UNJUK KERJA KOMPOSIT TIO₂/PANI UNTUK DEGRADASI PEWARNA METHYLENE BLUE
DOI:
https://doi.org/10.26740/ifi.v14n2.p234-242Keywords:
TiO₂, PANI, fotokatalis, methylene blue, photocatalystAbstract
Abstrak
Pencemaran air akibat limbah industri, khususnya dari zat pewarna sintetis seperti methylene blue,
merupakan masalah lingkungan signifikan yang memerlukan solusi efektif dan berkelanjutan. Fotokatalisis
berbasis semikonduktor telah banyak dikembangkan sebagai metode efisien untuk degradasi polutan.
Penelitian ini mengkaji sintesis nanopartikel titanium dioksida (TiO₂) dan pembentukan komposit
TiO₂/polianilin (PANI) melalui metode polimerisasi in situ. Rancangan penelitian mencakup proses sintesis,
karakterisasi struktur dan gugus fungsi menggunakan XRD, FTIR, dan spektrofotometri UV-Vis, serta
pengujian aktivitas fotokatalitik terhadap degradasi methylene blue. Hasil menunjukkan bahwa komposit
TiO₂/PANI memiliki fasa anatase dominan berdasarkan analisis XRD, serta keberadaan gugus fungsi khas
PANI dan interaksinya dengan TiO₂ yang terkonfirmasi melalui spektrum FTIR. Uji fotokatalitik
memperlihatkan efisiensi degradasi larutan methylene blue mencapai 98,94% pada 60 menit penyinaran UV
dan meningkat hingga 99,69% setelah 180 menit, menandakan aktivitas fotokatalitik yang cepat dan hampir
mencapai kondisi optimum. Temuan ini mengindikasikan potensi tinggi komposit TiO₂/PANI sebagai
fotokatalis efektif untuk pengolahan limbah zat pewarna secara efisien dan berkelanjutan.
Abstract
Water pollution caused by industrial waste, particularly from synthetic dyes such as methylene blue, is a
significant environmental issue that requires effective and sustainable solutions. Semiconductor-based photocatalysis has
been extensively developed as an efficient method for pollutant degradation. This study investigates the synthesis of
titanium dioxide (TiO₂) nanoparticles and the formation of TiO₂/polyaniline (PANI) composites via in situ
polymerization. The research design includes synthesis processes, structural and functional group characterization using
XRD, FTIR, and UV-Vis spectrophotometry, as well as photocatalytic activity testing for methylene blue degradation.
Results indicate that the TiO₂/PANI composite predominantly exhibits the anatase phase as confirmed by XRD analysis,
along with characteristic PANI functional groups and their interaction with TiO₂ verified by FTIR spectra. Photocatalytic
tests demonstrated a degradation efficiency of 98.94% after 60 minutes of UV irradiation, which further increased to
99.69% after 180 minutes, indicating rapid photocatalytic activity approaching an optimal condition. These findings
suggest that the TiO₂/PANI composite holds great potential as an effective photocatalyst for the efficient and sustainable
treatment of dye-containing wastewater.
Downloads
References
[1] N. N. A. Hasim, N. H. M. Idris, H. H. Hamzah, G. Urstöger, B. Schrode, and H. L. Lee, “Green technique of visible light active titanium dioxide nanoparticles using starch for the degradation of organic pollutant,” Desalin. Water Treat., vol. 287, pp. 46–58, 2023, doi: 10.5004/dwt.2023.29346.
[2] S. Kataki, S. Chatterjee, M. G. Vairale, S. Sharma, and S. K. Dwivedi, “Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission,” Resour. Conserv. Recycl., vol. 164, p. 105156, Jan. 2021, doi: 10.1016/j.resconrec.2020.105156.
[3] N. Ramesh et al., “Progress in photocatalytic degradation of industrial organic dye by utilising the silver doped titanium dioxide nanocomposite,” Heliyon, vol. 10, no. 24, p. e40998, Dec. 2024, doi: 10.1016/j.heliyon.2024.e40998.
[4] M. Mehenaoui, N. Chekir, D. Tassalit, M. Brachemi, N. Bensadok, and S. E. I. Lebouachera, “Novel green synthesis of TiO2 from tea leaves: removal of methylene blue for photocatalytic application,” Eur. Phys. J. Plus, vol. 139, no. 12, p. 1108, Dec. 2024, doi: 10.1140/epjp/s13360-024-05849-x.
[5] A. K. Sarkar Phyllis, G. Tortora, and I. Johnson, “Photodegradation,” Fairchild Books Dict. Text., 2022, doi: 10.5040/9781501365072.12105.
[6] M. A. Ali and I. M. Maafa, “Recent literature review of Cerium-containing photocatalysts used for methylene blue degradation,” J. Hazard. Mater. Adv., vol. 16, p. 100486, Nov. 2024, doi: 10.1016/j.hazadv.2024.100486.
[7] F. D. Guerra, M. F. Attia, D. C. Whitehead, and F. Alexis, “Nanotechnology for Environmental Remediation: Materials and Applications,” Molecules, vol. 23, no. 7, p. 1760, Jul. 2018, doi: 10.3390/molecules23071760.
[8] T. N. Sucahya, N. Permatasari, A. Bayu, and D. Nandiyanto, “Fotoktalisis untuk Pengolahan Limbah Cair,” J. Integr. Proses, vol. 6, no. 1, pp. 1–15, 2016.
