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Abstrak

Osilator harmonik teredam merupakan sistem fisis yang banyak dijumpai dalam berbagai bidang
ilmu, terutama dalam mekanika dan dinamika sistem. Penelitian ini bertujuan untuk menganalisis
osilator harmonik teredam menggunakan metode Heun sebagai pendekatan numerik dari metode Runge-
Kutta orde 2. Simulasi dilakukan dengan menggunakan nilai konstanta pegas, massa, dan koefisien redaman
tertentu untuk memperoleh solusi numerik terhadap sistem osilasi yang dikaji. Hasil analisis menunjukkan
bahwa metode Heun memberikan akurasi yang cukup baik pada tahap awal perhitungan, tetapi mengalami
akumulasi kesalahan seiring bertambahnya waktu. Penyimpangan terjadi karena metode Heun
menggunakan pendekatan linier dalam setiap langkahnya, sementara solusi eksak mengikuti pola
eksponensial yang lebih kompleks. Untuk meningkatkan akurasi, diperlukan langkah waktu yang lebih kecil
atau metode numerik yang lebih tinggi seperti Runge-Kutta orde 4. Secara keseluruhan, metode Heun tetap
menjadi pilihan yang cukup baik untuk pendekatan numerik pada sistem osilasi teredam dalam rentang
waktu yang terbatas.

Kata Kunci: Osilator harmonik teredam, metode Heun, Runge-Kutta orde 2.

Abstract

A damped harmonic oscillator is a physical system widely encountered in various scientific fields,
particularly in mechanics and system dynamics. This study aims to analyze the damped harmonic oscillator
using the Heun method as a numerical approach within the second-order Runge-Kutta method.
Simulations were conducted using specific values of the spring constant, mass, and damping coefficient to
obtain a numerical solution for the oscillatory system under study. The analysis results show that the Heun
method provides relatively good accuracy in the initial phase of calculations but accumulates errors over
time. This deviation occurs because the Heun method employs a linear approach at each step, whereas the exact solution
follows a more complex exponential pattern. To improve accuracy, a smaller time step or a higher-order numerical
method, such as the fourth-order Runge-Kutta, is required. Overall, the Heun method remains a reasonably good choice
for numerical approximations of damped oscillatory systems within a limited time range.

Keywords: Damped harmonic oscillator, Heun method, second-order Runge-Kutta.
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IMPLEMENTASI RUNGE KUTTA

PENDAHULUAN

Getaran dari suatu sistem yang berosilasi
pada suatu lintasan dapat berupa gerakan yang
berulang secara terus menerus dan beraturan serta
dapat berupa gerakan acak atau tidak teratur.
Getaran yang berulang secara teratur dalam selang
waktu yang sama disebut dengan gerak harmonis
(Silahooy et al., 2022).

Dalam sistem mekanik, getaran dan osilasi
merujuk pada gerakan bolak-balik suatu benda di
sekitar posisi keseimbangan. Secara khusus, getaran
adalah gerakan yang terjadi secara periodik atau
acak dalam interval waktu tertentu, di mana benda
bergerak maju-mundur dari posisi diamnya akibat
gangguan eksternal atau internal (Huriawati et al,,
2017).

Gerak osilasi merupakan salah satu ilmu
fisika yang penting untuk dipahami, gerak osilasi
yang biasanya dipelajari hanya berlaku pada sistem
ideal, dimana sistem yang berosilasi terus menerus
setelah diberikan gaya, yang merupakan gaya
pemulih linier (Muspa & Pramudya, 2023).

Getaran merupakan gerakan osilasi dari
suatusistem yang dapat berupa gerakan beraturan
danberulang secara kontinu atau dapat juga
berupagerakan tidak beraturan atau acak. Ketika
sebuahgetaran atau osilasi terulang sendiri, ke
yang
sama,gerakan tersebut disebut periodik (Selvira et
al., 2020).

