Effect of Extraction Time Variation on the Yield and Total Curcuminoid Content of 96% Ethanol Extract of Curcuma heyneana Obtained by Microwave-Assisted Extraction

Main Article Content

Mutia Nur Oktavia
Hanif Rifqi Prasetyawan

Abstract

This study aimed to evaluate the effect of extraction time variations on the yield and total curcuminoids of 96% ethanol extract of temu giring (Curcuma heyneana) using the Microwave-Assisted Extraction (MAE) method. Extraction was performed at 20, 60, 120, and 150 seconds using an 800-watt microwave with a 1:10 (w/v) solvent ratio. Yield was calculated based on total solids, while total curcuminoids were quantified using UV-Vis spectrophotometry at 469 nm. The results showed an increase in yield from 2.40% (20 s) to 7.52% (150 s) and total curcuminoids from 2.3962 µg/mL to 5.9593 µg/mL. Statistical analysis indicated a significant difference between treatments (****p < 0, 0001). Based on the tested time range 150-second exteaction time was identified as optimum, maximizing cell rupture and solvent diffusion without compromising thermal stability of curcuminoids. Thus, extraction time plays a key role in optimizing green extraction of temu giring.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nur Oktavia, M., & Hanif Rifqi Prasetyawan. (2025). Effect of Extraction Time Variation on the Yield and Total Curcuminoid Content of 96% Ethanol Extract of Curcuma heyneana Obtained by Microwave-Assisted Extraction. Unesa Journal of Chemistry, 14(2), 63–69. https://doi.org/10.26740/ujc.v14n2.p63-69
Section
Articles

References

[1] P. Sugita, S. O. Firdaus, A. Ilmiawati, and D. U. C. Rahayu, “Curcumenol: A Guaiane-Type Sesquiterpene from Indonesian Curcuma heyneana Rhizome and it’s Antibacterial Activity Towards Staphylococcus Aureus and Escherichia Coli” Journal of Chemical and Pharmaceutical Research, vol. 10, no. 6, pp. 68-75, 2018.

[2] M. I. Sulistyowaty, F. A. Fajrin, M. R. F. Pratama, D. Setyawan, A. W. Indrianingsih, G. S. Putra, S. A. H. Zidan, T. Yamauchi, and K. Matsunami, “Anti-inflammatory Potential of Curcuma heyneana: An in vitro and in silico Investigation,” Pharmacia, vol. 71, pp. 1–11, 2024, doi: 10.3897/pharmacia.71.e120886.

[3] F.A. Fajrin, M. I. Sulistyowaty, M. L. Ghiffary, S. A. Zuhra, W. R. Panggalih, D. K. Pratoko, F. M. Christianty, K. Matsunami, and A. W. Indrianingsih, “Immunomodulatory Effect from Ethanol Extract and Ethyl Acetate Fraction of Curcuma heyneana Valeton and Zijp: Transient Receptor Vanilloid Protein Approach,” Heliyon, vol. 9, no. 5, 2023, Art. no. e15582, doi: 10.1016/j.heliyon.2023.e15582.

[4] C. F. Santoso, D. R. Rahmawati, N, Nugraheni, M. R. P. Adisusilo, D. Maharani, A. Hermawan, and E. Meiyanto, “Chemopreventive Properties Curcuma heyneana Rhizome Ethanolic Extract on Hepatocellular Carcinoma Cells, JHH-4,” Indonesian Journal of Cancer Chemoprevention, vol. 15, no. 1 pp. 40 – 49, 2024, doi:

10.14499/indonesianjcanchemoprev15iss1pp40-49

[5] S. Sugiandi, K. Afriani, A. Hamidi, dan G. Maulia, “Pengaruh Pelarut dan Jenis Ekstrak Terhadap Kadar Kurkumin dalam Simplisia Kunyit dan Temulawak secara Spektrofotometri Sinar Tampak,” WARTA AKAB, vol. 45, no. 2, pp. 6-11, 2021, doi: 10.55075/wa.v45i2.48.

[6] A. Septiana, and E. Wuryatmo, “Effect of Ethanol Concentration and Extraction Time with Microwave Assisted Extraction on Antioxidant Activity of Temulawak-Extract (Curcuma Xanthorrhiza.Roxb),” Journal of Functional Food and Nutraceutical, vol. 3, no. 2, pp. 63–69, 2022, doi: 10.33555/jffn.v3i2.86.

[7] T. D. Beshah, M. A. Fekry Saad, S. E. Gazar, M. A. Farag, “Curcuminoids: A Multi-faceted Review of Green Extraction Methods and Solubilization Approaches to Maximize Their Food and Pharmaceutical Applications,” Advances in Sample Preparation, vol. 13, Feb. 2025, Art. no. 100159, doi: 10.1016/j.sampre.2025.100159.

