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Abstract 

About the simplest kind of functions are polynomials. Under addition, multiplication, integration, and 
differentiation, they are closed. A function can be roughly expressed in terms of polynomials of a certain 
degree using Taylor series. This provides a clear picture of the function's local behavior. The Taylor series 
fits the function at the place where it is computed more closely the more terms there are. In various fields of 
natural and social science, trigonometric functions are used. In this work, we examine the tailored series of 
trigonometric functions using Wolfram Mathematica. The visualization of nature is also obtained using the 
same software, with point 0 and up to 5 order for sin, cos, sec, tan, cot, and cosec. 
Keywords:Polynomials, Taylor Sereis, Nautral and Social Science, Trigonometric function, Wolffram 
Methematica etc. 
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INTRODUCTION 

The mathematical theorem known as Taylor's 

theorem was first put forth by Brook Taylor in 1715. 

The kth-order Taylor polynomial, which is the result 

of Taylor's theorem, is a polynomial of degree k that 

approximates a differentiable function around a 

given point. The Taylor polynomial for a smooth 

function is the truncation of the function's Taylor 

series at order k. The function's linear approximation 

is represented by the first-order Taylor polynomial, 

and the quadratic approximation is frequently 

represented by the second-order Taylor polynomial. 

Several variations of Taylor's theorem exist, some of 

which explicitly estimate the function's 

approximation error using its Taylor polynomial. 

Two Taylor volumes, Methodus incrementor directa 

and inversa, as well as the pivotal Linear Perspective 

in the history of mathematics, are published in 

London in 1715. 

Around the turn of the 18th century, as 

differential calculus advanced, calculations with 

infinite series started to be performed. The "Finite 

Difference Calculus," which today has a key position 

in numerical analysis, was founded by Brook Taylor 

in the early 18th century. Taylor's main idea was to 

approximate a given function f using polynomials 

(x). This would relate to each function generally 

rather than the piecemeal contacts of earlier studies. 

By carefully examining the results of the Newtonian 

approach to differential thinking, with which he was 

well aware, this concept was put to rest. A curve f (x) 

can be "locally" approximated with its tangent line, 

according to the fundamental principle of 

differential calculus. 

Using the values of the function's derivatives at a 

single point, a Taylor series in mathematics 

represents a function as an infinite sum of terms. In 

1715, the English mathematician Brook Taylor 

formally developed the idea of a Taylor series. The 

series is also known as a Maclaurin series if the 

Taylor series is zero-centered. Colin Maclaurin, a 

Scottish mathematician, used this particular specific 

example of Taylor series extensively in the 18th 
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century. A finite number of terms from a function's 

Taylor series are frequently used to approximate a 

function. The error in this approximation is 

quantified by Taylor's theorem. A Taylor polynomial 

is any finite amount of initial terms in a function's 

Taylor series. If the limit is present, the Taylor series 

of a function is the limit of its Taylor polynomials. 

Even if a function's Taylor series converges at every 

point, the function may not be equal to the series. An 

analytical function is one that is equal to its Taylor 

series in an open interval (or a disc in the complex 

plane).  

The Zeno's dilemma is the consequence of the 

Greek philosopher Zeno's consideration and 

rejection of the problem of summing an infinite series 

to produce a finite result. The mathematical meaning 

of the conundrum was apparently unsolved until it 

was picked up by Democritus and later Archimedes. 

Later, Aristotle gave a philosophical solution to the 

contradiction. An endless number of progressive 

subdivisions could be carried out to produce a finite 

outcome using Archimedes' method of exhaustion. A 

few decades later, Liu Hui independently used a 

comparable technique (Boyer & Merzbach, 1991). 

Madhava of Sangamagrama provided the earliest 

evidence of the application of Taylor series and 

closely related techniques in the 14th century (Dani, 

2012). Up until the 16th century, the Kerala School of 

astronomy and mathematics further developed his 

contributions with a number of series expansions 

and rational approximations. James Gregory, who 

also worked in this field in the 17th century, wrote a 

number of Maclaurin series. However, Brook Taylor, 

after whom the series are currently named, did not 

finally offer a general method for creating these 

series for all functions for which they exist until 1715. 

The Maclaurin series is named after Edinburgh 

scholar Colin Maclaurin, who in the 18th century 

published a specific example of the Taylor result.  

THEORY STUDY  

Taylor Polynomials and Taylor Series History  

You will have the chance to build on your prior 

calculus knowledge with Taylor polynomials, which 

are a logical extension of linearization. The concept 

of Taylor polynomials is further developed by Taylor 

series. The surprising and spectacular ways in which 

Taylor series connect a variety of mathematical 

topics adds to their allure.  

