Effect of Extraction Time Variation on the Yield and Total Curcuminoid Content of 96% Ethanol Extract of Curcuma heyneana Obtained by Microwave-Assisted Extraction
Main Article Content
Abstract
This study aimed to evaluate the effect of extraction time variations on the yield and total curcuminoids of 96% ethanol extract of temu giring (Curcuma heyneana) using the Microwave-Assisted Extraction (MAE) method. Extraction was performed at 20, 60, 120, and 150 seconds using an 800-watt microwave with a 1:10 (w/v) solvent ratio. Yield was calculated based on total solids, while total curcuminoids were quantified using UV-Vis spectrophotometry at 469 nm. The results showed an increase in yield from 2.40% (20 s) to 7.52% (150 s) and total curcuminoids from 2.3962 µg/mL to 5.9593 µg/mL. Statistical analysis indicated a significant difference between treatments (****p < 0, 0001). Based on the tested time range 150-second exteaction time was identified as optimum, maximizing cell rupture and solvent diffusion without compromising thermal stability of curcuminoids. Thus, extraction time plays a key role in optimizing green extraction of temu giring.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] P. Sugita, S. O. Firdaus, A. Ilmiawati, and D. U. C. Rahayu, “Curcumenol: A Guaiane-Type Sesquiterpene from Indonesian Curcuma heyneana Rhizome and it’s Antibacterial Activity Towards Staphylococcus Aureus and Escherichia Coli” Journal of Chemical and Pharmaceutical Research, vol. 10, no. 6, pp. 68-75, 2018.
[2] M. I. Sulistyowaty, F. A. Fajrin, M. R. F. Pratama, D. Setyawan, A. W. Indrianingsih, G. S. Putra, S. A. H. Zidan, T. Yamauchi, and K. Matsunami, “Anti-inflammatory Potential of Curcuma heyneana: An in vitro and in silico Investigation,” Pharmacia, vol. 71, pp. 1–11, 2024, doi: 10.3897/pharmacia.71.e120886.
[3] F.A. Fajrin, M. I. Sulistyowaty, M. L. Ghiffary, S. A. Zuhra, W. R. Panggalih, D. K. Pratoko, F. M. Christianty, K. Matsunami, and A. W. Indrianingsih, “Immunomodulatory Effect from Ethanol Extract and Ethyl Acetate Fraction of Curcuma heyneana Valeton and Zijp: Transient Receptor Vanilloid Protein Approach,” Heliyon, vol. 9, no. 5, 2023, Art. no. e15582, doi: 10.1016/j.heliyon.2023.e15582.
[4] C. F. Santoso, D. R. Rahmawati, N, Nugraheni, M. R. P. Adisusilo, D. Maharani, A. Hermawan, and E. Meiyanto, “Chemopreventive Properties Curcuma heyneana Rhizome Ethanolic Extract on Hepatocellular Carcinoma Cells, JHH-4,” Indonesian Journal of Cancer Chemoprevention, vol. 15, no. 1 pp. 40 – 49, 2024, doi:
10.14499/indonesianjcanchemoprev15iss1pp40-49
[5] S. Sugiandi, K. Afriani, A. Hamidi, dan G. Maulia, “Pengaruh Pelarut dan Jenis Ekstrak Terhadap Kadar Kurkumin dalam Simplisia Kunyit dan Temulawak secara Spektrofotometri Sinar Tampak,” WARTA AKAB, vol. 45, no. 2, pp. 6-11, 2021, doi: 10.55075/wa.v45i2.48.
[6] A. Septiana, and E. Wuryatmo, “Effect of Ethanol Concentration and Extraction Time with Microwave Assisted Extraction on Antioxidant Activity of Temulawak-Extract (Curcuma Xanthorrhiza.Roxb),” Journal of Functional Food and Nutraceutical, vol. 3, no. 2, pp. 63–69, 2022, doi: 10.33555/jffn.v3i2.86.
[7] T. D. Beshah, M. A. Fekry Saad, S. E. Gazar, M. A. Farag, “Curcuminoids: A Multi-faceted Review of Green Extraction Methods and Solubilization Approaches to Maximize Their Food and Pharmaceutical Applications,” Advances in Sample Preparation, vol. 13, Feb. 2025, Art. no. 100159, doi: 10.1016/j.sampre.2025.100159.
[8] M. Yaman, S. N. Arslan, G. Gençay, E. Nemli, M. Y. Peker, F. B. Şen, E. Capanoglu, M. Bener, and R. Apak, “Optimization and Modeling of Ultrasound‐ and Microwave‐Assisted Extraction of Turmeric to Efficiently Recover Curcumin and Phenolic Antioxidants Followed by Food Enrichment to Enhance Health‐Promoting Effects,” Food Science & Nutrition, vol. 13, no. 3, 2025, Art. no. e70093, doi: 10.1002/fsn3.70093.
