ \begin{array}{l} a_{ij} \ = \ a_{ji} \, ; \, \operatorname{jika} i, j \, > \, 0 \\ a_{ij} \ = \, 0 \, ; \, \operatorname{jika} i = j \, > \, 0 \end{array} \right.$$

### 4. Membuat matriks penghematan

Dari dua kendaraan yang melayani sejumlah permintaan pelanggan dapat dihitung suatu nilai penghematan berupa jarak tempuh yang menggantikan dua kendaraan dan melayani node A dan node B. Berikut bentuk nilai penghematan yang disajikan dalam bentuk gambar.





Gambar 2. Nilai Penghematan dalam bentuk gambar

Gambar 2 bagian (a) diatas dapat dijelaskan bahwa pengiriman dilakukan dari titik O menuju dua tempat yaitu A dan B dengan rute O-A-O dan O-B-O. untuk mendapatkan rute yang lebih optimal maka rute tersebut digabung menjadi satu rute yaitu O-A-B-O. Dari penjelasan didapatkan nilai penghematan jarak yaitu,

Rute bagian (a): 
$$S_{AB}$$
 (a) =  $C_{OA} + C_{AO} + C_{OB} + C_{BO}$   
Rute bagian (b):  $S_{AB}$  (b) =  $C_{OA} + C_{AB} + C_{BO}$ 

Maka dari dua persamaan diatas dikurangkan dan didapatkan nilai penghematan yaitu,

$$S_{AB}$$
 (1) -  $S_{AB}$  (2) =  $(C_{OA} + C_{AO} + C_{OB} + C_{BO}) - (C_{OA} + C_{AB} + C_{BO})$ 

$$S_{AB} = C_{OA} + C_{OB} - C_{AB} \qquad (i$$

Dimana,

C<sub>OA</sub> = jarak dari O ke node A

C<sub>OB</sub> = jarak dari Oke node B

C<sub>AB</sub> = jarak dari node A ke node B

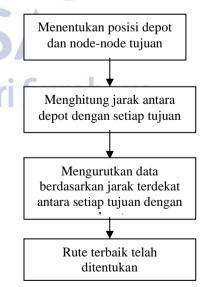
 $S_{AB}=\mbox{nilai}$  penghematan jarak dari node A ke node B

Dalam prosesnya matriks yang digunakan hanya salah satu dari matriks segitiga atas atau segitiga bawah karena sifat matriks yang simetris. dalam penelitian ini digunakan matriks segitiga bawah. Berikut bentuk matriks penghematan pada umumnya.

Tabel 2. Bentuk Umum Matriks Penghematan

| Dari/Ke | 1               | 2               | 3               |     | m               | n               |
|---------|-----------------|-----------------|-----------------|-----|-----------------|-----------------|
| 1       | /               | S <sub>12</sub> | S <sub>13</sub> | ••• | $S_{1m}$        | Sın             |
| 2       | $S_{21}$        |                 | $S_{23}$        |     | $S_{2m}$        | $S_{2n}$        |
| 3       | $S_{31}$        | $S_{32}$        |                 | 45. | $S_{3m}$        | S <sub>3n</sub> |
|         | :               | :               |                 |     |                 | : /             |
| m       | $S_{m1}$        | $S_{m2}$        | S <sub>m3</sub> |     |                 | $S_{mn}$        |
| n       | S <sub>n1</sub> | S <sub>n2</sub> | S <sub>n3</sub> |     | S <sub>nm</sub> |                 |

#### Dimana.


S<sub>mn</sub> = nilai penghematan jarak dari depot ke m dan n

- 5. Baris dan kolom pada entri nilai penghematan tertinggi dicoret sebagai penanda rute awal. Pasangan pelanggan diurutkan berdasarkan entri nilai penghematan terbesar hingga entri yang terkecil. Langkah ini merupakan salah satu iterasi dari matriks penghematan, di mana jika entri nilai penghematan terbesar terdapat pada baris a dan kolom b maka baris a dan kolom b tersebut dicoret, lalu node a dan node b digabungkan dalam rute yang sekelompok sampai iterasi yang terakhir sehingga semua node telah terpilih dan masuk ke dalam rute-rute yang optimal. Iterasi terakhir disebut yang terakhir apabila semua entri nilai penghematan dalam baris dan kolom sudah terpilih. Pembentukan rute pertama (t = 1) dan hitung kuantitas jumlah permintaan dari pelanggan yang telah terpilih.
- 6. Apabila kapasitas angkut kendaraan masih belum terpenuhi maka lanjut ke langkah 7. Apabila kapasitas angkut kendaraan tidak mampu menampung jumlah permintaan pelanggan maka lanjut ke langkah 8.
- 7. Pilih pelanggan selanjutnya yang akan digabungkan ke dalam sekelompok rute sebelumnya berdasarkan kombinasi pelanggan terakhir yang terpilih dengan entri nilai pengehematan terbesar dan kembali ke langkah

- 5 mulai dari menghitung banyaknya jumlah permintaan pelanggan.
- 8. lanjut ke langkah 9 dengan menghapus pelanggan terakhir yang terpilih berdasarkan matriks penghematan.
- 9. Masukkan pelanggan yang terpilih pada langkah 8 sebelumnya untuk ditugaskan kedalam rute berikutnya atau rute baru. Apabila ada pelanggan yang masih belum terpilih maka lanjut ke langkah 10. Apabila semua pelanggan telah terpilih dan ditugaskan maka proses pengiriman barang menggunakan algoritma *Clark and Wright* telah selesai dilakukan.
- 10. Setelah pembentukan rute baru (t = t+1), lanjut ke langkah 5, mulai dari langkah pembentukan rute (t = 1) menjadi t = t + 1 (Clark dan Wright, 1964).

### Nearest Neighbour

Algoritma Nearest Neighbour merupakan salah satu metode heuristik yang efektif digunakan dalam pemecahan permasalahan rute kendaraan. Metode pemecahan permasalahan rute kendaraan ini dilakukan dengan memulai dari titik awal yang disebut depot dan kemudian memilih titik tujuan terdekat dari depot untuk menjadikan tujuan pengiriman berikutnya. Metode ini mampu menghasilkan kualitas yang cukup baik dan berjalan cepat dalam proses distribusi pengiriman barang. (Johnson, Bentley, McGeoch, dan Ronthberg, 1997). Algoritma ini digunakan ketika metode Clark and Wright Saving Heuristic telah membentuk rute yang optimal, karena dalam penelitian ini metode Nearest Neighbour digunakan sebagai penyempurna hasil rute yang terbentuk oleh metode tersebut.