By 1636, Fermat and Roberval both understood 

that when n is a positive number and x is measured 

at sufficiently tiny intervals between 0 and X, the 

value of ∑ xnX
x=0  equals about

Xn

n+1
. The quadrature of 

curves with the form xn  was determined by both 

parties using this relationship. In 1644, Fermat and 

Torricelli exchanged letters over the matter. Barrow 

was the first to understand that the inverse of the 

problem of quadratures was the problem of tangents, 

and vice versa. He understood the significance of the 

relationship, which has since become the basic 

principle of differential and integral calculus, as well 

as its generality. The work of Wallis in the 

Arithmetica infinitorum from 1656 served as the 

foundation for Mercator's approach. Because his 

"integration rule" failed for n =  −1 , Wallis, like 

Fermat before him, was unable to handle the 

rectangular hyperbola. By switching axes to work 

with 
1

1+a
 rather than 

1

a
, Mercator was able to get 

around the issue. He then used long division to 

create a power series for 
1

1+a
. Using Wallis' rule, he 

was then able to "integrate" terms one at a time 

(Kouki & Griffiths, 2015). 

Application of Taylor Series  

The power flow analysis of electrical power 

networks uses the Taylor Series (Newton-Raphson 

method). You can estimate your function as a 

sequence of linear or quadratic forms and then iterate 

on them consecutively to get the ideal value using 

multivariate Taylor series, which can be used in 

many optimization strategies. If the functional 

values and derivatives are identified at a single 

point, the Taylor series is used to calculate the value 

of the entire function at each point. Numerous 

mathematical arguments are streamlined by the 

Taylor series representation. An approximate 

representation of the entire series can be found in the 

sum of partial series. Numerous optimization 

methods can make use of multivariate Taylor series. 

The power flow analysis of electrical power systems 

uses this series. As rough approximations of the 

complete function, the partial sums (the Taylor 

polynomials) of the series can be employed. If 

enough terms are included, these approximations 

are accurate. 

Power series differentiation and integration can 

be done term by term, making it particularly simple. 

A holomorphic function on an open disk in the 
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complex plane is only ever extended to an analytical 

function. This makes complicated analytic' 

machinery available. Numerical computations of 

function values can be performed using the 

(truncated) series (often by recasting the polynomial 

into the Chebyshev form and evaluating it with the 

Clenshaw algorithm). The power series 

representation makes algebraic operations simple; 

for example, the Euler's formula is derived from 

Taylor series expansions of the trigonometric and 

exponential functions. In disciplines like harmonic 

analysis, this finding is fundamentally significant. 

For a limited domain, approximations utilizing the 

first few terms of a Taylor series can solve issues that 

would otherwise be intractable; physics frequently 

use this technique. 

 

METHOD 

Taylor Series and Maclaurin Series  
Since the terms get smaller and smaller, we can 

approximate the original quantity by using only the 

first few terms of the series. The main goal of series 

is to describe a given complicated quantity as an 

infinite sum of simple terms. In this section, we 

finally create the method for writing any logical 

function as an explicit power series, which most 

often enables us to accomplish this. Consider the 

following power series function(f):  

f(x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3

+ c4(x − 4)4 + ⋯ … … … |x − a|

< R    (1) 

The coefficients cn must be in terms of f, therefore 

let's try to figure it out. To start, note that if we enter 

x = a in equation (1), all terms after it are 0 and we 

obtain as f(a) = c0. On differentiate equation (1) and 

solving we get  

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + 4c4(x − a)3

+ ⋯ … … … |x − a| < R       (2) 

Considering the case x = a  and solving we get 

from equation (2), f ′(a) = c1 . Again on 

differentiating equation (2) both side and solving we 

get,  

f ′′(x) = 2c2 + 2.3c3(x − a) + 3.4c4(x − a)2

+ ⋯ … … … |x − a| < R       (3) 

Considering the case x = a, in equation (3) and 

solving we get, f ′′(a) = 2c2 . Again differentiating 

equation (3) both side and solving we get,  

f ′′′(x) = 2.3c3 + 2.3.4c4(x − a) + 3.4.5c5

+ ⋯ … … … |x − a| < R        (4) 

Considering the casex = a , in equation (4) and 

solving we get, f ′′(a) = 2.3c3 = 3! c3 . On continues 

the same pattern, for casex = a, one can get,  

f (n)(a) = 2.3.4. … … … … . ncn

= n! cn                                           (5) 

On solving equation (5) for nth coefficient of  cn, 

we get cn =
fn(a)

n!
. If f is represented as an expansion 

of a power series at a, then 

f(x) = ∑ cn(x − a)n

∞

n=0

 and |x − a| < R tℎen cn

=
f n(a)

n!
            (6) 

One can see that if f has a power series expansion 

at a, it must take the following form after substituting 

this formula for cn back into the series. 

f(x)

= ∑
f (n)(a)

n!
(x

∞

n=0

− a)n                                                                (7) 

Expanding equation (7) on can expressed as  

f(x) = f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
((x − a)2

+
f ′′′(a)

3!
(x − a)3 + ⋯ ..         (8) 

The Taylor series of the function f  at an is the 

name of the series in equation (8) (N.d., 2022). 