Osilasi sering digunakan secara bergantian

depandan kebelakang, pada lintasan

dengan getaran, terutama dalam konteks gerakan
periodik. Namun, osilasi biasanya merujuk pada
gerakan yang lebih teratur dan periodik, seperti
gerakan pendulum atau pegas yang berosilasi
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Gambar 1. Pemodelan pegas osilasi

dengan frekuensi tertentu. Getaran yang berlebih
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akan menimbulkan suatu kegagalan fungsi pada
konstruksi, sehingga diperlukan suatu pemodelan
untuk mengetahui karakteristik getaran dari

konstruksi tersebut. Getaran dapat diredam
osilasinya dengan gaya redaman atau damping dan
dalam waktu tertentu osilasi akan berhenti, sehingga
tersebut disebut gerakan harmonik teredam (damped
harmonic) & Ramdani, 2024). Osilator

harmonik tak teredam adalah sistem ideal di mana

(Fawzi

tidak ada gaya redaman yang mempengaruhi
gerakan, sehingga amplitudo osilasi tetap konstan
sepanjang waktu. Contoh idealnya adalah massa
yang tergantung pada pegas tanpa adanya gesekan
atau hambatan udara (Noor & Fitrian, 2021).

Osilator harmonik teredam
menggambarkan sistem di mana sebuah massa m
terhubung ke pegas dengan konstanta pegas k dan
mengalami gaya redaman proporsional terhadap
kecepatannya dengan koefisien redaman c¢ (Ghifari
etal., 2023).

Apabila m merupakan notasi dari massa, b
notasi dari gaya redam, dan k notasi dari konstanta
pegas, maka persamaan umum diferensial pegas

berosilasi teredam ditunjukkan pada persamaan (1)
- )

m
dat?
Berdasarkan persamaan 1, gerak teredam

+bE 4 kx=0
dt

dapat dibagi menjadi tiga kasus, karena b berada

dalam selang interval nol sampai tak hingga,

sehingga nilai b? —4 km dapat bernilai positif,

negatif, dan nol (Nurdin & Hastuti, 2019). Tiga kasus

tersebut sebagai berikut:

a. b*—4 km >0 , sistem mengalami
overdamped, atau redaman super kritis

b. b*’—4 km <0 , sistem mengalami
underdamped, atau redaman sub kritis

c. b*—4 km =0, sistem mengalami critical

damped, atau redaman kritis

Persamaan eksak dalam kasus osilator harmonik

pada umumnya menggunakan  persamaan
diferensial yang tidak mudah (Permata et al., 2021).
Persamaan diferensial mempunyai banyak ragam
dan jenis, mulai dari yang mudah diselesaikan
hingga yang sulit diselesaikan, mulai dari yang
sederhana sampai yang sangat kompleks. Maka
diambil langkah menggunakan pendekatan numerik

(Purba et al., 2024).
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Kajian Teori
A. Metode Runge-Kutta Orde 2

Runge Kutta pertama kali dikembangkan
oleh Carl Runge dan Wiliam Kutta dalam rangka
meniru hasil dari pendekatan deret Taylor tanpa
harus melakukan diferensial analitik secara
berulang. Metode Runge Kutta merupakan metode
yang memberikan ketelitian hasil yang lebih baik
dan tidak memerlukan turunan dari fungsi. Metode
Runge Kutta Orde empat sering digunakan karena
memiliki ketelitian yang lebih tinggi (Acu et al,
2018). Metode Runge-Kutta orde 2 adalah teknik
numerik  untuk  menyelesaikan  persamaan
diferensial biasa (PDB) yang menawarkan akurasi
lebih tinggi dibandingkan metode Euler sederhana.
Metode ini menggunakan pendekatan prediktor-
korektor, di mana nilai awal digunakan untuk
memprediksi nilai berikutnya, yang kemudian
dikoreksi untuk meningkatkan akurasi (Pratama,
2020).

B. Metode Heun

Metode Heun, juga dikenal sebagai metode
Euler yang diperbaiki atau metode trapesium
adalah  teknik
menyelesaikan persamaan diferensial biasa (PDB).

eksplisit, numerik  untuk
Metode ini merupakan kasus khusus dari metode
Runge-Kutta orde dua, yang menawarkan akurasi
lebih tinggi dibandingkan metode Euler sederhana
(Rahmatullah et al., 2020).

Dengan menggunakan pendekatan ini,
metode Heun meningkatkan akurasi solusi numerik
dibandingkan metode Euler sederhana, karena
mempertimbangkan informasi kemiringan pada
kedua ujung interval. Hal ini membuat metode Heun
lebih efektif dalam melacak kurva solusi dengan

deviasi yang lebih kecil (Rusmini et al., 2022).

telah
membandingkan perhitungan analitik kasus osilator

Beberapa penelitian sebelumnya

dengan pendekatan numerik. Penelitian yang
dilakukan oleh (Hurit & Mungkasi, 2021) penelitian
ini menunjukkan bahwa metode Heun memiliki
tingkat akurasi yang lebih baik dibandingkan
metode Euler. Temuan ini menjadi salah satu dasar
dalam penelitian ini, di mana metode Heun
osilator harmonik

diterapkan dalam analisis

teredam, penelitian ini  bertujuan  untuk

mengeksplorasi efektivitas metode Heun dalam
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menyelesaikan  persamaan  diferensial

yang
menggambarkan sistem osilator harmonik teredam,
yang merupakan salah satu fenomena penting dalam
mekanika dan dinamika sistem fisis.

