ANALISA KELAYAKAN FASILITAS DAN SISTEM PENGELOLAAN TEMPAT PEMBUANGAN AKHIR (TPA) BENOWO SURABAYA

Cinda Wahyu Wardani

Program Studi S1 Teknik Sipil, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Negeri Surabaya cinda.17050724023@mhs.unesa.ac.id

Prof. Dr. Erina Rahmadyanti, S.T., M.T.

Jurusan Teknik Sipil, Fakultas Teknik, Universitas Negeri Surabaya erinarahmadyanti@unesa.ac.id

ABSTRAK

Sampah merupakan suatu permasalahan utama yang dihadapi masyarakat sehari-hari terutama di kota-kota besar. Seiring berjalannya waktu produksi sampah akan selalu bertambah. Kota Surabaya merupakan pusat pemerintahan Provinsi Jawa Timur yang memiliki luas sekitar ±326,81 km² dengan 31 kecamatan, 160 desa, dan jumlah penduduk berkisar ±2.908.309 jiwa. Seiring berkembangnya zaman, aktivitas dan pertumbuhan penduduk akan semakin meningkat sehingga mempengaruhi volume produksi sampah. Sampah akan terus diproduksi setiap harinya, volume produksi sampah akan terus mengalami peningkatan sehingga dapat menyebabkan sampah di TPA semakin menggunung. Tahun 2012-2013 volume sampah yang diproduksi Kota Surabaya mencapai 1.100 ton, dan memasuki tahun 2014 mencapai 1.400 ton, hal ini tidak menutup kemungikan pada tahun-tahun berikutnya mengalami peningkatan produksi sampah. Tumpukan sampah yang menggunung dapat menyebabkan ketidaknyamanan, merusak keindahan, gangguan kesehatan, mencemari lingkungan dan mengganggu aktivitas warga di sekitarnya. TPA Benowo merupakan tempat pembuangan akhir sampah yang ada di Kota Surabaya. Luas lahan yang dimiliki TPA Benowo yaitu sebesar ±38,7 Ha dan luas lahan yang terpakai sebesar ±24 Ha. Proses pengelolaan sampah akan berjalan baik apabila penyediaan sarana pengangkut selaras dengan volume sampah yang diproduksi. Kota Surabaya melakukan sama dengan PT. Sumber Organik untuk mengubah sampah menjadi energi alternatif Pembangkit Listrik Tenaga Sampah (PLTSa). Dengan inovasi ini Kota Surabaya mampu mengurangi sampah sebesar ±2800 m³ per harinya.

Kata Kunci: Sampah, Tempat Pembuangan Akhir, Sanitary Landfill, Pembangkit Listrik Tenaga Sampah.

Universitas ABSTRACT ri Surabaya

Waste is the main problem that is faced by society daily, especially in big cities. Waste production will always increase time after time. Surabaya City is the East Java Government Center which has an area of around 326.81 km2 with 31 districts, 160 villages, and a total of residents of around 2,908,309 people. Along with the times, activities and population growth will increase. Therefore, it affects the volume of waste production. Waste will always be produced every day and the waste production volume will continue to increase. Thus, it makes the waste in the landfill sites increasingly mount. In 2012 until 2013, the waste volume in Surabaya reached 1,100 tons and it increased into 1,400 tons in 2014. There is possibility it will bw increasing in every year which will lead into waste accumulation. Mounted piles of waste can lead to discomfort, make an eyesore, health problems, pollute the environment and disturb the residents' activities around it. Benowo landfill is a landfill site in Surabaya City. The

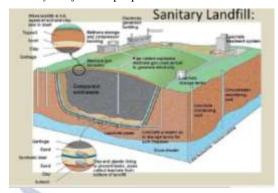
Land area of TPA Benowo Landfills is ± 38.7 Ha and the area of land used is ± 24 Ha. The waste management process will run well if the provision of transportation facilities is in line with the volume of waste produced. The city of Surabaya in cooperation with PT. Organic Source to convert waste into alternative energy Waste Power Plant (PLTSa). With this innovation, the City of Surabaya is able to reduce waste by ± 2800 m3 per day.

Keywords: Waste, Landfill, Sanitary Landfill, Waste Power Plant.

PENDAHULUAN

TPA Pemrosesan Akhir Tempat atau merupakan tempat mengolah dan pengembalian sampah ke lingkungan dengan cara yang aman bagi kehidupan manusia dan lingkungan (Permendagri, 2010). Sampah merupakan suatu permasalahan utama yang dihadapi masyarakat sehari-hari terutama di kota-kota besar. Peningkatan produksi sampah di perkotaan dapat dipengaruhi oleh peningkatan jumlah pertumbuhan penduduk yang tinggi dan kemajuan perekonomian. Kota besar ataupun kota kecil di Indonesia sedang menghadapi permasalahan sampah yang banyak mengganggu lingkungan (Aisyah, 2013). Kementerian Lingkungan Hidup dan Kehutanan pada tahun 2019 apabila setiap tahun Indonesia memproduksi sampah minimal 64 juta ton, sampah diangkut dan disimpan di TPA sebesar 60%, sampah didaur ulang sebesar 10%, sampah yang tersisa 30% tidak dikelola dan menjadi penyebab pencemaran lingkungan. UU No. 18 Tahun 2008 Tentang Pengelolaan Sampah menyebutkan bahwa sampah merupakan benda padat hasil dari sisa kegiatan manusia sehari-hari, sedangkan SNI 19-2454-2002 menyebutkan bahwa sampah merupakan materi organik dan materi anorganik yang sudah tidak berguna dan harus dilakukan pengelolaan supaya tidak menimbulkan bahaya bagi lingkungan dan dapat melindungi investasi pembangunan.

Sampah akan terus diproduksi setiap harinya, volume produksi sampah akan terus mengalami peningkatan sehingga dapat menyebabkan sampah di TPA semakin menggunung. Hal tersebut dapat menyebabkan ketidaknyamanan, merusak


keindahan, gangguan kesehatan, mencemari lingkungan dan mengganggu aktivitas warga di sekitarnya. Sampah padat perkotaan yang dikirim ke TPA menimbulkan ancaman yang vital bagi lingkungan, seperti emisi gas rumah kaca dari kandungan metana dalam gas TPA (Cudjoe & Han, 2020). Oleh karena itu, pengelolaan yang baik perlu dilakukan agar sampah tidak menyebabkan dampak yang buruk bagi kehidupan. Tujuan utama dari sampah diantaranya yaitu untuk pengelolaan peningkatan kesehatan terhadap lingkungan dan masyarakat, sebagai perlindungan SDA dan fasilitas sosial ekonomi, serta sebagai penunjang sektor strategis (Rahardyan, 2005). Proses pemanfaatan dan penggunaan sarana prasarana dalam pengelolaan sampah meliputi penempatan sampah pada media telah tersedia, pengumpulan pengolahan sampah sampai proses pembuangan tahap akhir (Sahil, 2016).

TPA merupakan suatu tempat penimbunan atau pengelolahan sampah perkotaan pada tahap terakhir. TPA merupakan tempat penyimpanan dan pemusnahan sampah menggunakan suatu metode sehingga dapat mengurangi atau menghilangkan dampak negatif yang ditimbulkan terhadap lingkungan (Neoloka, 2008). Kegiatan di TPA tidak hanya melakukan proses pembuangan akhir, namun terdapat empat kegiatan primer diantaranya yaitu pemilahan sampah, daur ulang sampah anorganik, pengomposan sampah organik, dan akumulasi limbah sisa dari proses sebelumnya (DPU, 2013). Sampah yang berasal dari rumah tangga dikumpulkan di setiap Tempat Pembuangan Sementara (TPS) yang tersedia di beberapa tempat

kemudian diangkut menuju ke TPA. Sistem transfer adalah pertemuan antara lori sampah dengan pengangkut sampah. Sistem transfer tersebut meliputi lahan terbuka dengan sarana *loader*, tumpuan *arm roll truck*, dan transfer depo dengan rumah jaga yang dilengkapi dengan ram untuk pemindahan sampah dari gerobak (Sulistyono, 2013). Pengangkutan sampah merupakan sub-sistem yang bertujuan mengangkut sampah dari lokasi transfer atau dari sumbernya langsung ke tempat pembuangan akhir atau TPA. Pengangkutan sampah merupakan materi yang penting dan memerlukan perhitungan yang cermat dengan memaksimalkan waktu pengangkutan yang diperlukan oleh sistem (Damanhuri, 2010).

TPA Benowo merupakan TPA Kota Surabaya sejak tahun 2001. Beberapa tahun sebelumya Surabaya memiliki TPA di Keputih namun sudah berhenti beroperasi kemudian dipindahkan ke Benowo. TPA Benowo berokasi di Jl. Romokalisari Kelurahan Romokalisari Kecamatan Surabaya, mempunyai luas sebesar 38,7 Ha, 24 Ha diantaranya sebagai tempat penimbunan sampah dengan metode sanitary landfill yang terdiri dari 5 (Herman, 2017). Sanitary landfill terminal merupakan sistem penolahan sampah dengan cara membuang dan menimbun sampah pada lokasi cekungan, kemudian sampah dipadatkan dan diurug dengan tanah (Suwanto, 2016). Sanitary landfill adalah suatu teknik pembuangan akhir sampah padat di tanah yang tidak menimbulkan gangguan atau bahaya bagi kesehatan atau keselamatan umum juga tidak membahayakan lingkungan selama operasinya atau setelah penutupannya. Teknik ini menggunakan prinsip rekayasa untuk membatasi limbah ke area sekecil mungkin, menutupinya setiap hari dengan lapisan tanah dan memadatkannya untuk mengurangi volumenya. Selain itu, hal tersebut mengantisipasi masalah yang ditimbulkan oleh cairan dan gas yang dihasilkan dari dekomposisi

bahan organik (Jaramillo, 2003). Adapun skema *sanitary landfill* terdapat pada Gambar 1.

