PENGARUH SUHU KALSINASI TERHADAP UKURAN KRISTAL DAN ENERGI CELAH PITA KOMPOSIT TiO₂-SiO₂

THE EFFECT OF CALCINATION TEMPERATURE ON THE CRYSTAL SIZE AND THE BAND GAP ENERGY TiO₂-SiO₂ COMPOSITES

Dian Yusefah* dan Amaria

Jurusan Kimia FMIPA, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya, Jl. Ketintang, Surabaya, 60231 e-mail: dian_yusefah.scientist@yahoo.com

Abstrak. Pengaruh suhu kalsinasi terhadap ukuran kristal dan energi celah pita pada komposit TiO₂-SiO₂ telah dilakukan pada penelitian ini. Tujuan penelitian ini untuk mengetahui pengaruh suhu kalsinasi terhadap fasa, komposisi, dan ukuran kristal serta energi celah pita komposit TiO₂-SiO₂. Sintesis komposit dilakukan dengan metode sol gel menggunakan natrium silikat dan TiO₂ standar sebagai prekursor yang diikuti dengan perlakuan kalsinasi pada suhu 300°, 400°, dan 500°C. Komposit TiO₂-SiO₂ yang telah dibuat dikarakterisasi dengan difraksi sinar-X (XRD), spektrofotometri difusi reflaktansi UV-Vis (SDR UV-Vis), dan spektrofotometri fourier transform infrared (FTIR). Hasil karakterisasi menunjukkan bahwa komposit yang dikalsinasi pada suhu 400°C memiliki karakteristik terbaik yaitu dengan komposisi fasa anatase 84,6481%%, rutil 0,4746%, dan brookite 14,8773%. Ukuran kristal komposit TiO₂-SiO₂ yang disintesis pada suhu kalsinasi 300°, 400°, dan 500°C masing-masing sebesar 23,6464 nm, 22,8582 nm, dan 20,7802 nm. Energi celah pita yang dihasilkan komposit TiO₂-SiO₂ yang disintesis pada suhu kalsinasi 300°, 400°, dan 500°C masing-masing sebesar 3,1533 eV, 3,1694 eV, dan 3,1623 eV.

Kata Kunci: Komposit TiO₂-SiO₂, metode sol gel, natrium silikat, ukuran kristal dan energi celah pita.

Abstract. Effect of calcination temperature on the crystal size and the band gap energy of TiO_2 -SiO_2 composites have been conducted in this study. The purpose of this research to determine the effect of calcination temperature on the phase, composition, size of crystal, and the band gap energy TiO_2 -SiO_2 composite. The synthesis was conducted by sol gel method using sodium silicate and TiO_2 standard as precursors followed by calcination treatment at 300°, 400°, dan 500°C. The results of the synthesis TiO_2 -SiO_2 composite were characterized by X-ray diffraction (XRD), UV-Vis diffuse refflectance spectrophotometry (DRS UV-Vis), and fourier transform infrared spectrophotometry (FTIR). The characterization shows that TiO_2 -SiO_2 photocatalyst in the calcination temperature of 400°C has optimum is anatase phase composition 84,6481%%, rutil 0,4746%, dan brookite 14,8773%. The crystallite size of TiO_2 -SiO_2 photocatalyst in the calcination temperature 300°, 400°, dan 20,7802 nm. The bandgap energy of TiO_2 -SiO_2 photocatalyst in the calcination temperature 300°, 400°, dan 500°C with each 3,1533 eV, 3,1694 eV, dan 3,1623 eV.

Keywords: TiO₂-SiO₂ composite, methode sol gel, sodium silicate, crystallite size dan band gap energy.

