FENOMENA DISTORSI KISI PADA KERAMIK TiO2 RUTIL BERDASARKAN UJI XRD DAN PERSAMAAN DEBYE SCHERRER
DOI:
https://doi.org/10.26740/ifi.v15n1.p92-102Keywords:
keramik dielektrik TiO2 rutil, distorsi kisi, Debye Scherrer, mikrostrain, ukuran kristalit, TiO2 rutile dielectric ceramic, lattice distortion, microstrain, crystallite sizeAbstract
Abstrak
Titanium Dioksida (TiO2) rutil merupakan material keramik dielektrik yang berpotensi diaplikasikan pada berbagai perangkat microwave seperti resonator dielektrik, kapasitor, filter, dan antena. Dalam makalah ini, bubuk TiO2 rutil disintesis menggunakan metode sederhana (pelarutan serbuk logam Titanium dengan HCl), dikasinasi pada suhu 800 ℃ selama 4 jam hingga menjadi serbuk kristalin. Serbuk kristalin difabrikasi menjadi keramik TiO2 berdiameter 8 mm, disinter pada 1000 ℃ selama 4, 6, dan 8 jam. Uji XRD dilakukan guna mengetahui struktur keramik TiO2 berupa parameter kisi, mikrostrain (distorsi kisi), dan ukuran kristalit. Metode sintesis sederhana tersebut ternyata mampu menghasilkan fasa tunggal rutil. Variasi waktu tahan sinter mempengaruhi parameter kisi keramik, yaitu menjadi lebih besar dari parameter kisi pada kartu PDF No. 21-1276; dengan kata lain variasi waktu tahan sinter menyebabkan distorsi kisi. Menariknya, fenomena distorsi tersebut semakin kecil seiring dengan meningkatnya waktu tahan sinter. Penyebab berkurangnya distorsi tersebut belum dapat dijelaskan hingga makalah ini ditulis. Selain itu, penyusutan distorsi kisi ini didukung oleh data mikrostrain dan ukuran kristalit (Debye Scherrer). Mikrostrain turun dari 2,53 (4 jam) menjadi 2,52 (6 jam) dan 2,48 (8 jam), sedangkan ukuran kristalit naik dari 35,794 nm (4 jam) menjadi 35,983 nm (6 jam) hingga 36,754 nm (8 jam).
Abstract
Rutile Titanium Dioxide (TiO2) is a dielectric ceramic material with potentiallin various microwave devices such as dielectric resonators, capacitors, filters, and antennas. In this paper, rutile TiO2 powder was synthesized using a simple method involving the dissolution of titanium metal powder in HCl, followed by calcination at 800 ℃ for 4 hours to obtain a crystalline powder. The crystalline powder was then fabricated into TiO2 ceramics with a diameter of 8 mm, followed by sintering at 1000 ℃ for 4, 6, and 8 hours. X-ray Diffraction (XRD) analysis was conducted to investigate the structure of the TiO2 ceramics in terms of lattice parameters, microstrain (lattice distortion), and crystallite size. This simple synthesis method successfully produced a single rutile phase. Variations in sintering holding time affected the lattice parameters of the ceramics, which became larger than those reported in PDF Card No. 21-1276, indicating the presence of lattice distortion. Interestingly, the degree of lattice distortion decreased with increasing sintering holding time. This reduction in lattice distortion is attributed to elastic strain relaxation. Furthermore, the decrease in lattice distortion is supported by microstrain and crystallite size data obtained using the Debye-Scherrer method. The microstrain decreases from 2.53 (4 h) to 2.52 (6 h) and 2.48 (8 h), while crystallite size increased from 35.794 nm (4 h) to 35.983 nm (6 h) and finally to 36.754 nm (8 h).