Gambar 3. Flowchart Algoritma Nearest Neighbour

### HASIL DAN PEMBAHASAN

#### Asumsi

Karena banyak batasan pada penelitian ini, maka diasumsikan beberapa hal sebagai berikut:

- 1. Setiap kendaraan dalam keadaan aman dan baik.
- 2. Ruas jalan selalu dapat terlewati
- 3. Kemacetan diabaikan
- 4. Jarak tempuh antara node j ke i sama dengan jarak antara node i ke j
- 5. Jumlah permintaan pelanggan per bulan tetap.
- 6. biaya bahan bakar solar Rp 9.800,-/liter

### Pengumpulan Data

Hasil dari kegiatan pengumpulan data yang telah dilakukan di perusahaan. diperoleh data-data pada bulan Februari 2019. Data-data tersebut antara lain; data permintaan kopi, data kapasitas angkut dan jumlah kendaraan, dan data jarak depot dengan tujuan dan jarak antar tujuan. Pusat dari pengiriman kopi berada terletak di PT Jujur Perkasa Transport daerah Prasung, Buduran, Sidoarjo.

### Kapasitas Angkut Kendaraan

PT Jujur Perkasa Transport memiliki 4 jenis kendaraan yait truk jenis colt diesel, fuso/engkel, tronton, dan *wingbox*. Kapasitas angkut masing-masing kendaraan disajikan pada tabel 1 berikut.

Tabel 1. Kapasitas Angkut Kendaraan Perusahaan

| No | Jenis Truk  | Dia     | mensi (cn | 1)     | Volume  | Tonase | Banyak |
|----|-------------|---------|-----------|--------|---------|--------|--------|
| NO | Jenis Truk  | Panjang | Lebar     | Tinggi | $(m^3)$ | (kg)   | Unit   |
| 1  | Colt Diesel | 400     | 180       | 175    | 12      | 4500   | 15     |
| 2  | Fuso/Engkel | 580     | 220       | 200    | 23      | 7200   | 10     |
| 3  | Tronton     | 780     | 220       | 200    | 40      | 15000  | 10     |
| 4  | Wingbox     | 950     | 240       | 240    | 62      | 18000  | 10     |

# Minggu Pertama

Data permintaan kopi yang diperoleh dari perusahaan adalah data permintaan pada bulan Februari 2019. Data permintaan kopi yang didapat dalam satuan m³ (meter kubik). Data permintaan kopi untuk minggu pertama disajikan dalam Tabel 2. berikut :

Tabel 2. Data Permintaan Kopi Minggu Pertama

| No. | Tujuan            | Jumlah          |
|-----|-------------------|-----------------|
|     |                   | Permintaan (m³) |
| 1   | Kenjeran (Kjr)    | 20              |
| 2   | Turen (Trn)       | 25              |
| 3   | Wonosari (Wnsr)   | 27              |
| 4   | Kudus (Kds)       | 29              |
| 5   | Banyuwangi (Byw)  | 25              |
| 6   | Krian (Krn)       | 16              |
| 7   | Madiun (Mdn)      | 25              |
| 8   | Kediri (Kdr)      | 18              |
| 9   | Tulungagung (Tlg) | 22              |
| 10  | Rembang (Rmbg)    | 26              |
| 11  | Nganjuk (Ngjk)    | 19              |
| 12  | Lamongan (Lmg)    | 22              |

| Dari<br>/ Ke | Dep<br>ot | Kjr       | Trn       | Wns<br>r  | Kds       | Byw       | Krn       | Mdn       | Kdr       | Tlg       | Rmb<br>g  | Ngj<br>k  |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Dep<br>ot    | 0         |           |           |           |           |           |           |           |           |           |           |           |
| Kjr          | 28,1      | 0         |           |           |           |           |           |           |           |           |           |           |
| Trn          | 109,<br>5 | 133,<br>7 | 0         |           |           |           |           |           |           |           |           |           |
| Wns<br>r     | 332,<br>2 | 340,<br>6 | 305,<br>5 | 0         |           |           |           |           |           |           |           |           |
| Kds          | 327       | 259,<br>1 | 369,<br>5 | 192,<br>2 | 0         |           |           |           |           |           |           |           |
| Byw          | 290       | 317,<br>9 | 260,<br>7 | 600,<br>2 | 608,<br>1 | 0         |           |           |           |           |           |           |
| Krn          | 24,1      | 35,3      | 112,<br>5 | 308,<br>1 | 302,<br>9 | 298,<br>6 | 0         |           |           |           |           |           |
| Mdn          | 166,<br>2 | 174,<br>6 | 202,<br>6 | 173,<br>7 | 170,<br>9 | 446,<br>7 | 142,<br>5 | 0         |           |           |           |           |
| Kdr          | 112,<br>3 | 120,<br>8 | 108,<br>3 | 267,<br>3 | 278,<br>7 | 383       | 80        | 114,<br>6 | 0         |           |           |           |
| Tlg          | 157,<br>3 | 165,<br>8 | 98,9      | 214,<br>4 | 281,<br>7 | 394       | 132,<br>9 | 100,<br>1 | 53,1      | 0         |           |           |
| Rmb          | 219,      | 201,      | 312,<br>1 | 212,<br>4 | 59,4      | 500,<br>1 | 201,<br>4 | 149,<br>6 | 228       | 254,<br>5 | 0         |           |
| Ngj<br>k     | 120,<br>2 | 126,<br>2 | 145,<br>5 | 213,<br>1 | 211,<br>4 | 359       | 92,4      | 51,1      | 52,5      | 67,2      | 158,<br>7 | 0         |
| Lmg          | 67,7      | 50        | 160,<br>6 | 313,<br>3 | 211,<br>4 | 348,<br>7 | 50        | 160,<br>5 | 118,<br>7 | 151,<br>2 | 151,<br>8 | 107,<br>8 |

Setelah matriks jarak didapatkan, dibuat mariks penghematan berdasarkan persamaan (i). berikut salah satu contoh perhitungan nilai matriks penghematan berdasarkan matriks jarak minggu pertama.

$$\begin{split} S_{Kjr,Trn} &= C_{Depot,Kjr} + C_{Depot,Trn} - C_{Kjr,Trn} \\ &= 28,1 + 109,5 - 133,7 \end{split}$$

$$= 3.9$$

Dengan cara yang sama diperoleh nilai-nilai matriks penghematan untuk setian tujuan pada Tabel 4.