 For the case a = 0 , the function f  can be 

expressed from equation (8) as,   

f(x) = ∑
f n(0)

n!
(x)n

∞

n=0

= f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2

+
f ′′′(0)

3!
x3 + ⋯ ..         (9) 

The specific term Maclaurin series is given to this 

circumstance since it occurs frequently enough. Any 

terms in a maclaurin series expansion must be 

nonnegative integer powers of the variable. The 

Puiseux series and the Laurent series are two 

furthermore all-encompassing series types. 

Taylor series with reminder 

f  is said to be an Cn  function on (a, b)  if f  nth 

derivative f (n) is continuous on (a, b) and belong to 

C∞ if every differentiable of f exists on (a, b).  Let us 

consider f belongs to C∞  on (−R, R) then n ∈ N, and 

x ∈ (−R, R) and we have Taylor series as  

f(x) = f(0) + f ′(0) +
f ′′(0)

2!
x2 + ⋯ … … . +

f n(0)

n!
xn

+ Rn(x)             (10) 
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The Taylor function f is said analytical at 0 when 

Rn(x) → 0 as n → 0. In addition, remainder has two 

forms as shown in equation (11) and (13) as  

Rn(x) =
1

n!
∫ f (n+1)(t)

x

0

(x

− t)ndt                                   (11) 

On integrating by part equation (11) yield,   

1

n!
∫ f (n+1)(t)

x

0

(x − t)ndt

= −
1

n!
f (n)(0)xn

+
1

(n − 1)!
∫ f (n)(t)

x

0

(x

− t)n−1dt        (12) 

  Rn(x) =
1

(n+1)!
f (n+1)(c)xn+1     c ∈

 (0, x)                       (13) 

Taylor Series with different variable  

Let f(x) is a function with (n +  1) derivative as 

f (n+1)(x) and continuous in between(xL, xR) as  xL <

x < xR  then for a  and x  belong to (xL, xR) can be 

written as (Holmes, 2009),  

f(x) = f(a) + (x − a)f ′(a) +
1

2!
(x − a)2f ′′(a)

+ ⋯ … . +
1

n!
(x − a)2f (n)(a)

+ Rn+1      (14) 

Where Rn+1 =
1

(n+1)!
(x − a)n+1f (n+1)(η)  is named 

as remainder with a point η in between a and x. In 

other hand equation (14) can be written in another 

form as  

f(x + ℎ) = f(x) + ℎf ′(x) +
1

2!
ℎ2f ′′(x)

+ ⋯ … .
1

n!
ℎnf (n)(x)

+ Rn+1              (15) 

Where x and x + h belong to (xL, xR). Equation 

(14) and (15) is the Taylor series with single variable. 

For two variable Taylor series is expressed as f(x +

ℎ) and written as  

f(x + ℎ, t + k) = f(x, t) + Df ′(x, t) +
1

2!
D2f ′′(x, t)

+ ⋯ … .
1

n!
Dnf (n)(x, t) + Rn+1 (16) 

Where D = ℎ
∂

∂x
+ k

∂

∂t
 and in other hand the 

quadratic terms two variable taylor series is 

expressed as  

f(x + ℎ, t + k)

= f(x, t) + ℎfx(x, t) + kft(x, t) +
1

2
ℎ2fxx(x, t)

+ ℎkfxt(x, t) +
1

2
k2ftt(x, t)

+ ⋯ … …                                                                                                                           (17) 

Where fxt =
∂2f

∂x ∂t
 is partial derivative with respect 

to t and x variable with continuous up through order 

n + 1, Equation (16) and (17) is the Taylor series with 

single variable. For multivariable Taylor series is 

expressed as f(x + h) and written as  

f(x + h) = f(x) + Df(x) +
1

2!
D2f(x) + ⋯ … .

1

n!
Dnf(x)

+ Rn+1              (18) 

Where x = (x1, x2, … … … xk), h = (ℎ1, ℎ2, … … … ℎk) 

and D = h. ∇= ℎ1
∂

∂x1
+ ℎ2

∂

∂x2
+ ⋯ . . +ℎk

∂

∂xk
.  