Gambar 1. Skema Sanitary Landfill.

Berdasarkan skema pada Gambar 1, sistem sanitary landfill dilangsungkan dengan cara menimbun sampah pada lapisan dasar sanitary landfill yang dilapisi dengan tanah lempung dan geomembran yang bertujuan supaya air lindi tidak bocor dan mencemari air tanah. Selain itu, lapisan dasar sanitary landfill juga dilengkapi dengan pipa pengumpul air lindi dan gas metan, hal ini bertujuan untuk mengumpulkan air lindi dan gas metan yang terbentuk dari proses penguraian sampah tersebut. Air lindi yang terkumpul diteruskan di Instalasi Pengolahan Air Limbah (IPAL), kemudian gas metan yang terbentuk akan diolah menjadi energi yang terbarukan.

Pengelolaan sampah di TPA Benowo memiliki perbedaan dengan pengelolaan sampah di TPA lainnya. Perbedaannya yaitu Kota Surabaya melakukan kerja sama dengan PT. Sumber Organik untuk mengubah sampah menjadi sumber energi alternatif atau menjadi Pembangkit Listrik Tenaga Sampah (PLTSa). **PLTSA** adalah sebuah pembangkit listrik yang menggunakan limbah sebagai bahan bakar (Indah dkk, 2020). Terdapat beberapa metode pengelolaan untuk mengubah limbah sebagai bahan bakar dalam menghasilkan energi listrik diantaranya yaitu metode thermal dan metode konversi biologis. Prinsip kerja metode thermal hampir menyerupai PLTU, sedangan metode

biologis dengan cara Anaerobik Digestion dan Landfill Gasification. Pemanfaatan sampah sebagai sumber alternatif tidak hanya dapat mengurangi timbulan sampah yang ada di pembuangan akhir, tetapi juga dapat menjaga lingkungan di sekitar pembuangan tersebut menjadi lebih baik (Fanida dan Sucahyo, 2021). Kota Surabaya telah mewujudkan ide rumah kompos dan bank sampah, hal tersebut yang menjadi salah satu parameter kesuksesan Kota Surabaya dalam hal pengelolaan sampah menjadi benda yang memiliki nilai guna dan dapat bernilai ekonomis.

Proses pengelolaan sampah akan berjalan baik apabila memiliki sarana dan prasarana yang mendukung. Kajian ini bertujuan menganalisis sistem pengelolaan yang diterapkan di TPA Benowo dan menganalisis kelayakan fasilitas pengangkut sampah dalam pengelolaan sampah yang ada di TPA Benowo Surabaya.

Pada masa mendatang, hasil kajian ini diharapkan dapat memberikan manfaat kepada mahasiswa, masyarakat, dan pemerintah. Selain itu, penelitian ini diharapkan dapat memberi masukan dalam melakukan kegiatan pengelolaan dan pemantauan lingkungan.

METODOLOGI

Penyusunan penelitian diperlukan suatu tahapan-tahapan perumusan agar kerangka kerja menjadi terstruktur, terarah dan sistematis. Penyusunan ini dilakukan supaya data-data yang didapatkan bisa menghasilkan artikel yang aktual dan dapat dipertanggungjawabkan. Tahapan-tahapan tersebut diantaranya persiapan, identifikasi masalah, pengumpulan data, analisis dan pembahasan, hasil penelitian, simpulan dan saran. Terdapat 2 sumber perolehan data diantaranya data primer dan data sekunder. Data primer merupakan pengumpulan data dapat dilakukan dengan cara wawancara langsung, komunikasi telepon, atau komunikasi tidak langsung

seperti surat, email, dan lain-lain. Data sekunder merupakan pengumpulan data secara tidak langsung atau harus melakukan penelusuran secara berkelanjutan terlebih dahulu seperti melalui internet, literatur, statistik, buku, dan lain-lain (Sugiyono, 2013).

Lokasi kajian ini terletak pada TPA Benowo yang terdapat di Jl. Romokalisari, Kecamatan Benowo, Kota Surabaya. Pengumpulan data dilakukan dengan menggunakan metode wawancara dan pengumpulan data dari Dinas Kebersihan dan Ruang Terbuka Hijau (DKRTH) Kota Surabaya serta studi pustaka dari berbagai jurnal sebelumnya. Selanjutnya data yang diperoleh dianalisis menggunakan perhitungan dan analisa deskriptif.

Ruang lingkup dan batasan dalam penelitian ini adalah sebagai berikut:

- 1. Data penduduk pada tahun 2014-2020.
- 2. Proyeksi jumlah penduduk tahun 2020-2030.
- 3. Proyeksi timbulan sampah tahun 2020-2030.
- 4. Jumlah armada pengangkut tahun 2020.
- Daya tampung armada pengangkut terhadap volume timbulan sampah.

