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Abstrak 

Osilator harmonik teredam merupakan sistem fisis yang banyak dijumpai dalam berbagai bidang 
ilmu, terutama dalam mekanika dan dinamika sistem. Penelitian ini bertujuan untuk menganalisis 

osilator harmonik teredam menggunakan metode Heun sebagai pendekatan numerik dari metode Runge-
Kutta orde 2. Simulasi dilakukan dengan menggunakan nilai konstanta pegas, massa, dan koefisien redaman 
tertentu untuk memperoleh solusi numerik terhadap sistem osilasi yang dikaji. Hasil analisis menunjukkan 
bahwa metode Heun memberikan akurasi yang cukup baik pada tahap awal perhitungan, tetapi mengalami 
akumulasi kesalahan seiring bertambahnya waktu. Penyimpangan terjadi karena metode Heun 
menggunakan pendekatan linier dalam setiap langkahnya, sementara solusi eksak mengikuti pola 
eksponensial yang lebih kompleks. Untuk meningkatkan akurasi, diperlukan langkah waktu yang lebih kecil 
atau metode numerik yang lebih tinggi seperti Runge-Kutta orde 4. Secara keseluruhan, metode Heun tetap 
menjadi pilihan yang cukup baik untuk pendekatan numerik pada sistem osilasi teredam dalam rentang 
waktu yang terbatas. 

Kata Kunci: Osilator harmonik teredam, metode Heun, Runge-Kutta orde 2. 
 

Abstract  
A damped harmonic oscillator is a physical system widely encountered in various scientific fields, 
particularly in mechanics and system dynamics. This study aims to analyze the damped harmonic oscillator 
using the Heun method as a numerical approach within the second-order Runge-Kutta method. 
Simulations were conducted using specific values of the spring constant, mass, and damping coefficient to 
obtain a numerical solution for the oscillatory system under study. The analysis results show that the Heun 
method provides relatively good accuracy in the initial phase of calculations but accumulates errors over 
time. This deviation occurs because the Heun method employs a linear approach at each step, whereas the exact solution 
follows a more complex exponential pattern. To improve accuracy, a smaller time step or a higher-order numerical 
method, such as the fourth-order Runge-Kutta, is required. Overall, the Heun method remains a reasonably good choice 
for numerical approximations of damped oscillatory systems within a limited time range. 
Keywords: Damped harmonic oscillator, Heun method, second-order Runge-Kutta. 
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PENDAHULUAN  

Getaran dari suatu sistem yang berosilasi 

pada suatu lintasan dapat berupa gerakan yang 

berulang secara terus menerus dan beraturan serta 

dapat berupa gerakan acak atau tidak teratur. 

Getaran yang berulang secara teratur dalam selang 

waktu yang sama disebut dengan gerak harmonis 

(Silahooy et al., 2022). 

Dalam sistem mekanik, getaran dan osilasi 

merujuk pada gerakan bolak-balik suatu benda di 

sekitar posisi keseimbangan. Secara khusus, getaran 

adalah gerakan yang terjadi secara periodik atau 

acak dalam interval waktu tertentu, di mana benda 

bergerak maju-mundur dari posisi diamnya akibat 

gangguan eksternal atau internal (Huriawati et al., 

2017). 

Gerak osilasi merupakan salah satu ilmu 

fisika yang penting untuk dipahami, gerak osilasi 

yang biasanya dipelajari hanya berlaku pada sistem 

ideal, dimana sistem yang berosilasi terus menerus 

setelah diberikan gaya, yang merupakan gaya 

pemulih linier (Muspa & Pramudya, 2023). 

Getaran merupakan gerakan osilasi dari 

suatusistem yang dapat berupa gerakan beraturan 

danberulang secara kontinu atau dapat juga 

berupagerakan tidak beraturan atau acak. Ketika 

sebuahgetaran atau osilasi terulang sendiri, ke 

depandan kebelakang, pada lintasan yang 

sama,gerakan tersebut disebut periodik (Selvira et 

al., 2020). 