[9] A. A. Bin Mokaizh, A. H. Nour, & C. I. Ukaegbu, “Microwave-Assisted Extraction of Phenolic Compounds from Commiphora gileadensis Leaf and Their Characterization,” Results in Engineering, vol. 24, 2024, Art. no. 102892, doi: 10.1016/j.rineng.2024.102892.
[10] F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, And M. Abert-Vian, “Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A review,” Ultrasonics Sonochemistry, vol 34, pp. 540–560, 2017, doi: 10.1016/j.ultsonch.2016.06.035.
[11] Z. Ciğeroğlu, M. Bayramoğlu, Ş. İ. Kırbaşlar, & S. Şahin, "Comparison of Microwave-Assisted Techniques for the Extraction of Antioxidants from Citrus paradisi Macf. Biowastes," Journal of Food Science and Technology, vol 58, no. 3, pp. 1190–1198, 2021, doi: 10.1007/s13197-020-04632-x.
[12] M. Jurić, N. Golub, E. Galić, K. Radić, L. Maslov Bandić, and D. Vitali Čepo, "Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy," Antioxidants, vol. 14, no. 6, 2025, doi: 10.3390/antiox14060722.
[13] H. López-Salazar, B. H. Camacho-Díaz, M. L. A. Ocampo, A. R. Jiménez-Aparicio, "Microwave-Assisted Extraction of Functional Compounds from Plants: A Review," BioResources, vol. 18, no. 3, pp. 6614-6638, 2023, doi: 10.15376/biores.18.3.Lopez-Salazar.
[14] K. K. Majumder, J. B. Sharma, M. Kumar, S. Bhatt, and V Saini, “Development and Validation of UV-Visible Spectrophotometric Method for The Estimation of Curcumin in Bulk and Pharmaceutical Formulation,” Pharmacophore, vol. 11, no. 1, pp. 115-121, 2020.
[15] A. Sahal, A. Hussain, R. Mishra, S. Pandey, A. Dobhal, W. Ahmad, V. Kumar, U. C. Lohani, and S. Kumar, “Microwave-assisted Extraction of Bioactive Compounds from Urtica dioica using Solvent-based Process Optimization and Characterization,” Scientific Reports, vol. 15, no. 1, 2025, Art. no. 25375, doi: 10.1038/s41598-025-09855-6
[16] R. Samanta, and M. Ghosh, “Optimization of Microwave-assisted Extraction Technique for Flavonoids and Phenolics from the Leaves of Oroxylum indicum (L.) Kurtz Using Taguchi L9 Orthogonal Design,” Pharmacognosy Magazine, vol. 19 no. 1, pp. 97–104. 2023, doi: 10.1177/09731296221137407.
[17] R. A. Sharma, et al., “Curcumin Content and its Quantification: A Review,” Critical Reviews in Food Science and Nutrition, vol. 55, no. 7, pp. 929–957, 2015, doi: 10.1080/10408398.2012.692736.
[18] R. Singh, et al., “Analytical Methods for Estimation of Curcumin in Turmeric,” Journal of Applied Pharmaceutical Science, vol. 9, no. 6, pp. 124–132, 2019, doi: 10.7324/JAPS.2019.90616.
[19] D. Iswandono, et al., “Validasi metode spektrofotometri UV untuk analisis kurkumin dalam methanol,” Jurnal Farmasi Indonesia, vol. 13, no. 2, 2018.
[20] Z. Ding, et al., “Solvent Effect on The Spectrophotometric Determination of Curcumin,” Food Chemistry, vol. 310, 2020, Art. no. 125974, doi: 10.1016/j.foodchem.2019.125974.
[21] H. T. Nguyen, et al., “Spectrophotometric Determination of Curcumin: Effect of pH and Stability,” Analytical Letters, vol. 54, no. 10, pp. 1675–1687, 2021, doi: 10.1080/00032719.2020.1817610.
[22] F. Galimany-Rovira, P. Pérez-Lozano, E. García-Montoya, M. Miñarro-Carmona, J. R. Ticó-Grau, and J. M. Suñé-Negre, “Optimization and Validation of a Fast UPLC Method for Simultaneous Determination of Hydroquinone, Kojic Acid, Octinoxate, Avobenzone, BHA, and BHT,” Journal of AOAC INTERNATIONAL, vol. 100, no. 1, pp. 1–7, 2017, doi: 10.5740/jaoacint.16-0104.
[23] H. T. Nguyen, et al., “Spectrophotometric Determination of Curcumin: Effect of pH and Stability,” Analytical Letters, vol. 54, no. 10, pp. 1675–1687, 2021, doi: 10.1080/00032719.2020.1817610.