Tahap selanjutnya adalah pengolahan data dan analisis data sebagai berikut.

Mencari rasio populasi, dapat dihitung dengan rumus:

$$r = \{ (\frac{P_t}{P_0})^{(1/t)} - 1 \} \times 100...(1)$$

Keterangan:

 P_0 : Jumlah populasi tahun dasar

P_t: Jumlah populasi tahun ke-t

r : Rasio populasi

t : Selisih tahun Pt dengan Po

 Menghitung proyeksi populasi dengan menggunakan metode eksponensial, persamaan matematis yang digunakan adalah sebagai berikut:

$$P_n = P_0 \cdot e^{rn}$$
(2)

Keterangan:

 P_n : populasi setelah n tahun ke depan

 P_0 : populasi pada tahun awal

r: Laju pertumbuhan penduduk

n : Jangka waktu dalam tahun

e: Bilangan eksponensial = 2.7182818

 Menghitung proyeksi timbulan sampah berdasarkan pada PERMEN PU RI No. 03/PRT//M/2013 Tahun 2013, dengan rumus:

Proyeksi timbulan sampah =

Vol. Sampah Total × Jumlah Penduduk(3)

 Menghitung volume timbulan sampah yang dapat diangkut alat pengangkut sampah berdasarkan pada PERMEN PU RI No. 03/PRT/M/2013 Tahun 2013, dengan rumus:

Jumlah Kontainer = $\frac{\text{Volume Sampah}}{\text{Kapasitas alat. } F_p . R_k} (4)$

Keterangan:

 F_p : Faktor pemadatan alat = 1.2

 R_k : Ritase alat pengangkut

5. Kebutuhan Alat Pengangkut:

Berdasarkan pada rumus 4 maka untuk menghitung volume timbulan sampah yang dapat diangkut oleh armada didapatkan rumus sebagai berikut:

Vol. Timbulan Sampah =

Jumlah Kontainer . Kapasitas alat . F_p . R_k (5)

Keterangan:

 F_p : Faktor pemadatan alat = 1.2

 R_k : Ritase alat pengangkut

HASIL DAN PEMBAHASAN

Perhitungan Rasio Penduduk dan Proyeksi Jumlah Penduduk

Kota Surabaya merupakan salah satu kota terbesar yang ada di Indonesia. Kota Surabaya merupakan pusat pemerintahan Provinsi Jawa Timur yang memiliki luas sekitar ±326,36 km² mempunyai 31 kecamatan, 160 desa, dan jumlah penduduk tahun 2020 berkisar ±2.908.309 jiwa Secara geografis Kota

Surabaya terletak pada 7°9'-7°21' Lintang Selatan dan 112°36'-112°54 Bujur Timur. Wilayah Kota Surabaya bagian Utara dan Timur berbatasan dengan Selat Madura, pada bagian Barat berbatasan dengan Kabupaten Gresik, dan pada bagian Selatan berbatasan dengan Kabupaten Sidoarjo. Perhitungan populasi pada proveksi masa mendatang membutuhkan data populasi tahun sebelumnya yang kemudian dapat digunakan untuk melakukan perhitungan volume timbulan sampah, sarana dan prasarana persampahan (Ikhsandri, 2014). Data jumlah penduduk Kota Surabaya tahun 2014-2020 terlihat pada Tabel 1.

Tabel 1. Jumlah Penduduk Kota Surabaya

Tahun	Jumlah Penduduk (jiwa)
2014	2,883,924
2015	2,943,528
2016	3,016,653
2017	2,074,883
2018	3,094,732
2019	3,158,943
2020	2,908,309

Sumber: BPS Kota Surabaya

Sebelum menghitung proyeksi populasi penduduk di masa mendatang perlu dilakukan perhitungan laju pertumbuhan penduduk (*r*) tahun 2014-2020 dengan menggunakan rumus 1. Rasio Laju dapat dilihat pada Tabel 2 berikut ini.

Tabel 2. Rasio Laju Petumbuhan Penduduk Kota Surabaya

Tahun	r (%)
2014/2015	0.020667674
2015/2016	0.024842638
2016/2017	-0.312190365
2017/2018	0.491521209
2018/2019	0.020748485
2019/2020	-0.079341096
Rata-rata (r)	0.027708091

Sumber: Hasil Analisis

Berdasarkan hasil analisis pada Tabel 2, maka didapatkan rata-rata rasio laju pertumbuhan penduduk yaitu sebesar 0.0277%. Tahap berikutnya adalah menghitung proyeksi pertumbuhan penduduk

pada tahun 2021-2030 dengan menggunakan metode eksponensial seperti pada rumus 2. Jumlah penduduk di Kota Surabaya sebesar 2,908,309 jiwa tahun 2020 digunakan sebagai tahun dasar dalam menghitung proyeksi jumlah penduduk pada tahun berikutnya. Hasil perhitungan proyeksi jumlah penduduk Kota Surabaya pada tahun 2021-2030 terlihat pada Tabel 3 berikut ini.