Tabel 4. Matriks Penghematan Minggu Pertama

| Dari/<br>Ke | Kjr  | Trn       | Wns<br>r  | Kds       | Byw  | Krn  | Mdn       | Kdr       | Tlg  | Rmb<br>g  | Ngj<br>k | L<br>m<br>g |
|-------------|------|-----------|-----------|-----------|------|------|-----------|-----------|------|-----------|----------|-------------|
| Kjr         |      |           |           |           |      |      |           |           |      |           |          |             |
| Trn         | 3,9  |           |           |           |      |      |           |           |      |           |          |             |
| Wns<br>r    | 19,7 | 136,<br>2 |           |           |      |      |           |           |      |           |          |             |
| Kds         | 96   | 67        | 467       |           |      |      |           |           |      |           |          |             |
| Byw         | 0,2  | 138,<br>8 | 22        | 8,9       |      |      |           |           |      |           |          |             |
| Krn         | 16,9 | 21,1      | 48,2      | 48,2      | 15,5 | a    |           |           |      |           |          |             |
| Mdn         | 19,7 | 73,1      | 324,<br>7 | 322,<br>3 | 9,5  | 47,8 |           |           |      |           |          |             |
| Kdr         | 19,6 | 113,<br>5 | 177,<br>2 | 160,<br>6 | 19,3 | 56,4 | 163,<br>9 |           |      |           |          |             |
| Tlg         | 19,6 | 167,<br>9 | 275,<br>1 | 192,<br>6 | 53,3 | 48,5 | 223,<br>4 | 216,<br>5 |      |           |          |             |
| Rmb<br>g    | 45,9 | 16,6      | 339       | 486,<br>8 | 9,1  | 41,9 | 235,<br>8 | 103,<br>5 | 122  |           |          |             |
| Ngjk        | 22,1 | 84,2      | 239,      | 235,<br>8 | 51,2 | 51,9 | 235,      | 180       | 210, | 180,<br>7 |          |             |
| Lmg         | 45,8 | 16,6      | 86,6      | 183,      | 9    | 41,8 | 73,4      | 61,3      | 73,8 | 135,<br>1 | 80,1     |             |

Tabel 3. Matriks Jarak Antar Tujuan Minggu Pertama

Setelah terbentuk matriks penghematan, langkah berikutnya membuat dan menentukan kelompok rute yang baru berdasarkan dari entri nilai penghematan yang terbesar sampai yang terkecil dari matriks penghematan. Jika entri nilai penghematan terbesar terletak pada node i dan j maka baris i dan kolom j dicoret, kemudian node i dan j dikelompokkan ke dalam satu rute yang sama, demikan seterusnya sampai iterasi yang terakhir atau semua baris dan kolom telah terpilih. Berikut langkahlangkah proses algoritmanya untuk matriks penghematan minggu pertam.

Langkah 1: Memilih pasangan node dengan entri nilai penghematan terbesar dalam matriks penghematan yaitu 486,8 antara node 4 dan node 10. Kemudian gabung node 4 dan node 10 menjadi satu rute serta coret semua baris node 10 dan kolom node 4. Maka rute yang terbentuk adalah: Rute 1 = 4 – 10. Dalam rute ini, jumlah kopi yang dikirim sebanyak 29 + 26 = 55 m³ dan masih belum melampaui batas maksimal kapasitas kendaraan *Wing Box* yaitu 62 m³.

Langkah 2 : Memilih nilai penghematan terbesar berikutnya yaitu 467 antara node 3 dan node 4. Gabungkan node 3 dalam rute 2. Node 4 tidak digabungkan ke dalam rute 2 karena telah terpilih di rute 1. Node 3 dimasukkan ke dalam rute 2 karena jika digabungkan ke dalam rute 1 maka kapasitas angkut kendaraan *Wing Box* tidak mencukupi. Coret semua baris node 4 dan kolom node 3. Rute yang terbentuk adalah: Rute 2 = 3. Dalam rute ini, jumlah kopi yang dikirim sebanyak 27 m³ dan masih belum melampaui batas maksimal kapasitas kendaraan *Wing Box* yaitu 62 m³.

Langkah 3 : Memilih nilai penghematan terbesar berikutnya dan melakukan langkah seperti iterasi 1 dan 2. Apabila kapasitas angkut kendaraan terlampaui maka dibuat rute baru berikutnya

Berdasarkan langkah 1-3, diperoleh 5 rute distribusi kopi dan biaya transportasi yang dikeluarkan untuk minggu pertama. Berikut disajikan tabel 5 mengenai rute dan biaya pada minggu pertama.

Tabel 5. Rute dan Biaya pada Minggu Pertama

|                                                                         | Rute 1                                   | Rute 2                                     | Rute 3                                          | Rute 4                                          | Rute 5                                                  |
|-------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| Mengguna<br>kan<br>metode<br>Clark and<br>Wright<br>Saving<br>Heuristic | Depot –<br>Rembang –<br>Kudus –<br>Depot | Depot –<br>Madiun –<br>Wonosari –<br>Depot | Depot – Kediri – Nganjuk – Tulungag ung – Depot | Depot –<br>Turen –<br>Banyuwa<br>ngi –<br>Depot | Depot –<br>Krian –<br>Kenjeran –<br>Lamongan<br>– Depot |
| Jarak<br>tempuh                                                         | 605,6 km                                 | 672,1 km                                   | 389,3 km                                        | 660,2 km                                        | 177,1 km                                                |
| Biaya<br>bensin                                                         | Rp<br>593.488,-                          | Rp<br>658.658,-                            | Rp<br>381.154,-                                 | Rp<br>646.996,-                                 | Rp<br>173.558,-                                         |
| Biaya<br>sopir                                                          | Rp<br>400.000,-                          | Rp<br>400.000,-                            | Rp<br>250.000,-                                 | Rp<br>400.000,-                                 | Rp<br>250.000,-                                         |

# Minggu Kedua

Berikut disajikan tabel 6. data permintaan kopi untuk minggu kedua.