Osilasi sering digunakan secara bergantian 

dengan getaran, terutama dalam konteks gerakan 

periodik. Namun, osilasi biasanya merujuk pada 

gerakan yang lebih teratur dan periodik, seperti 

gerakan pendulum atau pegas yang berosilasi 

dengan frekuensi tertentu. Getaran yang berlebih 

akan menimbulkan suatu kegagalan fungsi pada 

konstruksi, sehingga diperlukan suatu pemodelan 

untuk mengetahui karakteristik getaran dari 

konstruksi tersebut. Getaran dapat diredam 

osilasinya dengan gaya redaman atau damping dan 

dalam waktu tertentu osilasi akan berhenti, sehingga 

tersebut disebut gerakan harmonik teredam (damped 

harmonic) (Fawzi & Ramdani, 2024). Osilator 

harmonik tak teredam adalah sistem ideal di mana 

tidak ada gaya redaman yang mempengaruhi 

gerakan, sehingga amplitudo osilasi tetap konstan 

sepanjang waktu. Contoh idealnya adalah massa 

yang tergantung pada pegas tanpa adanya gesekan 

atau hambatan udara (Noor & Fitrian, 2021). 

Osilator harmonik teredam 

menggambarkan sistem di mana sebuah massa 𝑚 

terhubung ke pegas dengan konstanta pegas 𝑘 dan 

mengalami gaya redaman proporsional terhadap 

kecepatannya dengan koefisien redaman 𝑐  (Ghifari 

et al., 2023). 

Apabila m merupakan notasi dari massa, b 

notasi dari gaya redam, dan k notasi dari konstanta 

pegas, maka persamaan umum diferensial pegas 

berosilasi teredam ditunjukkan pada persamaan (1)  

𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑏
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0    (1) 

Berdasarkan persamaan 1, gerak teredam 

dapat dibagi menjadi tiga kasus, karena b berada 

dalam selang interval nol sampai tak hingga, 

sehingga nilai 𝑏2 − 4  km dapat bernilai positif, 

negatif, dan nol (Nurdin & Hastuti, 2019). Tiga kasus 

tersebut sebagai berikut: 

a. 𝑏2 − 4 k m k > 0k  k isiem k  mgaaaa sk

overdamped kaeaukrmda agkiupmrkmrsesi 

b. 𝑏2 − 4 k m k < 0k  k isiem k  mgaaaa sk

underdamped kaeaukrmda agkiubkmrsesi 

c. 𝑏2 − 4 km k= 0k k isiem k  mgaaaa sk crsescaak

da pmd kaeaukrmda agkmrsesi 

Persamaan eksak dalam kasus osilator harmonik 

pada umumnya menggunakan persamaan 

diferensial yang tidak mudah (Permata et al., 2021). 

Persamaan diferensial mempunyai banyak ragam 

dan jenis, mulai dari yang mudah diselesaikan 

hingga yang sulit diselesaikan, mulai dari yang 

sederhana sampai yang sangat kompleks. Maka 

diambil langkah menggunakan pendekatan numerik 

(Purba et al., 2024). 

 

 

Gambar 1. Pemodelan pegas osilasi 
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Kajian Teori 

A. Metode Runge-Kutta Orde 2 

Runge Kutta pertama kali dikembangkan 

oleh Carl Runge dan Wiliam Kutta dalam rangka 

meniru hasil dari pendekatan deret Taylor tanpa 

harus melakukan diferensial analitik secara 

berulang. Metode Runge Kutta merupakan metode 

yang memberikan ketelitian hasil yang lebih baik 

dan tidak memerlukan turunan dari fungsi. Metode 

Runge Kutta Orde empat sering digunakan karena 

memiliki ketelitian yang lebih tinggi (Acu et al., 

2018). Metode Runge-Kutta orde 2 adalah teknik 

numerik untuk menyelesaikan persamaan 

diferensial biasa (PDB) yang menawarkan akurasi 

lebih tinggi dibandingkan metode Euler sederhana. 

Metode ini menggunakan pendekatan prediktor-

korektor, di mana nilai awal digunakan untuk 

memprediksi nilai berikutnya, yang kemudian 

dikoreksi untuk meningkatkan akurasi (Pratama, 

2020). 

B. Metode Heun 

Metode Heun, juga dikenal sebagai metode 

Euler yang diperbaiki atau metode trapesium 

eksplisit, adalah teknik numerik untuk 

menyelesaikan persamaan diferensial biasa (PDB). 

Metode ini merupakan kasus khusus dari metode 

Runge-Kutta orde dua, yang menawarkan akurasi 

lebih tinggi dibandingkan metode Euler sederhana 

(Rahmatullah et al., 2020). 