Downloads
References
[1] E. Zhao, J. Hao, X. Xue, M. Si, J. Guo, and H. Wang, “Rutile TiO2 Microwave Dielectric Ceramics Prepared Via Cold Sintering Assisted Two Step Sintering,” J Eur Ceram Soc, vol. 41, no. 6, pp. 3459–3465, Jun. 2021, doi: 10.1016/j.jeurceramsoc.2020.12.009.
[2] M. Siblani, M. Ollivier, L. Favergeon, and P. Chartrand, “Experimental and Thermodynamic Modeling of Al2O3 Corundum and TiO2 Rutile Structures Forming on Ti6Al4V Powder during Oxidation,” Acta Mater, vol. 256, p. 119037, 2023, doi: https://doi.org/10.1016/j.actamat.2023.119037.
[3] Y. H. Wang, K. H. Rahman, C. C. Wu, and K. C. Chen, “A Review on The Pathways of The Improved Structural Characteristics and Photocatalytic Performance of Titanium Dioxide (TiO2) Thin Films Fabricated by The Magnetron-Sputtering Technique,” Jun. 01, 2020, MDPI. doi: 10.3390/catal10060598.
[4] M. Açıkgöz and C. Rudowicz, “Electron Magnetic Resonance (EMR) and Related Studies of Transition Metal (3dN) Dopants in Titanium Dioxide (TiO2) Systems: Guide in Tailoring The material’s properties for Specific Technological Applications,” Coord Chem Rev, vol. 539, p. 216740, 2025, doi: https://doi.org/10.1016/j.ccr.2025.216740.
[5] C. Umamah and S. Pratapa, “Sintesis Zn0.2Mg0.8TiO3 pada Temperatur 510 ℃ dan 800 ℃ menggunakan Metode Pencampuran Larutan,” 2012. [Online]. Available: http://www.ing.unitn.it/~maud
[6] S. Sampath, S. Alagappan, G. S. Priyanga, R. K. Gupta, A. Behera, and T. A. Nguyen, “2 - Shape Memory Ceramics,” in Advanced Flexible Ceramics, R. K. Gupta, A. Behera, S. Farhad, and T. A. Nguyen, Eds., in Elsevier Series in Advanced Ceramic Materials. , Elsevier, 2023, pp. 13–24. doi: https://doi.org/10.1016/B978-0-323-98824-7.00002-6.
[7] F. U. Ermawati, M. H. Ahfa, and Supardiyono, “Phase Composition and Particle Size Distribution in Mg(Ti1-xSnx)O3 Powders,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2019. doi: 10.1088/1742-6596/1171/1/012038.
[8] F. U. Ermawati and N. A. Imamah, “Study on Heating Profile of Liquid-mixing-synthesized ZnTiO3,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Sep. 2019. doi: 10.1088/1757-899X/599/1/012010.
[9] F. U. Ermawati, “The Use of Liquid Mixing Method to Prepare Ilmenite Structure-Based Ceramic Powders,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1742-6596/1491/1/012004.
[10] F. U. Ermawati, “XRD and EDX Analyses on the formation of MgTiO3 Phase in (Mg0.6Zn0.4)(Ti0.99Sn0.01)O3 Powders due to Calcination Temperature Variations,” in Journal of Physics: Conference Series, Institute of Physics, Nov. 2021. doi: 10.1088/1742-6596/2110/1/012009.
[11] F. U. Ermawati, “Phase Formation, Structural, and Microstructural Characterizations of Ilmenite FeTiO3 Nanopowder Prepared from Liquid-Mixing Method,” in Journal of Physics: Conference Series, Institute of Physics, 2022. doi: 10.1088/1742-6596/2392/1/012022.
[12] S. N. M. Ishak and F. U. Ermawati, “Characterization of (Mg0.6Zn0.4)TiO3 Ceramics as Dielectric Resonator Materials in Microwave Frequencies,” Spektra: Jurnal Fisika dan Aplikasinya, vol. 7, no. 1, 2022, doi: 10.21009/SPEKTRA.
[13] A. M. Muammar and F. U. