ANALISIS XRD DAN EDX TERHADAP KEBERADAAN FASA-FASA PADA KERAMIK (Mg0,8Zn0,2)TiO3 DENGAN DAN TANPA PENAMBAHAN V2O5

Authors

  • Maulidiya Fadilatul Latifa Universitas Negeri Surabaya
  • Frida Ulfah Ermawati

DOI:

https://doi.org/10.26740/ifi.v14n3.p340-348

Keywords:

keramik MZT02, V2O5, XRD, EDX, fasa teridentifikasi, MZT02 ceramic, identified phase

Abstract

Abstrak

Keramik dielektrik merupakan material penting untuk aplikasi telekomunikasi pada gelombang mikro. MgTiO3 menjadi salah satu material dielektrik yang berpotensi untuk aplikasi tersebut. Agar mendapatkan sifat material yang lebih baik dibandingkan dengan sifat material aslinya, maka salah satu cara yang dapat dilakukan ketika fabrikasi keramik dielektrik adalah dengan menambahkan dopan berupa ion atau liquid additive agent (LAA) yang memenuhi syarat tertentu. Makalah ini bertujuan untuk melaporkan analisis pembentukan fasa-fasa yang terbentuk pada keramik (Mg0,8Zn0,2)TiO3 (disingkat MZT02) dengan dan tanpa penambahan 4 %wt. V2O5 sebagai LAA berdasarkan uji XRD dan EDX. Serbuk MZT02 disintesis dengan metode liquid mixing, dikalsinasi pada suhu 500 °C selama 5 jam. Sebagian serbuk kristalin MZT02 ditambah 4 %wt. V2O5 menggunakan planetary ballmill. Serbuk kristalin dengan dan tanpa V2O5 dikompaksi secara konvensional pada tekanan 8 MPa selama 10 detik menjadi pelet silinder pejal berdiameter 8 mm. Sinter dilakukan pada suhu 1100 °C selama 4 jam sebelum dikarakterisasi. Analisis XRD menunjukkan fasa utama MgTiO3 disertai dengan fasa intermediat Mg2TiO4 pada kedua keramik uji tersebut. Pada keramik MZT02+V2O5, %molar fasa MgTiO3 meningkat sedangkan fasa Mg2TiO4 turun dibandingkan dengan %molar pada keramik MZT02. Data parameter kisi dan volume sel satuan naik pada keramik MZT02+V2O5. Analisis EDX mendeteksi unsur-unsur bahan awal  yang digunakan yaitu Mg, Ti, Zn, dan O pada kedua keramik uji dengan rasio mendekati rasio unsur-unsur pada fasa MgTiO3 dan Mg2TiO4. Dengan demikian, analisis fasa-fasa pada keramik uji berdasarkan uji XRD dan EDX saling mendukung satu sama lain.

 

Abstract

Dielectric ceramics are important materials for telecommunication applications in microwaves. MgTiO3 is one of the dielectric materials that has the potential for these applications. In order to obtain better material properties compared to the original material properties, one method that can be done when fabricating dielectric ceramics is by adding dopants in the form of ions or liquid additive agents (LAA) that meet certain requirements. This study focused on analyzing the phase formation in (Mg0.8Zn0.2)TiO3 ceramics (referred to as MZT02) both without and with the addition of 4 wt.% V2O5 as a LAA based on XRD and EDX tests. MZT02 powder was synthesized by the liquid mixing method, calcined at 500 °C for 5 hours. Part of the crystalline MZT02 powder was added with 4 wt.% V2O5 using a planetary ball mill. Crystalline powders with and without V2O5 were conventionally compacted at 8 MPa for 10 seconds into 8 mm solid cylindrical pellets. Prior to characterization, the pellets were sintered at 1100 °C for 4h. XRD confirmed that MgTiO3 was the primary phase, with Mg2TiO4 appearing as a secondary phase in both ceramic samples. In MZT02+V2O5 ceramics, the molar % of MgTiO3 phase increased while the molar % of Mg2TiO4 phase decreased compared to the molar % of MZT02 ceramics. Lattice parameter data and unit cell volume increased in MZT02+V2O5 ceramics. EDX analysis detected the elements of the starting materials used, namely Mg, Ti, Zn, and O in both test ceramics with a ratio close to the elemental ratios of MgTiO3 and Mg2TiO4 phases. Thus, the phase analysis in the test ceramics based on XRD and EDX tests supports each other.

Downloads

Download data is not yet available.