Dengan menggunakan pendekatan ini, 

metode Heun meningkatkan akurasi solusi numerik 

dibandingkan metode Euler sederhana, karena 

mempertimbangkan informasi kemiringan pada 

kedua ujung interval. Hal ini membuat metode Heun 

lebih efektif dalam melacak kurva solusi dengan 

deviasi yang lebih kecil (Rusmini et al., 2022). 

 

Beberapa penelitian sebelumnya telah 

membandingkan perhitungan analitik kasus osilator 

dengan pendekatan numerik. Penelitian yang 

dilakukan oleh (Hurit & Mungkasi, 2021) penelitian 

ini menunjukkan bahwa metode Heun memiliki 

tingkat akurasi yang lebih baik dibandingkan 

metode Euler. Temuan ini menjadi salah satu dasar 

dalam penelitian ini, di mana metode Heun 

diterapkan dalam analisis osilator harmonik 

teredam, penelitian ini bertujuan untuk 

mengeksplorasi efektivitas metode Heun dalam 

menyelesaikan persamaan diferensial yang 

menggambarkan sistem osilator harmonik teredam, 

yang merupakan salah satu fenomena penting dalam 

mekanika dan dinamika sistem fisis. 

Selanjutnya penelitian yang dilakukan oleh 

(Novalia & Nasution, 2018). Hasil penelitian ini 

menunjukkan bahwa metode Heun merupakan 

metode numerik yang stabil dan konsisten dalam 

mendekati solusi sistem epidemiologi SEIR. 

Penelitian ini menjadi salah satu referensi penting 

bagi penelitian ini, yang juga menerapkan metode 

Heun, namun dalam konteks yang berbeda, yaitu 

analisis osilator harmonik teredam, penelitian ini 

mengeksplorasi efektivitas metode Heun dalam 

menyelesaikan persamaan diferensial osilator 

harmonik teredam, yang merupakan fenomena 

fundamental dalam mekanika dan fisika sistem 

dinamis. 

Karakteristik gerakan osilator harmonik 

teredam perlu diperhatikan untuk mengurangi 

risiko ketidakseimbangan dalam sistem. Pemodelan 

osilator harmonik teredam dengan pendekatan 

pegas dapat digunakan untuk menganalisis dan 

mengendalikan getaran yang terjadi. Dalam 

penyelesaiannya, metode numerik menjadi alternatif 

dari solusi analitik dengan tingkat error tertentu. 

Penelitian ini berfokus pada implementasi metode 

Heun untuk menganalisis osilator harmonik 

teredam serta mengevaluasi akurasinya 

dibandingkan dengan pendekatan lainnya. 

METODE  

Penelitian ini merupakan penelitian dengan 

mengkaji studi literatur yg membahas tentang kasus 

gerakan osilator harmonik teredam yang 

ditunjukkan pada Gambar 1. Dimana sebuah pegas 

dengan konstanta kekakuan (𝑘)  26,8 N/m dengan 

beban massa (𝑚)  5 kg diberi sebuah simpangan, 

sehingga menyebabkan pegas akan berisolasi, 

selanjutnya nilai-nilai koefisien redaman (𝑏)  0.9, 

serta simpangan (𝑥) dan kecepatan (𝑥′) pada detik 

ke-o adalah 0.56 m dan 10 m/s (Nurdin & Hastuti, 

2019). 
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Gambar 2. Sistem Pegas Massa Teredam dan 

Diagram Benda Bebas 

Penelitian ini adalah modifikasi dari 

penelitian , yang diselesaikan berdasarkan metode 

numerik. Adapun metode yang akan digunakan 

pada penelitian ini yaitu dengan menggunakan 

Runge Kutta Orde 2, Metode Heun, dan Galat yang 

akan di implementasikan pada aplikasi coding 

Anaconda Navigator.   

Runge Kutta Orde 2 

Metode RK orde kedua menggunakan 

fungsi inkremen dengan dua suku (n = 2). Metode 

urutan kedua itu akan tepat jika solusi dari 

persamaan diferensial adalah kuadrat. Selain 

itu,karena istilah dengan h3 dan lebih besar 

dihilangkan selama pengurangan, kesalahan 

pemotongan lokal adalah O (h3) dan global 

kesalahan pemotongan adalah O (h2). Versi 

persamaan orde kedua (F.Mesa, 2020). 