 

RESULTS AND DISCUSSION 

Now that we have generated a number of Taylor 

series instances using the definition, we can see that 

almost all of the labor involved in discovering a 

Taylor series is spent locating the coefficients. By 

taking derivatives, this may be accomplished for any 

function; however, determining the derivatives for 

some functions can be exceedingly time- and effort-

consuming due to their complexity. For function f =

cos (x) and its taylor sereis is 1 −
x2

2
+

x4

24
−

x6

720
+ O(x7) 

converges when |x| < 1. The graphical visulaization 

of  cos (x) taylor sereis with point zero and order 6 is 

shown in figure 1. While other lines display for n 

orders, the red line represents the Taylor series' 

nature with point zero and order 5. The Taylor series 

of cosx has a maximum positive value recorded of 1 

and a range from a negative to a positive value at 

point 0 and order 5 with symmetric nature.  

For function f = sin (x) and its taylor sereis is x −
x3

6
+

x5

120
+ O(x7)  converges when |x| < 1 . The 

graphical visulaization of  sin (x)  taylor sereis with 

point zero and order 5 as shown in figure 2. While 

other lines display for n orders, the red line 

represents the Taylor series' nature with point zero 

and order 5. The Taylor series of sinx has a maximum 

positive value recorded of 1 and a range from a 

negative to a positive value at point 0 and order 5.  
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Figure 1:  Visualiztion of Taylor sereis of 

triognmitc fucntion cosx 

 
Figure 2: Visualiztion of Taylor sereis of 

triognmitc fucntion sinx 

For function f = tan(x) and its taylor sereis is x +
x3

3
+

2x5

15
+ O(x7)  and the he graphical visulaization of  

sin (x)   taylor sereis with point zero and order 5. 

While other lines display for n orders, the red line 

represents the Taylor series' nature with point zero 

and order 5 as shown in figure 3. The Taylor series of 

tanx has a maximum positive value recorded up to 4 

and a range from a negative to a positive value at 

point 0 and order 5 with symmetric nature.  

For function f = sec(x) and its taylor sereis is 1 +
x2

2
+

5x4

24
+

61x6

720
+ O(x7)   and the graphical 

visulaization of  sec(x)  taylor sereis with point zero 

and order 6. While other lines display for n orders, 

the red line represents the Taylor series' nature with 

point zero and order 5 as shown in figure 4. The 

Taylor series of secx has a maximum positive value 

recorded  up to 4 and a range from a negative to a 

positive value at point 0 and order 5 with symmertic 

nature. 

 
Figure 3: Visualiztion of Taylor sereis of 

triognmitc fucntion tanx 

For function f = sec(x) and its taylor sereis is 1 +
x2

2
+

5x4

24
+

61x6

720
+ O(x7)   and the graphical 

visulaization of  sec(x)  taylor sereis with point zero 

and order 6. While other lines display for n orders, 

the red line represents the Taylor series' nature with 

point zero and order 5 as shown in figure 4. The 

Taylor series of secx has a maximum positive value 

recorded  up to 4 and a range from a negative to a 

positive value at point 0 and order 5 with symmertic 

nature.  

 

 
Figure 4: Visualiztion of Taylor sereis of 

triognmitc fucntion secx 

For function f = cot(x) and its taylor sereis is 
1

x
−

x

3
−

x3

45
−

2x5

945
+ O(x7)  and the graphical visulaization 

of  cot(x)  taylor sereis with point zero and order 5. 

While other lines display for n orders, the red line 

represents the Taylor series' nature with point zero 

and order 5 as shown in figure 6. The Taylor series of 

cotx has a maximum positive value recorded of 4 and 

a range from a negative to a positive value at point 0 
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and order 5 with antisymmetry and both converent 

and divergent.  

 

 
Figure 5: Visualiztion of Taylor sereis of 

triognmitc fucntion cotx 

For function f = cosec(x) and its taylor sereis is 
1

x
+

x

6
+

7x3

360
+

31x5

15120
+ O(x7)   and the graphical 

visulaization of  cosec(x)   taylor sereis with point 

zero and order 5. While other lines display for n 

orders, the red line represents the Taylor series' 

nature with point zero and order 5 as shown in figure 

6. The Taylor series of cosx has a maximum positive 

value recorded of 1 and a range from a negative to a 

positive value at point 0 and order 5 with symmetric 

nature and convergent and divergent.  

 

 
Figure 6: Visualiztion of Taylor sereis of 

triognmitc fucntion cosecx 

CONCLUSION 

The Taylor series' trigonometric function behaves 

up to order five using Wolfram Mathematica 

software. Additionally, the tailored series of 

trigimatric functions, which varied in nature 

depending on the order, were obtained. The 

difference in the character of the series was also 

observed along with points for the same order. Every 

Taylor series of trigonometric functions has at least 

one point where the function is either convergent 

toward or divergent from the point, according to the 

process of observation. With the use of the Taylor 

Series, symmetric and antisymmetric nature was also 

investigated for tigronomic function. 
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