References

[1] W. Pan et al., “Structures And Properties Of LiBaF3 Microwave Dielectric Ceramics For ULTCC Applications,” Ceram. Int., vol. 50, no. 21, Part C, pp. 44132–44138, 2024, doi: https://doi.org/10.1016/j.ceramint.2024.08.262.

[2] J. Zhang, Z. Yue, Y. Luo, and L. Li, “MgTiO3/TiO2/MgTiO3: An Ultrahigh-Q and Temperature-Stable Microwave Dielectric Ceramic Through Cofired Trilayer Architecture,” Ceram. Int., vol. 44, no. 17, pp. 21000–21003, 2018, doi: https://doi.org/10.1016/j.ceramint.2018.08.135.

[3] Z. Ren et al., “Enhanced Quality Factor (∼336,800 Ghz) Of MgTiO3 Ceramic by Hf Substitution For Ti-Site,” Ceram. Int., vol. 50, no. 6, pp. 9861–9868, 2024, doi: https://doi.org/10.1016/j.ceramint.2023.12.308.

[4] F. U. Ermawati, Y. Taryana, Y. Sulaeman, Y. N. Wijayanto, N. Sudrajat, and W. A. Adi, “Fabrication and characterization of (Mg0.8Zn0.2)(Ti0.99Sn0.01)O3 ceramics as a 4.0 GHz resonator in dielectric resonator oscillator module,” J. Mater. Sci. Mater. Electron., vol. 34, no. 20, pp. 1–18, 2023, doi: 10.1007/s10854-023-10890-0.

[5] M. Negishi, K. Fujiwara, and A. Tsukazaki, “Formation of Ilmenite-Type Single-Crystalline MgTiO3 Thin Films by Pulsed-Laser Deposition,” AIP Adv., vol. 11, no. 12, 2021, doi: 10.1063/5.0078021.

[6] M. Wang and D. Yan, “Improved Crystalline Structure and Sintering Characteristics of Nonstoichiometric MgTi3 Ceramics by Sol–Gel Method,” J. Sol-Gel Sci. Technol., vol. 97, no. 2, pp. 365–372, 2021, doi: 10.1007/s10971-020-05458-x.

[7] H. S. Magar, A. M. Mansour, and A. B. A. Hammad, “Advancing Energy Storage and Supercapacitor Applications Through The Development Of Li+-Doped MgTiO3 Perovskite Nano-Ceramics,” Sci. Rep., vol. 14, no. 1, pp. 1–18, 2024, doi: 10.1038/s41598-024-52262-6.

[8] N. Rettiningtyas and F. U. Ermawati, “Sintesis Dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3 + 2 wt% Bi2O3 sebagai Bahan Dielektrik Serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter,” Inov. Fis. Indones., vol. 9, no. 2, pp. 25–33, 2020, doi: 10.26740/ifi.v9n2.p25-33.

[9] F. Y. Rostianbudi and F. U. Ermawati, “Fabrikasi dan Karakterisasi Struktur dan Densitas Keramik (Mg0,5Zn0,5)TiO3 + x %wt. Bi2O3 sebagai Kandidat Material Dielektrik,” J. Inov. Fis. Indones., vol. 09, no. 02, pp. 72–77, 2020.

[10] R. L. Sianturi, H. Malau, and R. Sidabutar, “Sintering Fase Cair Tanpa Tekanan pada Material Berbasis Aluminium,” J. Technol. Renew. Adv. Sci., vol. 01, pp. 57–64, 2024.

[11] C. Dong, H. Wang, T. Yan, J. Zhao, J. Xu, and D. Wang, “The Influence of CaF2 Doping on the Sintering Behavior and Microwave Dielectric Properties of CaO-B2O3-SiO2 Glass-Ceramics for LTCC Applications,” Crystals, vol. 13, no. 5, 2023, doi: 10.3390/cryst13050748.

[12] S. Wang et al., “Investigations on Sintering Behavior and Microwave Dielectric Properties of MgNb2O6 Ceramics Doping With LiF,” J. Mater. Sci. Mater. Electron., vol. 32, no. 19, pp. 24320–24327, 2021, doi: 10.1007/s10854-021-06901-7.

[13] X. Jia, S. Mao, L. Tian, S. Chen, G. Li, and W. Gao, “Influence Of B2O3 Doping on Synthesis of MgTiO3 Ceramics From Recycled Magnesia-Hercynite Materials,” Mater. Res. Express, vol. 8, 2021, doi: https://doi.org/10.1088/2053-1591/ac3fde.