𝑦𝑖+1 =  𝑦𝑖(𝑎𝑖𝑘𝑖 + 𝑎2𝑘2)ℎ (1) 

Dimana 

𝑘1 = 𝑓(𝑥𝑖𝑦𝑖)𝑦 

𝑘2 = 𝑓(𝑥𝑖 + 𝑝𝑖ℎ, 𝑦𝑖 + 𝑞11𝑘1)ℎ (2)  

Strategi dasar dari metode Runge-Kutta adalah 

penggunaan manipulasi aljabar untuk mendapatkan 

nilai 𝑎1, 𝑎2, 𝑝1dan 𝑝11, jadi kita harus memiliki deret 

Taylor orde 2: 

𝑦𝑖+1 =  𝑦𝑖 + 𝑓(𝑥𝑖𝑦𝑖)ℎ + 𝑓′ 𝑥𝑖−1𝑦𝑖−1

2!
ℎ2 (3) 

𝑓′(𝑥𝑖−1𝑦𝑖−1) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
+

𝜕𝑓(𝑥,𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥
 (4) 

Subtitusikan (4) kedalam (3) : 

𝑦𝑖+1 =  𝑦𝑖 + 𝑓(𝑥𝑖𝑦𝑖)ℎ + (
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
+

𝜕𝑓(𝑥,𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥
)

ℎ2

2!
 (5) 

Kemudian diamati bahwa deret Taylor untuk fungsi 

dua variabel, khususnya deret Taylor orde 2 untuk 

k2 di (2) adalah: 

𝑘2 = 𝑓(𝑥𝑖 + 𝑝𝑖ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ) =  

𝑓(𝑥𝑖𝑦𝑖) + 𝑝1ℎ
𝜕𝑓

𝜕𝑥
+ 𝑞11𝑘1ℎ

𝜕𝑓

𝜕𝑦
 (6) 

Dengan mengganti nilai k2, diperoleh di (6), dan k1, 

di (2),dalam (1) kita memiliki: 

𝑦𝑖+1 =  𝑦𝑖 + 𝑎1𝑓(𝑥𝑖𝑦𝑖)ℎ +  𝑎2𝑓(𝑥𝑖𝑦𝑖)ℎ +

(𝑎2𝑝1
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
ℎ2 +  𝑎2𝑝1

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
ℎ2) (7) 

Akhirnya, melalui perbandingan antara (5) dan (7) 

tersebut hubungan berikut dapat diperoleh untuk 

konstanta 𝑎1, 𝑎2, 𝑝1dan 𝑝11 

𝑎1 + 𝑎2 = 1 

𝑎2𝑝1 =
1

2
 

𝑎2𝑞1 =
1

2
 (8) 

Di bawah kelas metode eksplisit ini, kami 

akan mempertimbangkan metode Heun, metode 

Euler yang Dimodifikasi, aturan Titik Tengah, dan 

metode Raltson. Semua metode ini memiliki metode 

turunan yang sama dengan pengecualian konstanta 

yang terlibat mengambil nilai yang berbeda. Ini 

memiliki bentuk umum (Eziokwu et al, 2020). 

Metode Heun 

persamaan dari Metode Heun adalah 

sebagai berikut (F,M & G., 2020). 

𝑦𝑖+1 = 𝑦𝑖 + (
1

2
𝑘1 +

1

2
𝑘2) ℎ  

𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑘2 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘1ℎ) 

Galat 

Ada empat metode yang dapat digunakan 

dalam menentukan galat persamaan diferensial 

biasa, yaitu metode Deret Taylor, metode Runge-

Kutta, metode Heun, dan metode Euler. Berdasarkan 

soal yang diselesaikan dalam menentukan galat 

persamaan diferensial menggunakan metode Deret 

Taylor, metode Runge-Kutta, metode Heun dan 

metode Euler, metode yang menghasilkan galat 

paling kecil adalah metode Runge-Kutta. Galat atau 

error atau dalam keseharian disebut kesalahan. Galat 

atau error dapat juga didefinisikan sebagai selisih 

dari nilai atau hasil yang kita harapkan terjadi 

dengan observasi atau kenyataan yang terjadi di 

lapangan.  

Galat dapat berfungsi untuk menunjukkan 

efisiensi dari satu jenis percobaan atau penelitian ke 

penelitian yang lain. Secara normal, kita 

menginginkan galat yang bernilai kecil bahkan tidak 

terjadi galat. Namun ketiadaan galat juga dapat 

menyebabkan pertanyaan dalam penelitian kita. 