Tabel 3. Proyeksi Jumlah Penduduk Kota surabaya

Tahun	Proyeksi Jumlah Penduduk (iiwa)
2021	2,990,019
2022	3,074,026
2023	3,160,392
2024	3,249,185
2025	3,340,473
2026	3,434,325
2027	3,530,814
2028	3,630,014
2029	3,732,001
2030	3,836,854

Sumber: Hasil Analisis

Hasil analisis pada Tabel 2 dan Tabel 3 pertumbuhan penduduk di Kota Surabaya pada tahun 2021-2030 mengalami peningkatan setiap tahunnya. Bertambahnya populasi penduduk disebabkan karena adanya kelahiran dan migrasi masuk, sedangkan berkurangnya populasi penduduk disebabkan karena adanya kematian dan migrasi keluar (Faqih, 2010).

TPS Kota Surabaya

Kota Surabaya memiliki TPS sebanyak 190 TPS dan terbagi menjadi 5 rayon. Adapun pembagian tersebut yaitu pertama Rayon Pusat sebanyak 19 TPS, kedua Rayon Barat sebanyak 49 TPS, ketiga Rayon Utara sebanyak 30 TPS, keempat Rayon Timur sebanyak 47 TPS, dan kelima Rayon Selatan sebanyak 45 TPS. Berdasarkan data tahun 2020, Kota Surabaya memproduksi sampah sebanyak 3.531,6 m³ per harinya. Data volume produksi sampah rata-rata perhari kota Surabaya

yang dikelompokkan di tiap kecamatan ditampilkan pada Tabel 4.

Tabel 4. Data Volume Produksi Sampah Rata-rata Perhari Kota Surabaya Tahun 2020

Kecamatan	Volume Sampah (m³)	Kecamatan	Volume Sampah (m³)
Asemrowo	44	Pakal	104
Benowo	95,8	Rungkut	168,9
Bubutan	168,2	Sambikerep	71,2
Bulak	14	Sawahan	104,4
Dukuh Pakis	50	Semampir	95,6
Gayungan	60,2	Simokerto	94,8
Genteng	113	Sukolilo	125,8
Gubeng	254,8	Sukomanunggal	97
Gunung Anyar	65,9	Tambaksari	97,6
Jambangan	128	Tandes	114
Karang Pilang	140	Tegalsari	166,5
Kenjeran	170,4	Tenggilis Mejoyo	156,6
Krembangan	111,1	Wiyung	94
Lakarsantri	95,1	Wonocolo	113,8
Mulyorejo	103,9	Wonokromo	183,6
Pabean Cantian	129,4		

Sumber: DKRTH Kota Surabaya

Proyeksi Volume Timbulan Sampah

Surabaya termasuk dalam kategori kota besar karena jumlah penduduk melebihi 2 juta jiwa. Menurut SNI 19-3242-2008, timbulan sampah di kota besar dan metropolitan dapat mencapai 3 lt/org/hari. Perhitungan volume timbulan sampah dapat dilakukan dengan cara mengalikan jumlah penduduk dari tahun 2021-2030 dengan standar kuantitas timbulan sampah seperti pada rumus 3. Hasil analisis proyeksi timbulan sampah tahun 2021-2030 ditampilkan pada Tabel 5.

Tabel 5. Proyeksi Timbulan Sampah Tahun 2020-2030

Tahun	Jumlah Penduduk (jiwa)	Timbulan Sampah (m³/hari)
2020	2,908,309	8,724.93
2021	2,990,019	8,970.06
2022	3,074,026	9,222.08
2023	3,160,392	9,481.18
2024	3,249,185	9,747.55
2025	3,340,473	10,021.42
2026	3,434,325	10,302.97
2027	3,530,814	10,592.44
2028	3,630,014	10,890.04
2029	3,732,001	11,196.00
2030	3,836,854	11,510.56

Sumber: Hasil Analisis

Berdasarkan hasil analisis proyeksi timbulan sampah Tabel 5, proyeksi timbulan sampah di Kota Surabaya mengalami peningkatan, hal tersebut berhubungan dengan laju pertumbuhan penduduk. Semakin meningkatnya jumlah penduduk maka sampah yang dihasilkan juga turut mengalami peningkatan (Fanida & Sucahyo, 2021). Berdasarkan analisis Tabel 5 pada tahun 2020 proyeksi timbulan sampah perhari sebesar 8,724.93 m³ sedangkan berdasarkan data di lapangan yaitu sebesar 3531.2 m³ sehingga terjadi perbedaan yang sangat signifikan, oleh karena itu perlu untuk dilakukan perhitungan ulang mengalikan proyeksi timbulan sampah Tabel 5 dengan perbandingan antara sampah proyeksi dengan sampah di lapangan sebesar 40%. Hasil perhitungan tersebut menghasilkan proyeksi timbulan sampah seperti yang disajikan pada Tabel 6 berikut ini.