Selanjutnya penelitian yang dilakukan oleh
(Novalia & Nasution, 2018). Hasil penelitian ini
menunjukkan bahwa metode Heun merupakan
metode numerik yang stabil dan konsisten dalam
SEIR.

Penelitian ini menjadi salah satu referensi penting

mendekati solusi sistem epidemiologi
bagi penelitian ini, yang juga menerapkan metode
Heun, namun dalam konteks yang berbeda, yaitu
analisis osilator harmonik teredam, penelitian ini
mengeksplorasi efektivitas metode Heun dalam
menyelesaikan persamaan diferensial osilator
harmonik teredam, yang merupakan fenomena
fundamental dalam mekanika dan fisika sistem
dinamis.

Karakteristik gerakan osilator harmonik
teredam perlu diperhatikan untuk mengurangi
risiko ketidakseimbangan dalam sistem. Pemodelan
osilator harmonik teredam dengan pendekatan
pegas dapat digunakan untuk menganalisis dan
mengendalikan getaran yang terjadi. Dalam
penyelesaiannya, metode numerik menjadi alternatif
dari solusi analitik dengan tingkat error tertentu.
Penelitian ini berfokus pada implementasi metode
harmonik

Heun wuntuk menganalisis osilator

teredam serta mengevaluasi akurasinya

dibandingkan dengan pendekatan lainnya.

METODE

Penelitian ini merupakan penelitian dengan
mengkaji studi literatur yg membahas tentang kasus
gerakan  osilator harmonik teredam yang
ditunjukkan pada Gambar 1. Dimana sebuah pegas
dengan konstanta kekakuan (k) 26,8 N/m dengan
beban massa (m) 5 kg diberi sebuah simpangan,
sehingga menyebabkan pegas akan berisolasi,
selanjutnya nilai-nilai koefisien redaman (b) 0.9,
serta simpangan (x) dan kecepatan (x") pada detik
ke-o adalah 0.56 m dan 10 m/s (Nurdin & Hastuti,

2019).
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Gambar 2. Sistem Pegas Massa Teredam dan
Diagram Benda Bebas

adalah modifikasi

penelitian , yang diselesaikan berdasarkan metode

Penelitian  ini dari
numerik. Adapun metode yang akan digunakan
pada penelitian ini yaitu dengan menggunakan
Runge Kutta Orde 2, Metode Heun, dan Galat yang
akan di implementasikan pada aplikasi coding
Anaconda Navigator.
Runge Kutta Orde 2

Metode RK orde kedua menggunakan
fungsi inkremen dengan dua suku (n = 2). Metode
urutan kedua itu akan tepat jika solusi dari
adalah kuadrat.

itu karena istilah dengan h3 dan lebih besar

persamaan diferensial Selain

dihilangkan selama pengurangan, kesalahan
pemotongan lokal adalah O (h3) dan global
kesalahan pemotongan adalah O (h2). Versi

persamaan orde kedua (F.Mesa, 2020).
Yirr = Yi(aik; + azkz)h (1)
Dimana
ky = fCay)y
ko = f(x; + pih, yi + qi1k1)h (2)
Strategi dasar dari metode Runge-Kutta adalah
penggunaan manipulasi aljabar untuk mendapatkan
nilai a4, a,, p;dan py4, jadi kita harus memiliki deret
Taylor orde 2:
Yier = Vi + fy)h + f’%hz ®)

_ 0f(xy) | of(xy)dy
f'(xioayica) = Tox 9y dx @)

Subtitusikan (4) kedalam (3) :

If (x, f(xy) d
o = 0t Fanoh (24 LI

Kemudian diamati bahwa deret Taylor untuk fungsi

h?
2!

dua variabel, khususnya deret Taylor orde 2 untuk
ko di (2) adalah:
ky = f(x + pih, yi + g1k h) =