Menganalisis galat sangat penting di dalam 

perhitungan yang menggunakan metode numerik. 

Galat berasosiasi dengan seberapa dekat solusi 

hampiran terhadap solusi sejatinya. Semakin kecil 

galatnya, semakin teliti solusi numerik yang 
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didapatkan. Misalkan 𝑎  adalah nilai hampiran 

terhadap nilai sejati a, maka selisih 𝜀 = 𝑎 − 𝑎 -

adisebut galat (Pandia & Sitepu, 2021). 

HASIL DAN PEMBAHASAN 

Pada bagian ini, akan dibahas hasil 

perhitungan numerik yang diperoleh menggunakan 

metode Heun dan dibandingkan dengan solusi 

eksak untuk mengevaluasi tingkat akurasi dari 

metode tersebut. Penelitian ini berfokus pada 

analisis sistem pegas-massa dengan redaman, di 

mana tujuan utamanya adalah untuk memodelkan 

dan memahami perilaku dinamis sistem yang 

mengalami gaya redaman.  

Dalam konteks ini, metode Heun dipilih 

sebagai salah satu metode numerik untuk mendekati 

solusi dari persamaan diferensial yang 

menggambarkan sistem pegas-massa dengan 

redaman. Hasil perhitungan numerik yang 

diperoleh akan dibandingkan dengan solusi eksak 

yang didapatkan dari persamaan diferensial yang 

mengatur gerakan sistem pegas-massa dengan 

redaman. Dengan membandingkan kedua solusi 

tersebut, kita dapat mengevaluasi kesalahan yang 

mungkin timbul akibat pendekatan numerik yang 

digunakan oleh metode Heun. Selain itu, analisis ini 

juga akan mengidentifikasi faktor-faktor yang 

mempengaruhi akurasi metode Heun, seperti besar 

langkah waktu yang digunakan dan karakteristik 

sistem pegas-massa itu sendiri.  

Pada gambar 3&4 akan ditampilkan syntax 

perhitungan numerik dari metode heun dan 

penentuan Galat eror nya : 

 
Gambar 3. Syntax yang digunakan 

 
Gambar 4. Syntax yang digunakan 

Kode ini mensimulasikan sistem pegas-

massa-teredam menggunakan Metode Heun dan 

membandingkannya dengan solusi eksak. Sistem ini 

didasarkan pada persamaan diferensial Newton, 

yang direpresentasikan dalam bentuk turunan 

kecepatan dan percepatan. 

Metode Heun diterapkan dengan prediksi 

menggunakan metode Euler, lalu dikoreksi dengan 

evaluasi ulang, sehingga menghasilkan solusi yang 

lebih akurat. Solusi eksak dihitung menggunakan 

formula osilasi teredam ringan. 

Hasil perhitungan dibandingkan dalam tabel dan 

grafik. Grafik pertama menunjukkan perbedaan 

antara metode Heun dan solusi eksak, sementara 

grafik kedua menunjukkan galat metode Heun 

terhadap waktu. Hasil menunjukkan bahwa metode 

Heun cukup akurat dengan tingkat kesalahan yang 

kecil, membuatnya lebih baik dibandingkan metode 

Euler biasa. 

 Tabel berikut menyajikan data hasil 

perhitungan simpangan menggunakan metode 

Heun, nilai solusi eksak, serta tingkat kesalahan 

yang terjadi pada setiap titik waktu tertentu. 
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Tabel 1. Hasil Perhitungan dan Eror 

 

Pada analisis sistem pegas-massa dengan 

redaman menggunakan metode Heun, dilakukan 

perbandingan antara solusi numerik dengan solusi 

eksak untuk melihat seberapa akurat pendekatan 

yang dihasilkan oleh metode numerik tersebut. Data 

yang diperoleh menunjukkan hasil perhitungan 

simpangan dari metode Heun, solusi eksak, serta 

tingkat kesalahan (error) antara keduanya. 