[14] Z. Fu, Y. She, C. Chen, C. Li, and Z. Yang, “Microwave Dielectric Property of Low-Fired MgTiO3-Based Ceramics For LTCC Application,” Ferroelectrics, vol. 598, no. 1, pp. 54–60, 2022, doi: 10.1080/00150193.2022.2102821.

[15] Y. Shan, Y. Lu, X. Guo, and H. Zhou, “Microwave Dielectric Properties of V2O5/CeO2 Doped (Mg0.95Ca0.05)TiO3-MgO and Their Application to a Dielectric Filter,” Int. J. Appl. Ceram. Technol., vol. 21, no. 5, pp. 3601–3611, 2024, doi: 10.1111/ijac.14762.

[16] J. Ma, X. Zhang, and Z. Yang, “Effect of Glass Additions on Sintering Behavior and Dielectric Properties of MgTiO3 Ceramics,” Integr. Ferroelectr., vol. 231, no. 1, pp. [1] W. Pan et al., “Structures and Properties of LiBaF3 Microwave Dielectric Ceramics For ULTCC Applications,” Ceram. Int., vol. 50, no. 21, Part C, pp. 44132–44138, 2024, doi: https://doi.org/10.1016/j.ceramint.2024.08.262.

[2] J. Zhang, Z. Yue, Y. Luo, and L. Li, “MgTiO3/TiO2/MgTiO3: An Ultrahigh-Q and Temperature-Stable Microwave Dielectric Ceramic Through Cofired Trilayer Architecture,” Ceram. Int., vol. 44, no. 17, pp. 21000–21003, 2018, doi: https://doi.org/10.1016/j.ceramint.2018.08.135.

[3] Z. Ren et al., “Enhanced Quality Factor (∼336,800 GHz) Of MgTiO3 Ceramic By Hf Substitution For Ti-Site,” Ceram. Int., vol. 50, no. 6, pp. 9861–9868, 2024, doi: https://doi.org/10.1016/j.ceramint.2023.12.308.

[4] F. U. Ermawati, Y. Taryana, Y. Sulaeman, Y. N. Wijayanto, N. Sudrajat, and W. A. Adi, “Fabrication and Characterization Of (Mg0.8Zn0.2)(Ti0.99Sn0.01)O3 Ceramics as a 4.0 GHz Resonator in Dielectric Resonator Oscillator Module,” J. Mater. Sci. Mater. Electron., vol. 34, no. 20, pp. 1–18, 2023, doi: 10.1007/s10854-023-10890-0.

[5] M. Negishi, K. Fujiwara, and A. Tsukazaki, “Formation of Ilmenite-Type Single-Crystalline MgTiO3 Thin Films By Pulsed-Laser Deposition,” AIP Adv., vol. 11, no. 12, 2021, doi: 10.1063/5.0078021.

[6] M. Wang and D. Yan, “Improved Crystalline Structure and Sintering Characteristics of Nonstoichiometric MgTiO3 Ceramics By Sol–Gel Method,” J. Sol-Gel Sci. Technol., vol. 97, no. 2, pp. 365–372, 2021, doi: 10.1007/s10971-020-05458-x.

[7] H. S. Magar, A. M. Mansour, and A. B. A. Hammad, “Advancing Energy Storage and Supercapacitor Applications Through The Development of Li+-doped MgTiO3 Perovskite Nano-Ceramics,” Sci. Rep., vol. 14, no. 1, pp. 1–18, 2024, doi: 10.1038/s41598-024-52262-6.

[8] N. Rettiningtyas and F. U. Ermawati, “Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3 + 2 wt% Bi2O3 Sebagai Bahan Dielektrik Serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter,” Inov. Fis. Indones., vol. 9, no. 2, pp. 25–33, 2020, doi: 10.26740/ifi.v9n2.p25-33.

[9] F. Y. Rostianbudi and F. U. Ermawati, “Fabrikasi dan Karakterisasi Struktur dan Densitas Keramik (Mg0,5Zn0,5)TiO3+x wt.% Bi2O3 Sebagai Kandidat Material Dielektrik,” J. Inov. Fis. Indones., vol. 09, no. 02, pp. 72–77, 2020.

[10] R. L. Sianturi, H. Malau, and R. Sidabutar, “Sintering Fase Cair Tanpa Tekanan pada Material Berbasis Aluminium,” J. Technol. Renew. Adv. Sci., vol. 01, pp. 57–64, 2024.