Tabel 6. Data Permintaan Kopi Minggu Kedua

| No. | Tujuan             | Jumlah<br>Permintaan (m³) |
|-----|--------------------|---------------------------|
| 1   | Probolinggo (Prbg) | 18                        |
| 2   | Lumajang (Lmj)     | 20                        |
| 3   | Bojonegoro (Bjn)   | 22                        |
| 4 / | Ngawi (Ngw)        | 21                        |
| 5   | Bangkalan (Bkl)    | 16                        |
| 6   | Pasuruan (Psr)     | 25                        |
| 7   | Tuban (Tbn)        | 20                        |
| 8   | Ponorogo (Pnrg)    | 18                        |
| 9   | Pacitan (Pctn)     | 22                        |
|     |                    |                           |

Tabel 7. Matriks Jarak Antar Tujuan Minggu Kedua

| Dari | De  | Prb | Lm  | Bjn | Ngw  | Bkl  | Psr  | Tb  | Pnr | Pct |
|------|-----|-----|-----|-----|------|------|------|-----|-----|-----|
| /ke  | pot | g   | j   |     |      |      |      | n   | g   | n   |
| Dep  | 0   |     |     |     |      |      |      |     |     |     |
| ot   |     |     |     |     |      |      |      |     |     |     |
| Prbg | 92, | 0   |     |     |      |      |      |     |     |     |
|      | 2   | į.  |     |     |      |      |      |     |     |     |
| Lmj  | 13  | 44, | 0   |     |      |      |      |     |     |     |
|      | 2,9 | 6   |     |     |      |      |      |     |     |     |
| Bjn  | 13  | 21  | 25  | 0   |      |      |      |     |     |     |
| Ari  | 1,1 | 0,7 | 1,6 | av. | 7    |      |      |     |     |     |
| Ngw  | 18  | 26  | 30  | 75, | 0    |      |      |     |     |     |
| _    | 2,7 | 2,6 | 3,5 | 2   |      |      |      |     |     |     |
| Bkl  | 55  | 14  | 18  | 14  | 213, | 0    |      |     |     |     |
|      |     | 2,9 | 3,9 | 0,2 | 2    |      |      |     |     |     |
| Psr  | 64, | 41, | 86, | 17  | 225, | 104, | 0    |     |     |     |
|      | 6   | 4   | 9   | 4   | 2    | 2    |      |     |     |     |
| Tbn  | 12  | 20  | 24  | 42, | 112, | 131, | 165, | 0   |     |     |
|      | 2,7 | 2,2 | 3,2 | 1   | 6    | 1    | 3    |     |     |     |
| Pnrg | 19  | 27  | 26  | 13  | 58,9 | 224, | 237, | 16  | 0   |     |
|      | 4,4 | 4,2 | 3,3 | 1,4 |      | 7    | 2    | 8,7 |     |     |
| Pctn | 12  | 35  | 39  | 21  | 138  | 303, | 316, | 24  | 78, | 0   |
|      | 2,7 | 3,1 | 4   | 0,5 |      | 6    | 1    | 7,8 | 9   |     |

Tabel 8. Matriks Penghematan Minggu Kedua

| Dari/ke | Prbg  | Lmj   | Bjn   | Ngw   | Bkl  | Psr  | Tbn   | Pnrg  | Pctn |
|---------|-------|-------|-------|-------|------|------|-------|-------|------|
| Prbg    |       |       |       |       |      |      |       |       |      |
| Lmj     | 180,5 |       |       |       |      |      |       |       |      |
| Bjn     | 12,6  | 12,4  |       |       |      |      |       |       |      |
| Ngw     | 12,3  | 12,1  | 238,6 |       |      |      |       |       |      |
| Bkl     | 4,3   | 4     | 45,9  | 24,5  |      |      |       |       |      |
| Psr     | 115,4 | 110,6 | 21,7  | 22,1  | 15,4 |      |       |       |      |
| Tbn     | 12,7  | 12,4  | 211,7 | 192,8 | 46,6 | 22   |       |       |      |
| Pnrg    | 12,4  | 64    | 194,1 | 318,2 | 24,7 | 21,8 | 148,4 |       |      |
| Pctn    | 12,4  | 12,2  | 193,9 | 318   | 24,7 | 21,8 | 148,2 | 388,8 |      |

Berikut langkah-langkah pembentukan kelompok rute:

Langkah 1: Memilih entri nilai penghematan terbesar selanjutnya yaitu dengan jumlah 388,8 yang terletak pada pasangan node 9 dan node 8. Kemudian gabung node 9 dan node 8 menjadi dalam rute yang sama serta coret semua baris node 9 dan kolom node 8. Maka terbentuk rute:: Rute 1 = 8 - 9. Dalam rute ini, jumlah kopi yang dikirim sebanyak 22 + 18 = 40 m<sup>3</sup> dan masih belum melampaui batas maksimal kapasitas kendaraan Wing Box vaitu 62 m<sup>3</sup>.

nilai Langkah 2: Memilih entri penghematan terbesar berikutnya yaitu 318,2 antara node 4 dan node 8. Karena node 8 sudah tergabung dalam rute 1, maka hanya node 4 yang perlu digabungkan ke dalam rute 1 dan jika node digabungkan ke dalam rute 1 maka kapasitas angkut kendaraan Wing Box masih mampu untuk memuatnya. Coret semua baris node 8 dan kolom node 4. Rute yang terbentuk adalah: Rute 1 = 8 -9 – 4. Dalam rute ini, jumlah kopi yang dikirim sebanyak  $22 + 18 + 21 = 61 \text{ m}^3$ dan masih belum melampaui batas maksimal kapasitas kendaraan Wing Box vaitu 62 m<sup>3</sup>.

Langkah 3: Memilih entri nilai penghematan terbesar berikutnya dan melakukan langkah seperti iterasi 1 dan 2. Apabila kapasitas angkut kendaraan terlampaui maka dibuat rute baru berikutnya.