Pada awal perhitungan, nilai simpangan awal yang 

digunakan adalah 0.56 meter dengan kecepatan awal 

10 m/s. Dari hasil perhitungan, terlihat bahwa pada 

t = 0 detik, nilai metode Heun dan solusi eksak 

memiliki nilai yang sama, yaitu 0.56 meter. Namun, 

seiring bertambahnya waktu, perbedaan antara 

metode Heun dan solusi eksak mulai terlihat. Pada 

beberapa titik waktu tertentu, metode Heun 

menunjukkan penyimpangan yang cukup besar 

dibandingkan dengan solusi eksak. Contohnya, 

pada t = 6 detik, simpangan metode Heun adalah 

0.40783, sedangkan solusi eksak memberikan nilai 

sebesar 0.15667, yang menghasilkan galat sekitar -

160.31%. Hal ini menunjukkan bahwa metode Heun 

mengalami akumulasi kesalahan numerik yang 

menyebabkan hasilnya semakin berbeda dengan 

solusi eksak. 

 

 
Gambar 5. Perbandingan simpangan Heun dan 

Eksak 

Jika dilihat dalam bentuk gambar grafik 1 

perbandingan antara metode Heun dan solusi eksak, 

terlihat bahwa kurva metode Heun (digambarkan 

dengan garis putus-putus berwarna coklat) memiliki 

pola yang mengikuti kurva solusi eksak (garis solid 

berwarna biru), namun dengan sedikit 

penyimpangan pada beberapa titik. Pada awalnya, 

metode Heun masih dapat mengikuti bentuk dari 

solusi eksak dengan cukup baik, tetapi seiring 

bertambahnya waktu, perbedaan antara kedua 

kurva semakin besar. Hal ini menunjukkan bahwa 

metode Heun memiliki keterbatasan dalam 

mempertahankan akurasi untuk sistem yang 

mengalami perubahan signifikan dalam dinamika 

pergerakannya. 

 

 
Gambar 6. Galat Metode Heun terhadap waktu 

Ketika kita melihat grafik galat metode 

Heun yang ada pada gambar grafik 2 terhadap 

waktu, terlihat bahwa kesalahan relatif metode ini 

tidak bersifat konstan, melainkan naik turun dengan 

pola tertentu. Pada beberapa titik waktu, kesalahan 

metode Heun bahkan mencapai nilai yang sangat 

besar. Misalnya, pada t = 14 detik, kesalahan 

mencapai 382.10%, dan pada t = 20 detik, kesalahan 

mencapai angka 477.35%. Kesalahan yang besar ini 

menunjukkan bahwa metode Heun mungkin kurang 

akurat untuk sistem dengan osilasi teredam, 

terutama dalam jangka waktu yang lebih panjang. 
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PENUTUP 

SIMPULAN 

Dari analisis ini dapat disimpulkan bahwa 

metode Heun memberikan hasil yang cukup baik 

dalam rentang waktu awal, tetapi ketidak akuratan 

semakin meningkat seiring waktu. Penyimpangan 

ini terjadi dikarena metode Heun merupakan 

metode numerik dengan pendekatan linier pada 

setiap langkahnya, sedangkan solusi eksak 

mengikuti pola eksponensial yang lebih kompleks. 

Akibatnya, akumulasi kesalahan terjadi dan 

mengakibatkan hasil yang kurang akurat dalam 

jangka waktu yang lebih lama.   Untuk 

meningkatkan akurasi, salah satu cara yang dapat 

dilakukan adalah dengan memperkecil langkah 

waktu (h), sehingga metode Heun dapat lebih 

mendekati solusi eksak. Selain itu, metode numerik 

yang lebih kompleks, seperti metode Runge-Kutta 

orde lebih tinggi, juga dapat digunakan untuk 

mengurangi tingkat kesalahan yang terjadi. 

Secara keseluruhan, metode Heun tetap 

merupakan salah satu metode numerik yang cukup 

baik dalam pendekatan solusi sistem osilasi teredam, 

terutama untuk waktu yang tidak terlalu panjang. 

Namun, untuk kebutuhan analisis dengan tingkat 

akurasi yang lebih tinggi, perlu dipertimbangkan 

metode lain yang lebih presisi atau melakukan 

penyempurnaan pada langkah-langkah perhitungan 

yang digunakan. 

SARAN 

Penelitian ini menggunakan metode Heun 

dalam analisis osilator harmonik teredam, sehingga 

pada penelitian selanjutnya disarankan untuk 

mengembangkan pendekatan dengan metode 

numerik lainnya, seperti Runge-Kutta orde lebih 

tinggi, serta mempertimbangkan faktor-faktor 

eksternal seperti gangguan non-linier dan efek 

eksternal lainnya pada sistem osilasi. 
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