[11] C. Dong, H. Wang, T. Yan, J. Zhao, J. Xu, and D. Wang, “The Influence of CaF2 Doping on The Sintering Behavior and Microwave Dielectric Properties Of CaO-B2O3-SiO2 Glass-Ceramics For LTCC Applications,” Crystals, vol. 13, no. 5, 2023, doi: 10.3390/cryst13050748.

[12] S. Wang et al., “Investigations on Sintering Behavior and Microwave Dielectric Properties Of MgNb2O6 Ceramics Doping With LiF,” J. Mater. Sci. Mater. Electron., vol. 32, no. 19, pp. 24320–24327, 2021, doi: 10.1007/s10854-021-06901-7.

[13] X. Jia, S. Mao, L. Tian, S. Chen, G. Li, and W. Gao, “Influence of B2O3 Doping on Synthesis of MgTiO3 Ceramics From Recycled Magnesia-Hercynite Materials,” Mater. Res. Express, vol. 8, 2021, doi: https://doi.org/10.1088/2053-1591/ac3fde.

[14] Z. Fu, Y. She, C. Chen, C. Li, and Z. Yang, “Microwave Dielectric Property of Low-Fired MgTiO3-Based Ceramics For LTCC Application,” Ferroelectrics, vol. 598, no. 1, pp. 54–60, 2022, doi: 10.1080/00150193.2022.2102821.

[15] Y. Shan, Y. Lu, X. Guo, and H. Zhou, “Microwave Dielectric Properties of V2O5/CeO2 Doped (Mg0.95Ca0.05)TiO3-MgO and Their Application to a Dielectric Filter,” Int. J. Appl. Ceram. Technol., vol. 21, no. 5, pp. 3601–3611, 2024, doi: 10.1111/ijac.14762.

[16] J. Ma, X. Zhang, and Z. Yang, “Effect of Glass Additions on Sintering Behavior and Dielectric Properties of MgTiO3 Ceramics,” Integr. Ferroelectr., vol. 231, no. 1, pp. 126–132, 2023, doi: 10.1080/10584587.2022.2143188.

[17] L. Ding, H. Ma, and M. Song, “Dielectric Properties of Low-Fired MgTi0.9Zr0.1O3 Ceramics with LBB Additive for LTCC Applications,” Integr. Ferroelectr., vol. 232, no. 1, pp. 74–80, 2023, doi: 10.1080/10584587.2023.2173443.

[18] S. N. Maulana Ishak and F. U. Ermawati, “Characterization of (Mg0.6Zn0.4)TiO3 Ceramics as Dielectric Resonator Materials in Microwave Frequencies,” Spektra J. Fis. dan Apl., vol. 7, no. 1, 2022, doi: 10.21009/spektra.071.02.

[19] S. A. Hermadianti and F. U. Ermawati, “Pengaruh Waktu Tahan Kalsinasi terhadap Komposisi Fasa dan Ukuran Kristalit Serbuk Mg(Ti0,99Sn0,01)O3 Hasil Sintesis dengan Metode Pencampuran Larutan,” Inov. Fis. Indones., vol. 12, no. 2, pp. 1–9, 2023, doi: 10.26740/ifi.v12n2.p1-9.

[20] Z. Li, X. Mao, D. Feng, and M. Li, “Prediction of Perovskite Oxygen Vacancies For Oxygen Electrocatalysis at Different Temperatures,” Nat. Commun., pp. 1–12, 2024, doi: 10.1038/s41467-024-53578-7.

[21] R. B. Wexler, G. S. Gautam, E. B. Stechel, and E. A. Carter, “Factors Governing Oxygen Vacancy Formation in Oxide Perovskites,” J. Am. Chem. Soc., vol. 143, no. 33, pp. 13212–13227, Aug. 2021, doi: 10.1021/jacs.1c05570.

Downloads

Published

2025-11-25

How to Cite

Maulidiya Fadilatul Latifa, & Frida Ulfah Ermawati. (2025). ANALISIS XRD DAN EDX TERHADAP KEBERADAAN FASA-FASA PADA KERAMIK (Mg0,8Zn0,2)TiO3 DENGAN DAN TANPA PENAMBAHAN V2O5. Inovasi Fisika Indonesia, 14(3), 340–348. https://doi.org/10.26740/ifi.v14n3.p340-348

Issue

Section

Fisika Material
Abstract views: 0 , PDF Downloads: 0