[y + plhz_i + qllklhg_i (6)
Dengan mengganti nilai ko, diperoleh di (6), dan ki,
di (2),dalam (1) kita memiliki:
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Yisr = Vit aif(xiy)h+ af(x;y)h +

af (x,y) af (x,y)
(a2p1 %hz + azpl%hz) )

2
Akhirnya, melalui perbandingan antara (5) dan (7)
tersebut hubungan berikut dapat diperoleh untuk

konstanta a,, a,, p;dan p;4

al + az = 1
1
azp1 = 2
1
A2q1 =3 ®)

Di bawah kelas metode eksplisit ini, kami
akan mempertimbangkan metode Heun, metode
Euler yang Dimodifikasi, aturan Titik Tengah, dan
metode Raltson. Semua metode ini memiliki metode
turunan yang sama dengan pengecualian konstanta
yang terlibat mengambil nilai yang berbeda. Ini
memiliki bentuk umum (Eziokwu et al, 2020).
Metode Heun

persamaan dari Metode Heun adalah
sebagai berikut (F,M & G., 2020).

Yit1 =¥ + Gk1 +§k2)h

ky = f(xi, )
Galat

Ada empat metode yang dapat digunakan
dalam menentukan galat persamaan diferensial
biasa, yaitu metode Deret Taylor, metode Runge-
Kutta, metode Heun, dan metode Euler. Berdasarkan
soal yang diselesaikan dalam menentukan galat
persamaan diferensial menggunakan metode Deret
Taylor, metode Runge-Kutta, metode Heun dan
metode Euler, metode yang menghasilkan galat
paling kecil adalah metode Runge-Kutta. Galat atau
error atau dalam keseharian disebut kesalahan. Galat
atau error dapat juga didefinisikan sebagai selisih
dari nilai atau hasil yang kita harapkan terjadi
dengan observasi atau kenyataan yang terjadi di
lapangan.

Galat dapat berfungsi untuk menunjukkan
efisiensi dari satu jenis percobaan atau penelitian ke
yang kita
menginginkan galat yang bernilai kecil bahkan tidak

penelitian lain. Secara normal,

terjadi galat. Namun ketiadaan galat juga dapat
menyebabkan pertanyaan dalam penelitian kita.
Menganalisis galat sangat penting di dalam
perhitungan yang menggunakan metode numerik.
Galat berasosiasi dengan seberapa dekat solusi
hampiran terhadap solusi sejatinya. Semakin kecil
semakin teliti

galatnya, solusi numerik yang
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didapatkan. Misalkan a adalah nilai hampiran
terhadap nilai sejati a, maka selisth e=a—a -
adisebut galat (Pandia & Sitepu, 2021).

HASIL DAN PEMBAHASAN

akan dibahas hasil
perhitungan numerik yang diperoleh menggunakan

Pada bagian ini,
metode Heun dan dibandingkan dengan solusi
eksak untuk mengevaluasi tingkat akurasi dari
metode tersebut. Penelitian ini berfokus pada
analisis sistem pegas-massa dengan redaman, di
mana tujuan utamanya adalah untuk memodelkan
dan memahami perilaku dinamis sistem yang
mengalami gaya redaman.

Dalam konteks ini, metode Heun dipilih
sebagai salah satu metode numerik untuk mendekati

solusi ~ dari  persamaan  diferensial yang
menggambarkan sistem pegas-massa dengan
redaman. Hasil perhitungan numerik yang

diperoleh akan dibandingkan dengan solusi eksak
yang didapatkan dari persamaan diferensial yang
mengatur gerakan sistem pegas-massa dengan
redaman. Dengan membandingkan kedua solusi
tersebut, kita dapat mengevaluasi kesalahan yang
mungkin timbul akibat pendekatan numerik yang
digunakan oleh metode Heun. Selain itu, analisis ini
juga akan mengidentifikasi faktor-faktor yang
mempengaruhi akurasi metode Heun, seperti besar
langkah waktu yang digunakan dan karakteristik
sistem pegas-massa itu sendiri.