Berdasarkan langkah 1-3, diperoleh 3 rute distribusi kopi dan biaya transportasi yang dikeluarkan untuk minggu kedua. Berikut disajikan tabel 9 mengenai rute dan biaya pada minggu kedua.

Tabel 9. Rute dan Biaya Minggu Kedua

|                                   | Rute 1                | Rute 2        | Rute 3       |
|-----------------------------------|-----------------------|---------------|--------------|
| Menggunakan                       | Depot -               | Depot -       | Depot -      |
| metode Clark and<br>Wright Saving | Ngawi –<br>Ponorogo – | Probolinggo – | Bangkalan –  |
| Heuristic                         | Pacitan –             | Lumajang –    | Pasuruan -   |
|                                   | Depot                 | Bojonegoro –  | Tuban –      |
|                                   |                       | Depot         | Depot        |
| Jaraktempuh                       | 320,5 km              | 388,4 km      | 324,5 km     |
| Biaya bensin                      | Rp 314.090,-          | Rp 380.632,-  | Rp 318.010,- |
| Biaya sopir                       | Rp 250.000,-          | Rp 250.000,-  | Rp 250.000,- |

# Minggu Ketiga

. Berikut disajikan tabel 10. data permintaan kopi untuk minggu ketiga.

Tabel 10. Data Permintaan Kopi Minggu Ketiga

| No. | Tujuan            | Jumlah                       |
|-----|-------------------|------------------------------|
|     |                   | Permintaan (m <sup>3</sup> ) |
| 1   | Kenjeran (Kjr)    | 20                           |
| 2   | Lamongan (Lmg)    | 17                           |
| 3   | Turen (Trn)       | 18                           |
| 4   | Kediri (Kdr)      | 16                           |
| 5   | Bangkalan (Bkl)   | 22                           |
| 6   | Nganjuk (Ngjk)    | 22                           |
| 7   | Blora (Blr)       | 25                           |
| 8   | Trenggalek (Trgl) | 21                           |
| 9   | Situbondo (Stb)   | 27                           |
| 9   | Jember (Jbr)      | 26                           |

Tabel 11. Matriks Jarak Antar Tujuan Minggu Ketiga

|                | Dari<br>/ke | Dpt  | Kjr  | Lm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trn   | Kdr      | Bkl  | Ngj<br>k | Blr  | Trgl | Stb  | Jm<br>br |
|----------------|-------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------|----------|------|------|------|----------|
|                | Dpt         | 0    |      | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |          |      | K        |      |      |      | UI       |
|                | Kjr         | 28,1 | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |      |          |      |      |      |          |
|                | Lmg         | 67,7 | 50   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |          |      |          |      |      |      |          |
|                | Trn         | 109, | 133, | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | 7        |      |          |      |      |      |          |
|                | 4           | 5    | 7    | .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·   |          |      |          |      |      |      |          |
| Daniel Control | Kdr         | 112, | 120, | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108,3 | 0        |      |          |      |      |      |          |
|                |             | 3    | 8    | ,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |          |      |          |      |      |      |          |
|                | Bkl         | 55   | 27   | 75,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157   | 148,     | 0    |          |      |      |      |          |
|                |             |      |      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 8        |      |          |      |      |      |          |
|                | Ngj         | 120, | 126, | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145,5 | 52,5     | 152, | 0        |      |      |      |          |
|                | k           | 2    | 2    | ,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |          | 3    |          |      |      |      |          |
|                | Blr         | 199, | 182, | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 292,7 | 194,     | 207, | 133,     | 0    |      |      |          |
|                |             | 1    | 4    | The state of the s |       | 1        | 4    | 9        |      |      |      |          |
| - 9            | Trgl        | 175, | 185, | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130,9 | 82,2     | 206, | 86,6     | 187, | 0    |      |          |
| _              | 1           | 9    | 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          | 2    |          | 1    |      |      |          |
|                | Stb         | 198, | 222, | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196,1 | 265,     | 247, | 303,     | 385, | 351, | 0    |          |
|                | 7           | 3    | 3    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1710  | 9        | 7    | 2        | 7    | 7    | ***  |          |
|                | Jmb         | 184, | 209, | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154,2 | 252      | 233, | 289,     | 371, | 337, | 69,9 | 0        |
|                | r           | 4    | 7    | ,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l     | <u> </u> | 8    | 3        | 8    | 8    |      |          |

Berikut disajikan pada tabel 12 nilai matriks penghematan untuk rute minggu ketiga.

Tabel 12. Matriks Penghematan Minggu Ketiga

|      |     | -   | _   |     |     |     |     | _   |     | _  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Dari | Kjr | Lm  | Trn | Kd  | Bkl | Ng  | Blr | Trg | Stb | Jm |
| /ke  |     | g   |     | r   |     | jk  |     | 1   |     | br |
| Kjr  | 0   |     |     |     |     |     |     |     |     |    |
| Lmg  | 45, | 0   |     |     |     |     |     |     |     |    |
|      | 8   |     |     |     |     |     |     |     |     |    |
| Trn  | 3,9 | 16, | 0   |     |     |     |     |     |     |    |
|      |     | 5   |     |     |     |     |     |     |     |    |
| Kdr  | 19, | 61, | 11  | 0   |     |     |     |     |     |    |
|      | 6   | 3   | 3,5 |     |     |     |     |     |     |    |
| Bkl  | 56, | 47  | 7,5 | 18, | 0   |     |     |     |     |    |
|      | 1   |     |     | 5   |     |     |     |     |     |    |
| Ngj  | 22, | 80, | 84, | 18  | 22, | 0   |     |     |     |    |
| k    | 1   | 1   | 2   | 0   | 9   |     |     |     |     |    |
| Blr  | 44, | 13  | 15, | 11  | 46, | 18  | 0   |     |     |    |
|      | 8   | 2,8 | 9   | 7,3 | 7   | 5,4 |     |     |     |    |
| Trgl | 18, | 72, | 15  | 20  | 24, | 20  | 18  | 0   |     |    |
| _    | 5   | 6   | 4,5 | 6   | 7   | 9,5 | 7,9 |     |     |    |
| Stb  | 4,1 | 13  | 11  | 44, | 5,6 | 15, | 11, | 22, | 0   |    |
|      |     |     | 1,7 | 7   |     | 3   | 7   | 5   |     |    |
| Jmb  | 2,8 | 13  | 13  | 44, | 5,6 | 15, | 11, | 22, | 31  | 0  |
| r    |     |     | 9,7 | 7   |     | 3   | 7   | 5   | 2,8 |    |