Tabel 6. Proyeksi Timbulan Sampah Tahun 2020-2030

Tahun	Jumlah Penduduk (jiwa)	Timbulan Sampah (m³/hari)
2020	2,908,309	3,489.97

2021	2,990,019	3,588.02
2022	3,074,026	3,688.83
2023	3,160,392	3,792.47
2024	3,249,185	3,899.02
2025	3,340,473	4,008.57
2026	3,434,325	4,121.19
2027	3,530,814	4,236.98
2028	3,630,014	4,356.02
2029	3,732,001	4,478.40
2030	3,836,854	4,604.22

Sumber: Hasil Analisis

Fasilitas Pengangkut Sampah

Sampah yang terkumpul di TPS akan dikirimkan ke TPA menggunakan suatu armada. Proses pengelolaan sampah akan berjalan baik apabila penyediaan sarana pengangkut selaras dengan volume sampah yang diproduksi. Berdasarkan data DKRTH Kota Surabaya, sarana pengangkut yang dimiliki diantaranya yaitu compactor truck, dump truck, dan arm roll truck. Dalam sehari masing-masing armada dapat beroperasi sebanyak 2-3 ritase sesuai dengan penjadwalan lokasi pengangkutan sampah dari TPS ke TPA. Data sarana pengangkut sampah yang dimiliki oleh DKRTH Kota Surabaya terlihat pada Tabel 7.

Tabel 7. Data Sarana Pengangkut Sampah Tahun 2020

Armada	Kapasitas Muat (m ³⁾	Jumlah (unit)
Compactor Truck	8	4
Compactor Truck	10	48
Dump Truck	8	28
Arm Roll	6	12
Arm Roll	8	15
Arm Roll	14	63

Sumber: DKRTH Kota Surabaya

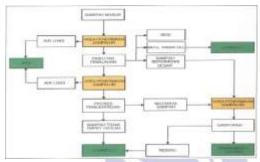
Berdasarkan data sarana pengangkut sampah pada Tabel 7, maka tahap selanjutnya yaitu

menghitung volume timbulan sampah yang dapat diangkut oleh armada dengan menggunakan rumus 5. Hasil analisis perhitungan volume timbulan sampah yang mampu diangkut oleh armada terlihat pada Tabel 8.

Tabel 8. Daya Tampung Armada Terhadap Volume Timbulan Sampah

Armada	Volume Timbulan Sampah yang Mampu Diangkut (m³)	
Compactor Truck	115.20	
Compactor Truck	1,728.00	
Dump Truck	806.40	
Arm Roll	259.20	
Arm Roll	432.00	
Arm Roll	3,175.20	
Total	6.516.00	

Sumber: Hasil Analisis


Berdasarkan hasil analisis pada Tabel 8 volume timbulan sampah yang dapat diangkut oleh armada yaitu sebesar 6,516 m³. Apabila dibandingkan dengan proyeksi volume timbulan sampah tahun 2020-2030, maka dapat disimpulkan bahwa jumlah armada yang dimiliki DKRTH mampu menampung dan mengangkut volume timbulan sampah.

Sistem Pengelolaan

Sistem pengelolaan sampah yang dilakukan TPA Benowo yaitu dengan menggunakan metode sanitary landfill. Metode sanitary landfill merupakan metode pengelolaan sampah dengan cara menghamparkan sampah kemudian dipadatkan menggunakan alat berat dan ditimbun dengan tanah supaya dapat mengurangi polusi udara dari timbulan sampah tersebut. Metode ini merupakan salah satu metode pengelolaan sampah yang dinilai terkontrol dengan sistem sanitasi yang baik. Menurut data Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya pada tahun 2020 volume sampah masuk rata-rata perhari mecapai 3.531,6 m³, jumlah ini akan terus bertambah seiring berjalannya waktu dan dapat

menyebabkan timbulan sampah yang semakin menggunung. Sampah yang telah mencapai batas ketinggian ditutup dengan penutup *geomembrane*, akibatnya bau yang dihasilkan dari penguraian sampah dapat terkurung dan tidak bercampur dengan udara luar secara langsung (Herman, 2017).