CISILASI

PENDAHULUAN

TiO₂ merupakan bahan semikonduktor yang sering digunakan sebagai fotokatalis. TiO₂ memiliki energi celah pita (Eg) yang tinggi yaitu 3,2 eV, stabil terhadap proses kimia dan biologi, dapat mendegradasi senyawa organik serta mereduksi sejumlah ion logam dalam larutan [1]. TiO₂ memiliki tiga fasa kristal yaitu anatase, rutil dan *brookite*. Nilai energi celah pita (Eg) untuk fasa anatase, rutil dan *brookite* adalah 3,20 eV, 3,02 eV dan 2,96 eV. TiO₂ anatase memiliki aktivitas yang besar karena memiliki nilai energi celah pita tinggi [2].

TiO₂ banyak digunakan pada berbagai aplikasi diantaranya: sel surya, fotokatalis, sensor biologis dan kimia, produk kesehatan serta pigmentasi cat. TiO₂ dapat digunakan pada proses fotodegradasi air limbah. TiO₂ dicampurkan ke dalam air yang diolah lalu diiluminasi dengan sinar UV yang sesuai. Proses fotodegradasi menggunakan TiO₂ dalam bentuk serbuk memiliki kendala, yaitu sulit memisahkan partikel TiO₂ dari filtratnya [3]. TiO₂ dalam bentuk serbuk tidak mudah diterapkan dalam pengolahan air limbah sehingga TiO₂ perlu dimodifikasi dengan material penyangga yang memiliki kemampuan sedimentasi dan mudah dipisahkan dari filtratnya. Material penyangga yang memiliki kemampuan sedimentasi dan mudah dipisahkan dari filtratnya salah satunya adalah SiO₂. SiO₂ mempunyai luas permukaan besar, stabil pada suhu tinggi dan mempunyai gugus hidroksil pada permukaanya yang bertindak sebagai sisi aktif atau sisi adsorptif [4].

TiO₂ yang dimodifikasi dengan penambahan SiO₂ juga dipengaruhi oleh metode sintesis vang digunakan. Menurut Aguado, et al. [5] metode sol gel memiliki potensi homogenitas yang tinggi, berlangsung pada temperatur ruangan, menghasilkan interaksi yang lebih kuat antara fotokatalis semikonduktor dengan material Tahapan dalam mensintesis fotokatalis penyangga. dengan metode sol gel yaitu hidrolisis, kondensasi, aging, pengeringan dan kalsinasi [6]. Kalsinasi adalah tahapan terakhir dalam metode sol gel, pemanasan ini bertujuan untuk memperkuat struktur permukaan fotokatalis dan menghilangkan pengotor-pengotor organik yang masih terdapat dalam katalis [7]. Suhu kalsinasi juga dapat mempengaruhi energi celah pita pada fotokatalis yang dihasilkan. Menurut Zhang dan Reller [8] suhu kalsinasi dapat mempengaruhi fasa, komposisi, ukuran kristal dan nilai energi celah pita dari fotokatalis.

Pada penelitian ini dilakukan sintesis komposit TiO_2 -SiO₂ menggunakan metode sol gel dengan suhu kalsinasi 300°, 400°, dan 500°C, untuk mengetahui pengaruhnya terhadap fasa dan komposisinya, ukuran kristal serta besar energi celah pita yang dihasilkannya.

METODE PENELITIAN Alat

Alat yang digunakan pada penelitian ini: spektrofotometer FTIR (Frontier 89485), difrktometer sinar-X (Panalytica X-Pert), spektrofotometer difusi reflektansi UV-Vis (Shimadzu UV-2450), neraca analitik AR2130, tanur (Heraeus), pengaduk dan magnetik stirer, pH meter, lampu UV 40 watt, centrifuge 200 heraeus sepatech, lumpang dan alu, ayakan ukuran 300 mesh dan peralatan gelas.