Berikut langkah-langkah pembentukan kelompok rute:

Langkah 1 : Memilih entri nilai penghematan terbesar selanjutnya yaitu dengan

terbesar selanjutnya yaitu dengan jumlah 312,8 yang terletak pada pasangan node 9 dan node 10. Kemudian gabung node 9 dan node 10 ke dalam rute yang sama serta coret semua baris node 10 dan kolom node 9. Maka rute yang terbentuk adalah : Rute 1 = 9 - 10. Dalam rute ini, jumlah kopi yang dikirim sebanyak  $27 + 26 = 53 \text{ m}^3$ 

dan masih belum melampaui batas maksimal kapasitas kendaraan *Wing* 

Box yaitu 62 m<sup>3</sup>.

Langkah 2

: Memilih entri nilai penghematan terbesar berikutnya yaitu 209,5 antara node 8 dan node 6. Gabungkan node 8 dan node 6 ke dalam rute yang sama dalam rute 2, karena jika digabungkan ke dalam rute 1 maka kapasitas angkut kendaraan Wing Box tidak akan mencukupi. Coret semua baris node 8 dan kolom node 6. Jadi, Rute 2 = 86.. Dalam rute ini, jumlah kopi yang dikirim sebanyak  $21 + 22 = 52 \text{ m}^3 \text{ dan}$ masih belum melampaui maksimal kapasitas kendaraan Wing Box yaitu 62 m<sup>3</sup>

Langkah 3 : . Memilih nilai penghematan terbesar berikutnya dan melakukan langkah seperti iterasi 1 dan 2. Apabila kapasitas angkut kendaraan terlampaui maka dibuat rute baru berikutnya.

Berdasarkan langkah 1-3, diperoleh 4 rute distribusi kopi dan biaya transportasi yang dikeluarkan untuk minggu ketiga. Berikut disajikan tabel 13 mengenai rute dan biaya pada minggu ketiga.

Tabel 13. Rute dan Biaya pada Minggu Ketiga

|                            | Rute 1    | Rute 2    | Rute 3    | Rute 4    |
|----------------------------|-----------|-----------|-----------|-----------|
| Menggunakan                | Depot -   | Depot -   | Depot -   | Depot -   |
| metode Clark<br>and Wright | Jember –  | Kediri –  | Lamonga   | Kenjeran  |
| SavingHeuristi             | Situbond  | Nganjuk – | n – Blora | -         |
| c                          | o – Depot | Trenggale | - Turen - | Bangkala  |
|                            |           | k – Depot | Depot     | n-Depot   |
| Jarak tempuh               | 452,6 km  | 427,3 km  | 603,9 km  | 110,1 km  |
| Biaya bensin               | Rp        | Rp        | Rp        | Rp        |
|                            | 443.548,- | 418.754,- | 591.822,- | 107.898,- |
| Biaya sopir                | Rp        | Rp        | Rp        | Rp        |
|                            | 400.000,- | 400.000,- | 400.000,- | 250.000,- |

# Minggu Keempat

Berikut disajikan tabel 14. data permintaan kopi untuk minggu keempat.

Tabel 14. Data Permintaan Kopi Minggu Keempat

| No. | Tujuan             | Jumlah<br>Permintaan (m³) |
|-----|--------------------|---------------------------|
| 1   | Pasuruan (Psr)     | 20                        |
| 2   | Ngawi (Ngw)        | 26                        |
| 3   | Kudus (Kds)        | 29                        |
| 4   | Tulungagung (Tlg)  | 25                        |
| 5   | Ponorogp (Pnrg)    | 25                        |
| 6   | Mojokerto (Mjk)    | 24                        |
| 7 / | Probolinggo (Prbg) | 22                        |
| 8   | Klaten (Klt)       | 26                        |
| 9   | Lumajang (Lmj)     | 27                        |
| 9   | Wonosari (Wnsr)    | 28                        |

Tabel 15. Matriks Jarak Antar Tujuan Minggu Keempat

Berikut disajikan pada tabel 16 nilai matriks penghematan untuk rute minggu keempat.

|   | Dari/k | Dpt   | Psr  | Ngw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kds  | Tlg  | Pnrg | Mjk  | Prbg | Klt  | Lmj  | Wns |
|---|--------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|-----|
|   | e      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | -    | _    | -    | _    |      | -    | r   |
|   | Dpt    | 0     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |      |      |     |
|   | Psr    | 64,6  | 0    | The state of the s |      |      |      |      |      |      |      |     |
|   | Ngw    | 182,7 | 225, | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |      |      |      |      |      |     |
|   |        |       | 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |      |      |     |
|   | Kds    | 327   | 321, | 143,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    |      |      |      |      |      |      |     |
|   |        |       | 3    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |      |      |      |      |      |     |
|   | Tlg    | 157,3 | 177  | 144,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 291, | 0    |      |      |      |      |      |     |
|   |        |       |      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7    |      |      |      |      |      |      |     |
|   | Pnrg   | 194,4 | 237, | 58,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210, | 77,5 | 0    |      |      |      |      |     |
|   | -      |       | 2    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8    |      |      |      |      |      |      |     |
| P | Mjk    | 41,7  | 66,6 | 138,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 251, | 111, | 150, | 0    |      |      |      |     |
| L | ICI    |       | U    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    | 7    | 6    |      |      |      |      |     |
|   | Prbg   | 92,2  | 41,2 | 262,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 356, | 213, | 274, | 103, | 0    |      |      |     |
|   |        |       |      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7    | 6    | 2    | 3    |      |      |      |     |
|   | Klt    | 297,5 | 340, | 122,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140, | 183, | 106, | 253, | 377, | 0    |      |     |
|   |        |       | 3    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    | 5    | 7    | 7    | 3    |      |      |     |
|   | Lmj    | 132,9 | 85,6 | 303,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 397, | 187, | 272, | 145, | 44,6 | 418, | 0    |     |
|   |        |       |      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    | 8    | 5    | 1    |      | 6    |      |     |
|   | Wnsr   | 332,2 | 360, | 142,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 186, | 205, | 127, | 271, | 397, | 37,7 | 438, | 0   |
|   |        |       | 3    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5    | 1    | 2    | 6    | 3    |      | 2    |     |
| • |        |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |      |      |     |