Kota Surabaya melakukan kerja sama dengan PT. Sumber Organik dalam pengelolaan sampah menjadi energi alternatif pebangkit listrik tenaga sampah atau PLTSa. Sampah-sampah terkumpul diolah menjadi energi listrik dengan menggunakan sistem landfill gas collection dan gasifikasi. Sistem landfill gas collection prosesnya dimulai dengan menumpul sampah di lokasi tertentu, kemudian dipadatkan, ditutup menggunakan tanah, terpal dan plastik hitam, kemudian didiamkan selama kurang lebih satu bulan hingga menghasilkan gas metana. Apabila gas metana telah terbentuk, tahap selanjutnya mengalirkan gas metana melalui pipa menuju ke mesin untuk diubah menjadi listrik, kemudian listrik yang dihasilkan dialirkan ke jaringan PLN melalui travo. Sistem landfill gas collection ini mampu menghasilkan listrik sebesar 2 megawatt dalam sehari. Sistem gasifikasi merombak sampah dengan proses pembakaran menjadi energi listrik. Sampah-sampah tersebut dikumpulkan dan dibakar hingga menjadi arang. Kemudian arang dipanaskan hingga 1000° untuk mendidihkan air hingga membentuk uap. Uap tersebut digunakan untuk menggerakkan mesin pembangkit listrik yang tersambung dengan generator. Melalui sistem gasifikasi energi listrik yang dihasilkan dalam sehari yaitu sebesar 12 megawatt. Metode landfill gas collection sudah dijalankan semenjak tahun 2015 dan dapat menghasilkan listrik sebesar 2 MW, sementara metode gasifikasi dijalankan mulai tahun 2020 dan energi listrik yang dapat dihasilkan yaitu sebesar 12 MW dari sampah 1000 ton/hari (Jon Marjuni & Nazaruddin, 2021). Dengan inovasi ini Kota Surabaya mampu mengurangi sampah sebesar ±2800 m³ per harinya. Kondisi di lingkungan sekitar TPA Benowo sebelum adanya pengelolaan sampah menjadi pembangkit listrik sangat parah dibandingkan sekarang, sebelumnya di daerah lokasi TPA polusi bau sangat menyengat apalagi saat musim hujan, banyak lalat sehingga mengganggu aktivitas warga sekitar TPA (Feby & Eva, 2021). Adapun skema/alur pengolahan sampah di TPA Benowo dapat dilihat pada Gambar 2.

Gambar 2. Skema/Alur Pengolahan Sampah di TPA
Benowo

Sumber: DKRTH Kota Surabaya

SIMPULAN

- 1. Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya memiliki armada pengangkut diantaranya yaitu 4 unit *compactor truck* kapasitas 8 m³, 48 unit *compactor truck* kapasitas 10 m³, 28 unit *dump truck* kapasitas 8 m³, 12 unit *armroll truck* kapasitas 6 m³, 15 unit *armroll truck* kapasitas 8 m³, 63 unit *armroll truck* kapasitas 14 m³. Dalam sehari armada tersebut beroperasi 2-3 ritase sesuai dengan penjadwalan lokasi pengangkutan sampah dari TPS ke TPA.
- Armada pengangkut yang dimiliki oleh Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya mampu menampung dan mengangkut volume timbulan sampah berdasarkan pada hasil prediksi volume timbulan sampah pada tahun 2020-2030.
- 3. TPA Benowo menggunakan sistem *sanitary landfill* dalam hal pengelolaan sampah.

4. Kota Surabaya melakukan kerja sama dengan PT. Sumber Organik untuk menjadikan sampah sebagai energi alternatif Pembangkit Listrik Tenaga Sampah (PLTSa). Dengan inovasi ini Kota Surabaya mampu mengurangi sampah sebesar ±2800 m³ per harinya.

SARAN

- Penelitian ini diharapkan dapat memotivasi kotakota lain dalam hal pengelolaan sampah menjadi energi alternatif.
- Pada masa mendatang, kajian ini diharapkan dapat bermanfaat bagi setiap pembaca.

UCAPAN TERIMA KASIH

Peneliti menghaturkan rasa terimakasih yang sebesar-besarnya kepada pihak yang telah memberikan dukungan dan bantuan sehingga peneltian ini dapat diselesaikan. Ucapan terima kasih terkhusus kepada:

- Ibu Dr. Maspiyah, M.Kes. selaku Dekan Fakultas Teknik.
- 2. Bapak Drs. H. Soeparno, M.T. selaku Ketua Jurusan Teknik Sipil.
- Prof. Dr. Erina Rahmadyanti, S.T., M.T. selaku koordinator skripsi Jurusan Teknik Sipil sekaligus selaku dosen pembimbing.
- 4. Ibu Ir. Nurhayati Aritonang, M.T. selaku dosen penguji 1.
- 5. Ibu Danayanti Azmi Dewi Nusantara, S.T., M.T. selaku dosen penguji 2.
- Kedua orang tua dan semua pihak yang terlibat dalam penulisan.

DAFTAR PUSTAKA

Aisyah. 2013. Pengelolaan Sampah Rumah Tangga Berbasis Masyarakat Di Rt50 Kelurahan Sungai Pinang Dalam (Tinjauan Peraturan Daerah KotaSamarinda Nomor 02 Tahun 2011 Tentang Pengelolaan Sampah). Beraja Niti 2(12).