Bahan

Bahan yang digunakan dalam penelitian ini: TiO₂, natrium silikat, AgNO₃, HCl dan akuademineral. Semua bahan yang digunakan berkualitas pro analysis dan diproduksi Merck.

niversitas

PROSEDUR PENELITIAN

Sintesis komposit TiO₂-SiO₂

Sepuluh mililiter larutan natrium silikat dimasukkan ke dalam gelas kimia 250 mL, kemudian ditambahkan 10 mL akuademineral. Selanjutnya campuran diaduk dengan pengaduk magnit sambil ditambah 0,435 gr TiO₂ yang telah didispersikan ke dalam 10 mL HCl 2 M dan didiamkan selama 24 jam. Gel yang terbentuk dicuci dengan akuademineral sampai pH 7 dan bebas klor yang diuji dengan larutan AgNO₃ 0,1 M. Setelah itu dikeringkan pada suhu 70°C selama 5 jam dan dikalsinasi dengan suhu 300°C, 400°C dan 500°C selama 3 jam. Komposit hasil sintesis pada suhu kalsinasi 300°C, 400°C, dan 500°C masing-masing diberi kode TSA, TSB, dan TSC.

Karakterisasi

Karakterisasi komposit hasil sintesis dilakukan dengan menggunakan difraktometer sinar-X untuk mengetahui fasa, komposisi, dan ukuran kristal. Komposisi fasa komposit hasil sintesis dapat dihitung menggunakan persamaan 1 [9].

$$W_A = \frac{K_A A_A}{K_A A_A + A_R + K_B A_B} \tag{1a}$$

$$W_R = \frac{A_R}{K_A A_A + A_R + K_B A_B} \tag{1b}$$

$$W_B = \frac{K_B A_B}{K_A A_A + A_R + K_B A_B}$$
(1c)

Dengan W_A , W_R , dan W_B masing-masing komposisi anatae, rutil, dan *brookite*. A_A , A_R , dan A_B adalah jumlah luas daerah terintegrasi dari masing-masing puncak anatae, rutil, dan *brookite*.

Ukuran kristal komposit hasil sintesis dapat dihitung dengan menggunakan persamaan 2 [10].

$$c = \frac{k \lambda}{c}$$
 (2)

Dengan *t* adalah ukuran kristal, λ adalah panjang gelombang radiasi sinar-X (CuK_a = 0,1541 nm), c adalah konstanta yang diperoleh dari persamaan garis lurus.

Penentuan energi celah pita komposit hasil sintesis dilakukan dengan menggunakan spektrofotometer difusi reflaktansi UV-Vis (SDR UV-Vis). Energi celah pita dapat dihitung dengan menggunakan persamaan 3 [11].

$$Eg = \frac{hc}{\lambda}$$
⁽³⁾

Karakterisasi FTIR dilakukan untuk mengetahui gugus fungsional senyawa komposit hasil sintsesis ada bilangan gelombang 400-3500 cm⁻¹.

HASIL DAN PEMBAHASAN

Hasil analisis difraksi sinar-X (XRD)

Hasil karakterisasi komposit $\rm TiO_2\mathchar`-SiO_2$ disajikan pada Gambar 1.

Gambar 1. Pola difraksi sinar X : (a) TiO₂ standar, (b) Komposit TSA, (c) TSB dan (d) TSC

Gambar 1 menunjukkan pada ketiga komposit TiO₂-SiO₂ yang disintesis memiliki pola difraksi yang relatif sama, yaitu: 25,26315°, 25,24674°, dan 25,24322°. Penambahan SiO₂ pada komposit TiO₂ menyebabkan puncak-puncak sedikit melebar ke arah kiri sehingga komposit TiO₂-SiO₂ memiliki bentuk kristal yang amorf. Puncak yang dihasilkan pada komposit hasil sintesis menunjukkan fasa yang terbentuk yaitu: anatase, rutil, dan brookite. Puncak difraksi pada komposit TiO2-SiO2 hasil sintesis mengalami penurunan intensitas dan pergeseran harga 20 ke arah yang lebih kecil dibandingkan TiO₂. Pergeseran ini terjadi karena adanya penambahan SiO₂ dan suhu kalsinasi. SiO₂ bermigrasi ke kisi-kisi struktur kristal TiO₂ dan merusak kristal dari TiO₂. Suhu kalsinasi menyebabkan atom-atom yang terbentuk belum stabil mengalami getaran panas, sehingga terjadi penurunan intensitas puncak [12].