Pada gambar 3&4 akan ditampilkan syntax
dan

perhitungan numerik dari metode heun

penentuan Galat eror nya :

dvdt = -(b/m) * y[1] - (k/m) * y[@] # Percepatan dari hukum Newton
return np.array([dxdt, dvdt])

# Metode Heun (Pr

-Korektor)
def heun_method(f, yo, to, tf, h):
t_values = np.arange(te, tf + h, h)
y_values = [y@
y = np.array(ye)

for t in t_values[:-1]:
KL = f(t, y)
ypred =y + h * k1
k2 = f(t + h, y_pred)

y += (h/2) * (k1 + k2)
y_values.append(y.copy())
return t_values, np.array(y_values)
# Solusi eksak (tanpa redaman berat)
def exact_solution(t):
omega_d = np.sqrt(k/m -
A=x0
B = (v@ + (b/(2*m)) * x@) / omega_d
return np.exp(-b*t/(2*m)) * (A *

(b/(2*m))**2)

np.cos(omega_d * t) + B * np.sin(omega_d *

)

Gambar 3. Syntax yang digunakan
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= ((exact_values - y values[:, @]) / exact_values) * 100

p det

(0, 1,2, :.520)

/ ( ;
filtered_indices = [i for i in range(len(t_values)) if np.isclose(t_values[i] % 1, )
filtered_t = t_values[filtered_indices

filtered_x_heun = y_values[filtered_indices, @

filtered_exact = exact_values[filtered_indices

filtered_error = error_heun[filtered_indices

Gambar 4. Syntax yang digunakan

Kode ini mensimulasikan sistem pegas-
massa-teredam menggunakan Metode Heun dan
membandingkannya dengan solusi eksak. Sistem ini
didasarkan pada persamaan diferensial Newton,
yang direpresentasikan dalam bentuk turunan
kecepatan dan percepatan.

Metode
menggunakan metode Euler, lalu dikoreksi dengan

Heun diterapkan dengan prediksi
evaluasi ulang, sehingga menghasilkan solusi yang
lebih akurat. Solusi eksak dihitung menggunakan
formula osilasi teredam ringan.

Hasil perhitungan dibandingkan dalam tabel dan
grafik. Grafik pertama menunjukkan perbedaan
antara metode Heun dan solusi eksak, sementara
grafik kedua menunjukkan galat metode Heun
terhadap waktu. Hasil menunjukkan bahwa metode
Heun cukup akurat dengan tingkat kesalahan yang
kecil, membuatnya lebih baik dibandingkan metode
Euler biasa.
Tabel

perhitungan

berikut hasil
simpangan menggunakan metode

menyajikan data

Heun, nilai solusi eksak, serta tingkat kesalahan
yang terjadi pada setiap titik waktu tertentu.
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Tabel 1. Hasil Perhitungan dan Eror

t (detik) Simpangan Heun (x) Ekzak Eror Heun (%)
0o 0.360000 0.360000 0.00000

1.0 -1.841780 -1.768646 -4.135050
20 0.68133% 0840134 27527384
30 0.670668 0307555 -118.064519
40 -0.747821 -0.732882 -2.038313

30 0.026413 0348128 92412756
6.0 0.407830 0.156670 -160.311176
1.0 -0.235778 -0.301561 21.813970
8.0 -0.102524 0.126716 180.909077
Q0 0.188618 0.076125 -147.775241
100 -0.044276 -0.123235 64.072006
11.0 -0.082494 0.045143 282739439
120 0.069669 0.035783 -84 646592
130 0.008836 0.050020 117664515
140 -0.44113 0.015637 382102591
150 0.018902 0.016423 -15.099902
16.0 0.014664 -0.020165 172.720327
170 -0.018612 0.005210 4572315835
180 0.001802 0.007382 75624209
180 0.009330 -0.008073 218.049215
200 -0.006178 0.001637 477354123

Pada analisis sistem pegas-massa dengan

redaman menggunakan metode Heun, dilakukan
perbandingan antara solusi numerik dengan solusi
eksak untuk melihat seberapa akurat pendekatan
yang dihasilkan oleh metode numerik tersebut. Data
yang diperoleh menunjukkan hasil perhitungan
simpangan dari metode Heun, solusi eksak, serta
tingkat kesalahan (error) antara keduanya.
Pada awal perhitungan, nilai simpangan awal yang
digunakan adalah 0.56 meter dengan kecepatan awal
10 m/s. Dari hasil perhitungan, terlihat bahwa pada
t = 0 detik, nilai metode Heun dan solusi eksak
memiliki nilai yang sama, yaitu 0.56 meter. Namun,
seiring bertambahnya waktu, perbedaan antara
metode Heun dan solusi eksak mulai terlihat. Pada
beberapa titik waktu tertentu, metode Heun
menunjukkan penyimpangan yang cukup besar
dibandingkan dengan solusi eksak. Contohnya,
pada t = 6 detik, simpangan metode Heun adalah
0.40783, sedangkan solusi eksak memberikan nilai
sebesar 0.15667, yang menghasilkan galat sekitar -
160.31%. Hal ini menunjukkan bahwa metode Heun
mengalami akumulasi kesalahan numerik yang
menyebabkan hasilnya semakin berbeda dengan
solusi eksak.
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Perbandingan Simpangan Heun dan Eksak