Tabel 16. Matriks Penghematan Minggu Keempat

| Dari  | Psr | Ng  | Kd  | Tla | Pnr | Mj  | Prb | Klt | Lm  | Wn |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| /Ke   | PSI | W   | S   | Tlg | g   | k   | g   | ΚI  | j   | sr |
| Psr   |     |     |     |     |     |     |     |     |     |    |
| Ng    | 21, |     |     |     |     |     |     |     |     |    |
| w     | 7   |     |     |     |     |     |     |     |     |    |
| Kds   | 70, | 36  |     |     |     |     |     |     |     |    |
| IXUS  | 3   | 5,9 |     |     |     |     |     |     |     |    |
| Tlg   | 44, | 19  | 19  |     |     |     |     |     |     |    |
| 11g   | 9   | 5,4 | 2,6 |     |     |     |     |     |     |    |
| Pnrg  | 21, | 31  | 31  | 27  |     |     |     |     |     |    |
| Ting  | 8   | 8,2 | 0,6 | 4,2 |     |     |     |     |     |    |
| Mjk   | 39, | 85, | 11  | 87, | 85, |     |     |     |     |    |
| MIJK  | 7   | 6   | 7,3 | 3   | 5   |     |     |     |     |    |
| Prbg  | 11  | 12, | 62, | 35, | 12, | 30, |     |     |     |    |
| Tiog  | 5,6 | 3   | 5   | 9   | 4   | 6   |     |     |     |    |
| Klt   | 21, | 35  | 48  | 27  | 38  | 85, | 12, |     |     |    |
| Kit   | 8   | 7,7 | 4,1 | 1,3 | 5,2 | 5   | 4   |     |     |    |
| Lmj   | 11  | 12, | 62, | 10  | 54, | 29, | 18  | 11, |     | 7  |
| Lillj | 1,9 | 3   | 5   | 2,4 | 8   | 5   | 0,5 | 8   |     |    |
| Wns   | 36, | 37  | 47  | 28  | 39  | 10  | 27, | 59  | 26, |    |
| r     | 5   | 2,4 | 2,7 | 4,4 | 9,4 | 2,3 | 1   | 2   | 9   |    |

Berikut langkah-langkah pembentukan kelompok rute:

Lamgkah 1: Memilih entri nilai penghematan terbesar selanjutnya yaitu dengan jumlah 592 yang terletak pada pasangan node 8 dan node 10. Kemudian gabung node 8 dan node 10 ke dalam rute yang sama serta coret semua baris node 10 dan kolom node 8. Maka rute yang terbentuk adalah: Rute 1 = 8 - 10. Dalam rute ini, jumlah kopi yang dikirim sebanyak 26 + 28 = 54 m³ dan masih belum melampaui batas maksimal kapasitas kendaraan *Wing Box* 

vaitu 62 m<sup>3</sup>.

Langkah 2: Memilih entri nilai penghematan terbesar berikutnya yaitu 484,1 antara node 3 dan node 8. Jika node 8 sudah tergabung dalam rute 1, maka hanya node 3 yang perlu digabungkan ke dalam rute 2 dan jika node 4 digabungkan ke dalam rute 1 maka kapasitas angkut kendaraan *Wing Box* tidak mampu untuk memuatnya. Coret semua baris node 8 dan kolom node 3. Rute yang terbentuk adalah: Rute 2 = 3. Dalam rute ini, jumlah kopi yang dikirim sebanyak 20 m³ dan masih belum melampaui batas maksimal kapasitas kendaraan *Wing Box* yaitu 62 m³.

Langkah 3 : Memilih nilai penghematan terbesar berikutnya dan melakukan langkah seperti iterasi 1 dan 2. Apabila kapasitas angkut kendaraan terlampaui maka dibuat rute baru berikutnya.

Berdasarkan langkah 1-3, diperoleh 4 rute distribusi kopi dan biaya transportasi yang dikeluarkan untuk minggu keempat. Berikut disajikan tabel 17 mengenai rute dan biaya pada minggu keempat.

Tabel 17. Rute dan Biaya pada Minggu Keempat

|               | Rute 1                  | Rute 2   | Rute 3   | Rute 4   | Rute 5                  |
|---------------|-------------------------|----------|----------|----------|-------------------------|
| Menggu        | Depot -                 | Depot -  | Depot -  | Depot -  | Depot -                 |
| nakan         | Klaten –                | Ngawi –  | Tulunga  | Probolin | Mojokerto               |
| metode        | Wonosari                | Kudus –  | gung –   | ggo –    | _                       |
| Clark         | <ul><li>Depot</li></ul> | Depot    | Ponorog  | Lumajan  | Pasuruan                |
| and<br>Wright | _                       | _        | 0 -      | g –      | <ul><li>Depot</li></ul> |
| SavingH       |                         |          | Depot    | Depot    | _                       |
| euristic      |                         |          | *        | •        |                         |
| Jarak         | 667,4 km                | 653,5    | 429,2    | 269,7    | 172,9 km                |
| tempuh        |                         | km       | km       | km       |                         |
| Biaya         | Rp                      | Rp       | Rp       | Rp       | Rp                      |
| bensin        | 654.052,-               | 640.430, | 420.616, | 264.306, | 169.442,-               |
|               |                         | -        | -        | -        |                         |
| Biaya         | Rp                      | Rp       | Rp       | Rp       | Rp                      |
| sopir         | 400.000,-               | 400.000, | 400.000, | 250.000, | 250.000,-               |
|               |                         | -        | -        | -        |                         |

### Analisis dan Interpretasi Hasil

Berdasarkan data yang diperoleh dari PT Jujur Perkasa Transport, dibandingkan rute serta jarak tempuh dan biaya transportasi dari hasil proses penelitian menggunakan metode *Clark and Wright Saving Heuristic* dengan rute serta jarak tempuh dan biaya transportasi perusahaan menggunakan metode perusahaan yang dimiliki sebelumnya (disajikan di lampiran 6). Berikut analisis dan interpretasi hasilnya.