Komposisi fasa dan ukuran kristal komposit TiO₂-SiO₂ hasil sintesis dapat dilihat pada Tabel 1. Tabel 1. Komposisi fasa dan ukuran kristal komposit

TiO₂-SiO₂ hasil sintesis

Material	Kon	Ukuran					
	Anatase	atase Rutil Brookite		kristal (nm)			
TiO ₂ standar	81,7950	1,8430	16,3620	27,4298			
TSA	83,2730	0,3759	16,3511	23,6464			
TSB	84,6481	0,4746	14,8773	22,8582			
TSC	81,2939	3,9364	14,7697	20,7802			

Komposit hasil sintesis memiliki komposisi fasa anatase yang lebih besar daripada TiO₂, hal ini

dikarenakan adanya SiO₂ telah tersubstitusi pada TiO₂. Kehadiran SiO₂ dapat menghambat teriadinva transformasi TiO₂ dari fasa anatase menjadi rutil. Komposit TSB memiliki komposisi fasa anatase yang lebih besar daripada TSA dan TSC. Hal ini dikarenakan bahwa pada suhu kalsinasi 400°C fasa kristal anatase terbentuk optimum, sehingga suhu kalsinasi lebih yang lebih tinggi fasa anatase mulai tidak stabil dan bertransformasi menjadi rutil. TiO2 memiliki komposisi fasa rutil yang lebih besar daripada komposit hasil sintesis, hal ini dikarenakan bahan awal TiO₂ yang digunakan telah mengandung fasa rutil. Komposit TSC memiliki komposisi fasa rutil yang lebih besar daripada TSA dan TSB, hal ini dikarenakan pada suhu kalsinasi yang tinggi dapat meningkatkan pendistribusian SiO₂. SiO₂ akan bermigrasi ke kisi-kisi struktur kristal TiO₂ dan menyebabkan terjadinya proses penataan ulang dari TiO₂. Proses penataan ulang ini akan mempengaruhi perubahan jarak dari ikatan Ti-O-Ti dan O-Ti-O menjadi lebih panjang, sehingga terjadi transformasi fasa anatase meniadi rutil.

Ukuran kristal komposit TiO₂-SiO₂ hasil sintesis lebih kecil daripada TiO₂. Penambahan SiO₂ pada TiO₂ menekan pertumbuhan kristal sehingga kristal yang terbentuk ukurannya lebih kecil. Komposit TSC memiliki ukuran kristal lebih kecil daripada TSA dan TSB, hal ini dikarenakan pengaruh suhu kalsinasi. Suhu kalsinasi yang lebih tinggi akan mengakibatkan difusi atom akan menjadi lebih cepat sehingga akan mempercepat kristalinitas dan menghasilkan ukuran kristal yang lebih kecil [12].

Hasil analisis spektrofotometri difusi reflaktansi UVvis (SDR UV-Vis)

Spektrum yang dihasilkan dari hasil pengukuran spektrofotometer SDR UV-Vis dapat dilihat pada Gambar 2.

Gambar 2. Spektra SDR UV-Vis: (a) TiO₂ standar, (b) komposit TSA, (c)TSB dan (d) TSC.

Gambar 2 menunjukkan adanya sedikit pergeseran panjang gelombang ke arah yang lebih pendek pada komposit TiO_2 -SiO_2 hasil sintesis dibandingkan TiO_2 . Pergeseran ini dikarenakan penambahan SiO_2 pada komposit TiO_2 . Adanya SiO_2 mengakibatkan

teradsorbsinya gugus OH dari TiOH pada permukaan TiO₂. Teradsorbsinya gugus ini dapat menyebabkan terbentuknya jarak antara pita valensi dengan pita konduksi semakin jauh sehingga nilai energi pita yang dihasilkan akan semakin tinggi [12]. Nilai energi celah pita dapat diperoleh dengan menentukan daerah linier *strong cut off* melalui grafik hubungan antara panjang gelombang dengan absorbansi sehingga diperoleh panjang gelombang optimum. Grafik yang telah diperoleh disajikan pada Gambar 2. Energi celah pita komposit hasil sintesis disajikan pada Tabel 2.