- Badan Standardisasi Nasional, SNI 19-2454-2002

 Tata Cara Teknik Operasional Pengelolaan

 Sampah Perkotaan
- _____, SNI 19-3242-2008 Pengelolaan
- Sampah di Permukiman
- Cudjoe, D., dan Han, M. S. 2020. Economic and environmental assessment of landfill gas electricity generation in urban districts of Beijing municipality. Sustainable Production and Consumption. 23, 128–137.
- Damanhuri dkk. 2010. *Diklat Kuliah TL-3104 (versi 2010)*. Program Studi Teknik Lingkungan FTSL ITB.
- Departemen Pekerjaan Umum. 2013. Persyaratan Teknis Penyediaan Pengoperasian, Penutupan atau Rehabilitasi TPA.
- Fanida EH,. dan Sucahyo FM. 2021. Inovasi
 Pengelolaan Sampah Menjadi Pembangkit
 Listrik Tenaga Sampah (PLTSa) oleh Dinas
 Kebersihan dan Ruang Terbuka Hijau
 (DKRTH) Surabaya. Publika Vol. 9 No. 2
 Tahun 2021: 39-52
- Faqih, A. 2010. *Kependudukan: Teori, Fakta dan Masalah*. Yogyakarta: Dee Publish
- Herman Bagus D. 2017. Analisis Kadar Nh3, Karakteristik Individu dan Keluhan Pernapasan Pemulung di TPA Sampah Benowo dan Bukan Pemulung di Sekitar TPA Sampah Benowo Surabaya. Jurnal Kesehatan Lingkungan Vol. 9, No. 2 Juli 2017: 135–144
- Ikhsandri. 2014. *Kajian Infrastruktur Pengolahan Sampah di Kawasan Berkembang Jakabaring Kelurahan 15 Ulu Kota Palembang*. Jurnal
 Teknik Sipil dan Lingkungan Vol. 2, No. 1,
 Maret 2014 ISSN: 2355-374X
- Indah dkk. 2020. Sosialisasi Pengelolaan Sampah Sebagai Bahan Bakar untuk Pembangkit Listrik Tenaga Sampah (PLTSa) dengan Sistem Strategic Partner. Jurnal Teknologi

- Terapan untuk Pengabdian Masyarakat Vol. 3, No. 2, Tahun 2020
- Jaramillo, J. 2003. Guidelines For The Design,

 Construction and Operation of Manual

 Sanitary Landfills.
- Jon Marjuni, K., dan Nazaruddin, S. 2021.

 Pengembangan Teknologi Konversi Sampah

 Untuk Efektivitas Pengolahan Sampah dan

 Energi Berkelanjutan. Jurnal Teknika 15

 (01):33-44
- Neoloka, A. 2009. *Kesadaran Lingkungan*. Jakarta: Rineka Cipta
- Nirmawala dkk. 2017. Kesesuaian Tempat
 Pembuangan Akhir Sampah Dengan
 Lingkungan di Desa Kalitirto Yogyakarta.
 Jurnal Plano Madani Volume 6 Nomor 1. April
 2017, 1 14 © 2017 P ISSN 2301-878X E
 ISSN 2541-2973
- Pemerintah Republik Indonesia, Undang-Undang Republik Indonesia Nomor 18 Tahun 2008
- Peraturan Menteri Dalam Negeri No. 33 Tahun 2010 Tentang Pedoman Pengelolaan Sampah.
- Peraturan Daerah Kota Samarinda Nomor 02 Tahun 2011 Tentang Pengelolaan Sampah). Beraja Niti 2(12).
- Pusat Pendidikan dan Pelatihan Jalan, Perumahan,
 Permukiman, dan Pengembangan Infrastruktur
 Wilayah. 2018. *Modul 02-Pengantar*Pengolahan Sampah Secara Umum
- Rahardyan B., dan Widagdo AS. 2005. Peningkatan
 Pengelolaan Persampahan Perkotaan Melalui
 Pengembangan Daur Ulang. Materi
 Lokakarya 2 Pengelolaan Persampahan di
 Propinsi DKI Jakarta. Jakarta.
- Sahil J dkk. 2016. Sistem Pengelolaan dan Upaya
 Penanggulangan Sampah di Kelurahan
 DufaDufa Kota Ternate. Jurnal Bioedukasi
 volume 4 nomor 2. ISSN: 2301-4678\
- Sugiyono. 2013. *Metode Penelitian Bisnis*. Bandung: Alfabeta.

Sulistyono D. 2013. Analisis Sistem Pengelolaan
Sampah di Kecamatan Karangploso
Kabupaten Malang. Surabaya: Fakultas
Teknik Universitas 17 Agustus 1945 Vol. 06
No. 02 (hal 112 – 125

Suwanto dkk. 2016. Analisis Faktor Penghambat
Penerapan Kebijakan Sanitary Landfill di TPA
Jatibarang Semarang Sesuai Dengan UndangUndang No. 18 Tahun 2008 Tentang
Pengelolaan Sampah. Diponegoro Journal Of
Social And Political Of Science Tahun 2016,

Hal. 1-13