# a. Kondisi perusahaan saat ini

Pada minggu pertama, total jarak tempuh perusahaan mencapai 3.907,6 km dan total biaya transportasinya mencapai Rp 6.829.448,-. Pada minggu kedua, total jarak tempuh perusahaan mencapai 2.497,8 km dan total biaya transportasinya mencapai Rp 4.697.844,-, Pada minggu ketiga, total jarak tempuh perusahaan mencapai 2.501 km dan total biaya transportasinya mencapai Rp 4.950.980,-. Pada minggu keempat, total jarak tempuh perusahaan mencapai 3.645 km dan total biaya transportasinya mencapai Rp 6.072.100,-. Total jarak tempuh selama sebulan mencapai 12.551,4 km dan total biaya transportasi selama sebulan mencapai Rp 22.550.372,-.

# b. Solusi dengan menggunakan algoritma Clark and Wright Saving Heuristic

Pada minggu pertama, total jarak tempuh perusahaan mencapai 2.504,3 km dan total biaya transportasinya mencapai Rp 4.153.854,-. Pada minggu kedua, total jarak tempuh perusahaan mencapai 1.033,4 km dan total biaya transportasinya mencapai Rp 1.762.732,-, Pada minggu ketiga, total jarak tempuh perusahaan mencapai 1593,9 km dan total biaya transportasinya mencapai Rp 3.012.022,-. Pada minggu keempat, total jarak tempuh perusahaan mencapai 2.192,7 km dan total biaya

transportasinya mencapai Rp 3.848.846,-. Total jarak tempuh selama sebulan mencapai 7.324,3 km dan total biaya transportasi selama sebulan mencapai Rp 12.777.454,-.

c. Penghematan jarak tempuh dan biaya transportasi Pada minggu pertama, jarak yang dihemat sebesar 1.403,3 km dan biaya transportasi yang dihemat sebesar Rp 2.675.594,-. Pada minggu kedua, jarak yang dihemat sebesar 1.464,4 km dan biaya transportasi yang dihemat sebesar Rp 2.935.112,-. Pada minggu ketiga, jarak yang dihemat sebesar Rp 2.935.958,-. Pada minggu kempat, jarak yang dihemat sebesar Rp 1.938.958,-. Pada minggu kempat, jarak yang dihemat sebesar 1.452,3 km dan biaya transportasi yang dihemat sebesar Rp 2.223.254,-. Maka penghematan jarak selama sebulan sebesar S.227,1 km dan penghematan jarak transportasi selama sebulan sebesar Rp 9.772.918,-.

#### **PENUTUP**

### Simpulan

Setelah dilakukan rangkaian proses penelitian diperoleh hasil penelitian dan kesimpulan sebagai berikut:

- 1. Total jarak tempuh pengiriman kopi selama sebulan di perusahaan saat ini mencapai 12.551,4. Jika rute pengiriman barang menggunakan algoritma *Clark and Wright Saving Heuristic* maka total jarak tempuh hanya mencapai 7.324,3 km. Rute pengiriman kopi menggunakan algoritma *Clark and Wright Saving Heuristic* mampu menurunkan jarak tempuh dengan persentase sebesar 41,64 % dibanding rute pengiriman kopi perusahaan saat ini.
- 2. Total biaya transportasi pengiriman kopi selama sebulan di perusahaan saat ini mencapai Rp 22.550.372,- (dapat dilihat di lampiran 5). Jika digunakan metode *Clark and Wright Saving Heuristic* maka estimasi biaya yang dikeluarkan selama sebulan hanya mencapai Rp 12.777.454,- (dapat dilihat di lampiran 6). Dengan digunakannya algoritma *Clark and Wright Saving Heuristic* maka mampu menurunkan biaya transportasi dengan persentase sebesar 43,34 % dibanding dengan biaya yang dikeluarkan perusahaan saat ini.

# Saran

Setelah dilakukan proses penelitian hingga membuahkan hasil dan kesimpulan penulis memberikan beberapa saran sebagai berikut :

 Dengan hasil perbandingan penelitian ini, disarankan PT Jujur Perkasa Transport untuk bisa mempertimbangkan menggunakan algoritma Clark and Wright Saving Heuristic dalam penyelesaian

- rute pengiriman kopi ini sehingga didapatkan rute dan biaya yang lebih optimal.
- 2. Untuk penelitian selanjutnya diharapkan dapat menyelesaikan algoritma *Clark and Wright Saving Heuristic* menggunakan *software*.
- 3. Diharapkan penelitian selanjutnya dapat menyelesaikan algoritma *Clark and Wright Saving Heuristic* dengan indikator faktor kemacetan dengan pengiriman lebih dari satu barang.

### **DAFTAR PUSTAKA**

- Bektas, T. (2006). The multiple travelling salesman problem: an overview of formulations and solution procedures. The International Journal of Management Science vol. 34, no. 3, 209-219.
- Chopra, S., and Meindl, P. (2001). Supply chain management: Strategy, planning, and operations. New Jersey Prentice Hall.
- Harry S. & Syamsudin N. (2011). Penerapan *Supply ChainManagement* pada Proses Manajemen Distribusi dan Transportasi untuk Meminimasi Waktu dan Biaya Pengiriman. Jurnal Poros Teknik. Vol. 3, No. 1, Hlm. 26-33.
- Dantzig, G. and Ramser, J. (1959) The Truck Dispatching Problem. Management Science, 6, 80-91
- Rahmi Y., & Murti A., (2013). Penerapan Metode *Saving Matrix* Dalam Penjadwalan Dan Penentuan Rute Distribusi Premium Di SPBU Kota Malang. Jurnal Rekayasa Mesin. vol.04, no.01, hlm. 17-26.
- Toth, P. & Vigo, D. (2002). *Vehicle Routing Problem*. SIAM. Philadelphia.
- Clarke, G., Wright, J.W.: (1964). Scheduling of Vehicles from Central Depo to a Number of Delivery Points. Operations Research, 12, 568-581.
- Johnson, D.L., Bentley J.L., Mc Geoch L. A., dan Rothberg E. E.,1997, Near-optimal solutions to very large travelling salesman problem, Monograph, in preparation.