Tabel 2. Energi celah pita komposit hasil sintesis

Material	Energi celah pita (eV)			
TiO ₂ standar	3,0526			
TSA	3,1533			
TSB	3,1694			
TSC	3,1613			

Tabel 2 menunjukkan bahwa nilai energi celah pita komposit TSA, TSB, dan TSC lebih tinggi daripada TiO₂, hal ini dikarenakan adanya pengaruh suhu kalsinasi. Suhu kalsinasi sangat mempengaruhi perubahan fasa, komposisi dan ukuran kristal. Suhu kalsinasi yang meningkat menyebabkan terjadinya perubahan struktur kristal TiO₂ dari fasa anatase menjadi rutil sehingga komposisi fasa anatase yang dihasilkan semakin kecil.

Suhu kalsinasi yang meningkat akan menyebabkan difusi atom menjadi lebih cepat sehingga mempercepat kristalinitas dan membentuk ukuran kristal yang lebih kecil. Pada penelitian ini ukuran kristal tidak memiliki pengaruh terhadap energi celah pita yang dihasilkan, hal ini dikarenakan ukuran kristal yang terbentuk lebih dari 10 nm. Ukuran kristal yang lebih dari 10 nm tidak memiliki efek kuantum [13].

Efek kuantum menyebabkan terjadinya pergeseran panjang gelombang ke arah yang lebih pendek sehingga energi celah pita yang dihasilkan akan semakin tinggi. Pergeseran panjang gelombang ini juga disebabkan oleh modifikasi struktur elektronik. Penambahan SiO₂ pada fotokatalis TiO₂ mengakibatkan terjadinya eksitasi elektron pada pita konduksi sehingga keadaan dasar pita konduksi akan bergeser ke level energi yang lebih tinggi. Pergeseran ini mengakibatkan jarak antara pita valensi dan pita konduksi semakin besar. Jarak yang semakin besar ini menandakan bahwa energi celah pita yang dihasilkan juga tinggi [14].

Hasil analisis spektrofotometer FTIR

Hasil karakterisasi gugus fungsional komposit hasil sintesisTiO₂-SiO₂ disajikan pada Gambar 3.

Gambar 3. Spektra FTIR: (a) TiO₂ standar, (b) SiO₂, (c) TSA, (d) TSB dan (e) TSC

Gambar 3 menunjukkan adanya pola serapan yang hampir sama pada komposit TiO_2 -SiO₂ hasil sintesis. Gugus fungsional komposit TiO_2 -SiO₂ hasil sintesis dapat dilihat pada Tabel 3.

Tabel 3. Gugus fungsional komposit hasil sintesis.

		1				
Gugus	Bilangan gelombang (cm ⁻¹)					
Tungsional	TiO ₂ Standar	SiO ₂	TSA	TSB	TSC	
Vibrasi ulur –OH dari Ti- OH atau Si-	3398,43	3398 ,43	3409,7 1	3410, 28	3407,65	
OH Vibrasi tekuk						
–OH dari Ti- OH atau Si-	1634,68	1634 ,68	1642,4 3	1640, 87	1642,49	
Vibrasi ulur asimetris Si- O dari		1106 ,40	1095,5 0	1093, 68	1100,50	
Si-O-Si Vibrasi ulur simetris Si-O dari	-	804, 70	795,01	799,2 9	796,53	
Si-O-Si Ikatan Ti-O- Si			962,50	963,6 7	965,76	