=== Metode Heun
2 — Solusi Eksak

Simpangan (x)

5.0 b 10.0

Waktu (t)

125 15.0 D

Gambar 5. Perbandingan simpangan Heun dan
Eksak

Jika dilihat dalam bentuk gambar grafik 1
perbandingan antara metode Heun dan solusi eksak,
terlihat bahwa kurva metode Heun (digambarkan
dengan garis putus-putus berwarna coklat) memiliki
pola yang mengikuti kurva solusi eksak (garis solid
biru), sedikit
penyimpangan pada beberapa titik. Pada awalnya,

berwarna namun  dengan
metode Heun masih dapat mengikuti bentuk dari
solusi eksak dengan cukup baik, tetapi seiring
bertambahnya waktu, perbedaan antara kedua
kurva semakin besar. Hal ini menunjukkan bahwa
keterbatasan dalam

metode Heun memiliki

mempertahankan akurasi untuk sistem yang
mengalami perubahan signifikan dalam dinamika

pergerakannya.

Galat Metode Heun terhadap Waktu

| -8~ Error Heun (%) ’

Error Heun (%)

100
waktu (t)

Gambar 6. Galat Metode Heun terhadap waktu

1235 150 s 200

Ketika kita melihat grafik galat metode
Heun yang ada pada gambar grafik 2 terhadap
waktu, terlihat bahwa kesalahan relatif metode ini
tidak bersifat konstan, melainkan naik turun dengan
pola tertentu. Pada beberapa titik waktu, kesalahan
metode Heun bahkan mencapai nilai yang sangat
besar. Misalnya, pada t 14 detik, kesalahan
mencapai 382.10%, dan pada t = 20 detik, kesalahan
mencapai angka 477.35%. Kesalahan yang besar ini

menunjukkan bahwa metode Heun mungkin kurang
akurat untuk sistem dengan osilasi teredam,
terutama dalam jangka waktu yang lebih panjang.
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PENUTUP

SIMPULAN

Dari analisis ini dapat disimpulkan bahwa
metode Heun memberikan hasil yang cukup baik
dalam rentang waktu awal, tetapi ketidak akuratan
semakin meningkat seiring waktu. Penyimpangan
ini terjadi dikarena metode Heun merupakan
metode numerik dengan pendekatan linier pada
eksak
mengikuti pola eksponensial yang lebih kompleks.
Akibatnya,
mengakibatkan hasil yang kurang akurat dalam
lebih Untuk
meningkatkan akurasi, salah satu cara yang dapat

setiap langkahnya, sedangkan solusi

akumulasi kesalahan terjadi dan

jangka waktu yang lama.
dilakukan adalah dengan memperkecil langkah
waktu (h), sehingga metode Heun dapat lebih
mendekati solusi eksak. Selain itu, metode numerik
yang lebih kompleks, seperti metode Runge-Kutta
orde lebih tinggi, juga dapat digunakan untuk
mengurangi tingkat kesalahan yang terjadi.

Secara keseluruhan, metode Heun tetap
merupakan salah satu metode numerik yang cukup
baik dalam pendekatan solusi sistem osilasi teredam,
terutama untuk waktu yang tidak terlalu panjang.
Namun, untuk kebutuhan analisis dengan tingkat
akurasi yang lebih tinggi, perlu dipertimbangkan
metode lain yang lebih presisi atau melakukan
penyempurnaan pada langkah-langkah perhitungan
yang digunakan.

SARAN

Penelitian ini menggunakan metode Heun
dalam analisis osilator harmonik teredam, sehingga
pada penelitian selanjutnya disarankan untuk
mengembangkan pendekatan dengan metode
numerik lainnya, seperti Runge-Kutta orde lebih
tinggi, faktor-faktor

eksternal seperti gangguan non-linier dan efek

serta mempertimbangkan

eksternal lainnya pada sistem osilasi.
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