[9] J. Fan, M. Zhang, J. Liu, Y. Lei, M. G. A. Kaya, and K. Tang, “Green synthesis of silver-titanium dioxide nanoparticles using chestnut extract for the preservation of leather artifacts,” J. Cult. Herit., vol. 69, pp. 86–93, Sep. 2024, doi: 10.1016/j.culher.2024.08.002.
[10] A. M. Riska and N. P. Putri, “Green Synthesis TiO2 Menggunakan Ekstrak Daun Pepaya ( Carica Papaya L.) sebagai Bioreduktor yang Berpotensi dalam Aplikasi Fotokatalitik Green Synthesis of TiO2 Using Papaya (Carica papaya L.) Leaf Extract as a Bioreductor with Potential in Photocatalyti,” vol. 9, no. 1, pp. 1–7, 2024.
[11] J. Gaur et al., “Photocatalytic degradation of Congo red dye using zinc oxide nanoparticles prepared using Carica papaya leaf extract,” Mater. Today Sustain., vol. 22, p. 100339, Jun. 2023, doi: 10.1016/j.mtsust.2023.100339.
[12] H. Kaur, S. Kaur, J. Singh, M. Rawat, and S. Kumar, “Expanding horizon: Green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application,” Mater. Res. Express, vol. 6, no. 9, p. 095034, Jul. 2019, doi: 10.1088/2053-1591/ab2ec5.
[13] B. Koozegar Kaleji and M. Gorgani, “Comparison of sol-gel and hydrothermal synthesis methods on the structural, optical and photocatalytic properties of Nb/Ag codoped TiO 2 mesoporous nanoparticles,” Int. J. Environ. Anal. Chem., vol. 102, no. 14, pp. 3357–3372, Nov. 2022, doi: 10.1080/03067319.2020.1767096.
[14] N. P. Putri, A. M. Riska, D. H. Kusumawati, and E. Suaebah, “Enhanced Photocatalytic Degradation of Congo Red Dye Using Green-Synthesized TiO2 and PANI/TiO2 with Papaya Leaf as Bio-Reduction,” Trends Sci., vol. 22, no. 2, 2025, doi: 10.48048/tis.2025.9119.
[15] N. Wang, J. Chen, J. Wang, J. Feng, and W. Yan, “Removal of methylene blue by Polyaniline/TiO 2 hydrate: Adsorption kinetic, isotherm and mechanism studies,” Powder Technol., vol. 347, pp. 93–102, Apr. 2019, doi: 10.1016/j.powtec.2019.02.049.
[16] H. AlMohamadi et al., “Photocatalytic Activity of Metal- and Non-Metal-Anchored ZnO and TiO2 Nanocatalysts for Advanced Photocatalysis: Comparative Study,” Catalysts, vol. 14, no. 7, p. 420, Jun. 2024, doi: 10.3390/catal14070420.
[17] S. H. Khabbaz, A. Bagheri, and M. Mousavi-Kamazani, “Synthesis, characterization, and application of MnFe2O4/FeVO4/modified zeolite nanocomposite as an effective photocatalyst for methylene blue degradation and benzothiophene desulfurization,” Heliyon, vol. 11, no. 1, p. e41294, Jan. 2025, doi: 10.1016/j.heliyon.2024.e41294.
[18] T. A. Ria et al., “Photodegradation of Methylene Blue and Methyl Orange Dye in Textile Industry Waste Using Zno Catalyst Supported by Natural Mineral Montmorillonite from South Sulawesi.” 2025. doi: 10.2139/ssrn.5079978.
[19] G. R. Chellammal, V. Elakkiya, and S. Shanmugam, “A new heterojunction nickel aluminate/cerium oxide for the photocatalytic degradation of coloured organic pollutants,” J. Phys. Chem. Solids, vol. 186, p. 111807, Mar. 2024, doi: 10.1016/j.jpcs.2023.111807.
[20] C. Zhu et al., “Advanced visible-light driven photocatalyst with enhanced charge separation fabricated by facile deposition of Ag 3 PO 4 nanoparticles on graphene-like h -BN nanosheets,” J. Mol. Catal. A Chem., vol. 424, pp. 135–144, Dec. 2016, doi: 10.1016/j.molcata.2016.08.028.
[21] S. Mazhar et al., “Photocatalytic degradation of methylene blue using polyaniline-based silver-doped zinc sulfide (PANI-Ag/ZnS) composites,” Environ. Sci. Pollut. Res., vol. 29, no. 6, pp. 9203–9217, 2022, doi: 10.1007/s11356-021-16181-7.
[22] N. Turkten, Y. Karatas, and M. Bekbolet, “Preparation of pani modified zno composites via different methods: Structural, morphological and photocatalytic properties,” Water (Switzerland), vol. 13, no. 8, 2021, doi: 10.3390/w13081025.
[23] C. Medjili et al., “Synthesis of novel PANI/PVA-NiCu composite material for efficient removal of organic dyes,” Chemosphere, vol. 313, no. November 2022, p. 137427, 2023, doi: 10.1016/j.chemosphere.2022.137427.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dilla Amalia, Nugrahani Primary Putri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 95
,
PDF Downloads: 43






1.png)