Tabel 3 menunjukkan bahwa terdapat serapan pada frekuensi 3500-3300 cm⁻¹ yang merupakan vibrasi ulur -OH dari gugus Si-OH dan Ti-OH. Bilangan gelombang yang dihasilkan pada daerah serapan ini untuk masing-masing komposit TiO₂, TSA, TSB dan TSC yaitu: 3398,43 cm⁻¹, 3409,71cm⁻¹, 3410,28 cm⁻¹ dan 3407,65 cm⁻¹. Komposit TiO₂-SiO₂ memiliki bilangan gelombang yang lebih besar dibandingkan TiO₂, hal ini dikarenakan SiO₂ telah tersubstitusi pada TiO₂. Frekuensi 1650-1610 menunjukkan bahwa terdapat pita serapan pada komposit TiO₂, TSA, TSB dan TSC masing-masing sebesar: 1634,68 cm⁻¹, 1642,43 cm⁻¹, 1640,87 cm⁻¹ dan 1642,49 cm⁻¹. Serapan tersebut merupakan vibrasi tekuk -OH yang berasal dari Ti-OH. Vibrasi asimetris Si-O dari Si-O-Si muncul pada frekuensi 1200-900 cm⁻¹, hal ini diperlihatkan oleh SiO₂, TSA, TSB dan TSC pada panjang gelombang: 1106,40 cm⁻¹, 1095,50 cm⁻¹, 1093,68 cm⁻¹dan 1100,50 cm⁻¹. Penurunan bilangan gelombang ini terjadi karena dehidrasi akibat suhu kalsinasi. Serapan ini diperkuat dengan munculnya bilangan gelombang 804,70 cm⁻¹, 795,01 cm⁻¹, 799,29 cm⁻¹ dan 796,53 cm⁻¹ untuk SiO₂, TSA, TSB, dan TSC yang merupakan vibrasi simetris Si-O dari Si-O-Si. Bilangan gelombang 962,50 cm⁻¹, 963,67 cm⁻¹, dan 965,76 cm⁻¹ untuk masing-masing komposit TSA, TSB, dan TSC, menunjukkan adanya ikatan Ti-O-Si. Adanya ikatan Ti-O-Si menunjukkan bahwa komposit TiO₂- SiO₂ telah terbentuk.

Berdasarkan hasil kajian data FTIR dan XRD yang telah dilakukan menunjukkan bahwa komposit TiO₂-SiO₂ telah terbentuk. Identifikasi gugus fungsional menggunakan FTIR menunjukkan bahwa adanya pita serapan pada bilangan gelombang 962-965 cm⁻¹. Pita serapan ini menunjukkan adanya ikatan Ti-O-Si. Terbentuknya komposit TiO₂-SiO₂ juga dapat dilihat dari kesamaan sudut difraksi yang dihasilkan dari pengukuran XRD. Sudut difraksi yang dihasilkan komposit TiO₂-SiO₂ memiliki kesamaan dengan kartu standar JCPDS TiO₂ dan SiO₂. Hal ini menandakan bahwa komposit telah mengandung kedua oksida pembentuknya.

PENUTUP

Simpulan

Komposit TiO₂-SiO₂ hasil sintesis dengan suhu kalsinasi 300-500°C memiliki karakteristik yang berbedabeda. Fotokatalis TiO₂-SiO₂ dengan suhu kalsinasi 400°C memiliki karakteristik terbaik yaitu komposisi fasa anatase 84,6481%%, rutil 0,4746%, dan *brookite* 14,8773%. Ukuran kristal komposit TiO₂-SiO₂ yang disintesis pada suhu kalsinasi 300°, 400°, dan 500°C berturut-turut 23,6464 nm, 22,8582 nm, dan 20,7802 nm. Energi celah pita yang dihasilkan komposit TiO₂-SiO₂ yang disintesis pada suhu kalsinasi 300°, 400°, dan 500°C berturut turut 3,1533 eV, 3,1694 eV, dan 3,1623 eV.