[8] M. Yaman, S. N. Arslan, G. Gençay, E. Nemli, M. Y. Peker, F. B. Şen, E. Capanoglu, M. Bener, and R. Apak, “Optimization and Modeling of Ultrasound‐ and Microwave‐Assisted Extraction of Turmeric to Efficiently Recover Curcumin and Phenolic Antioxidants Followed by Food Enrichment to Enhance Health‐Promoting Effects,” Food Science & Nutrition, vol. 13, no. 3, 2025, Art. no. e70093, doi: 10.1002/fsn3.70093.

[9] A. A. Bin Mokaizh, A. H. Nour, & C. I. Ukaegbu, “Microwave-Assisted Extraction of Phenolic Compounds from Commiphora gileadensis Leaf and Their Characterization,” Results in Engineering, vol. 24, 2024, Art. no. 102892, doi: 10.1016/j.rineng.2024.102892.

[10] F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, And M. Abert-Vian, “Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A review,” Ultrasonics Sonochemistry, vol 34, pp. 540–560, 2017, doi: 10.1016/j.ultsonch.2016.06.035.

[11] Z. Ciğeroğlu, M. Bayramoğlu, Ş. İ. Kırbaşlar, & S. Şahin, "Comparison of Microwave-Assisted Techniques for the Extraction of Antioxidants from Citrus paradisi Macf. Biowastes," Journal of Food Science and Technology, vol 58, no. 3, pp. 1190–1198, 2021, doi: 10.1007/s13197-020-04632-x.

[12] M. Jurić, N. Golub, E. Galić, K. Radić, L. Maslov Bandić, and D. Vitali Čepo, "Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy," Antioxidants, vol. 14, no. 6, 2025, doi: 10.3390/antiox14060722.

[13] H. López-Salazar, B. H. Camacho-Díaz, M. L. A. Ocampo, A. R. Jiménez-Aparicio, "Microwave-Assisted Extraction of Functional Compounds from Plants: A Review," BioResources, vol. 18, no. 3, pp. 6614-6638, 2023, doi: 10.15376/biores.18.3.Lopez-Salazar.

[14] K. K. Majumder, J. B. Sharma, M. Kumar, S. Bhatt, and V Saini, “Development and Validation of UV-Visible Spectrophotometric Method for The Estimation of Curcumin in Bulk and Pharmaceutical Formulation,” Pharmacophore, vol. 11, no. 1, pp. 115-121, 2020.

[15] A. Sahal, A. Hussain, R. Mishra, S. Pandey, A. Dobhal, W. Ahmad, V. Kumar, U. C. Lohani, and S. Kumar, “Microwave-assisted Extraction of Bioactive Compounds from Urtica dioica using Solvent-based Process Optimization and Characterization,” Scientific Reports, vol. 15, no. 1, 2025, Art. no. 25375, doi: 10.1038/s41598-025-09855-6

[16] R. Samanta, and M. Ghosh, “Optimization of Microwave-assisted Extraction Technique for Flavonoids and Phenolics from the Leaves of Oroxylum indicum (L.) Kurtz Using Taguchi L9 Orthogonal Design,” Pharmacognosy Magazine, vol. 19 no. 1, pp. 97–104. 2023, doi: 10.1177/09731296221137407.

[17] R. A. Sharma, et al., “Curcumin Content and its Quantification: A Review,” Critical Reviews in Food Science and Nutrition, vol. 55, no. 7, pp. 929–957, 2015, doi: 10.1080/10408398.2012.692736.

[18] R. Singh, et al., “Analytical Methods for Estimation of Curcumin in Turmeric,” Journal of Applied Pharmaceutical Science, vol. 9, no. 6, pp. 124–132, 2019, doi: 10.7324/JAPS.2019.90616.

[19] D. Iswandono, et al., “Validasi metode spektrofotometri UV untuk analisis kurkumin dalam methanol,” Jurnal Farmasi Indonesia, vol. 13, no. 2, 2018.

[20] Z. Ding, et al., “Solvent Effect on The Spectrophotometric Determination of Curcumin,” Food Chemistry, vol. 310, 2020, Art. no. 125974, doi: 10.1016/j.foodchem.2019.125974.

[21] H. T. Nguyen, et al., “Spectrophotometric Determination of Curcumin: Effect of pH and Stability,” Analytical Letters, vol. 54, no. 10, pp. 1675–1687, 2021, doi: 10.1080/00032719.2020.1817610.

[22] F. Galimany-Rovira, P. Pérez-Lozano, E. García-Montoya, M. Miñarro-Carmona, J. R. Ticó-Grau, and J. M. Suñé-Negre, “Optimization and Validation of a Fast UPLC Method for Simultaneous Determination of Hydroquinone, Kojic Acid, Octinoxate, Avobenzone, BHA, and BHT,” Journal of AOAC INTERNATIONAL, vol. 100, no. 1, pp. 1–7, 2017, doi: 10.5740/jaoacint.16-0104.

[23] H. T. Nguyen, et al., “Spectrophotometric Determination of Curcumin: Effect of pH and Stability,” Analytical Letters, vol. 54, no. 10, pp. 1675–1687, 2021, doi: 10.1080/00032719.2020.1817610.

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.