DAFTAR PUSTAKA

- Rahmayeni., Stiadi, Y., Zulhadjri. 2013. Fotokatalis Komposit Magnetik TiO₂-MnFe₂O₄ Prosiding Semirata FMIPA Universitas Lampung.
- Gunlazuardi, Januzi. 2001. Fotokatalis pada Permukaan TiO₂: Aspek Fundamental dan Aplikasinya. *Prosiding Seminar Nasional Himpunan Kimia Indonesia*.
- Hidaka, H., Takayoshi K., Teruo K., and Nick S. 2004. Dynamics and mechanistic features in the photocatalyzed oxidation of disulfonated anionic surfactants on the surface of UV-irradiated titania nanoparticles. *New J. Chem.* 28, 1100 - 1106, DOI: 10.1039/b402583k.
- Chen, Yi., Wang, K., Lou, L. 2003. Photodegradation of Dye Pollutants on Silica Gel Supported TiO₂ Particles Under Visible Light Irradiation. *Journal of Photochemistry and Photobiology A: Chemistry* 163 (2004) 281–287.

- Aguado, J., Grieken, R.V., Lopez-Munoz, M-J., Marugan, J. 2006. A Comprehensive Study of the Synthesis, Characterization and Activity of TiO₂ and Mixed TiO₂/SiO₂ Photocatalysts. *Applied Catalysis A: general*, 321: 202-212.
- 6. Londeree, D.J. 2002. *Silica-titania Composites for Water Treatment*. Thesis presented to the graduate school of the University of Florida.
- Kunarti, E.S., Wahyuni, E.T., Hermawan, F.E. 2009. Pengujian Aktivitas Komposit Fe₂O₃-SiO₂ Sebagai Fotokatalis Pada Fotodegradasi 4-Klorofenol (The Activity Of Fe₂O₃-SiO₂ Composite As Photocatalyst On 4-Chlorophenol Photodegradation). J. Manusia Dan Lingkungan, Vol.16 No.1. Maret 2009: 54-64.
- Zhang, Y., Weidenkaff, A., and Reller, A. 2001. Mesoporous Structure and Phase Transition Of Nanocrystalline TiO₂. *Materials Letters*, Vol. 3429.
- 9. Yu, J., Yu, J.C., Leung, M.K-P., Ho, W., Cheng, B., Xiujian., Zhao, J. 2003. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructure of bimodal mesoporous titania. *Journal of Catalysis*, 217, 69-78.
- 10. Monshi, A., Foroughi, M.R., Monshi, M.R. 2012. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size using XRD. *World Journal of Nano Science and Engineering*, 2, 154-160.
- Wijaya, K., Tahir, I., Haryanti, N. 2005. Sintesis Fe₂O₃-Montmorilonit dan Aplikasinya sebagai Fotokatalis untuk Degradasi Zat Pewarna Congo Red. *Indo. J. Chem.*, 5 (1), 41 – 47.
- Septiana, Wilman. 2007. Sintesa Nanokristal Mesopori TiO₂ dengan Metode Sol-Gel. *Skripsi*. Program Studi Teknik Fisika, FTI, ITB.
- 13. Lee, H.S., Woo, C.S., Youn, B.K., Kim, S.Y., Oh, S.T., Sung, Y.E., Lee, H.I. 2005. Band Gap Modulation of TiO₂ and its Effect on the Activity in Photocatalytic Oxidation of 2-Isopropyl-6-Methyl-4-Pyrimidinol. *Topics in Catalysis*. Vol, 35. Nos, 3-4.
- 14. Qiu, M.X., Ye, Z.Z., He, H.P., Zhang, Y.Z., Gu, X.Q., Zhu, L.P., Zhao, B.H. 2007. Effect of Mg Content on Structural, Electrical, and Optical Properties of Li Doped Zn_{1-x}Mg_xO Thin Films. *Applied Physics Letter*, 90, 182116.

geri Surabaya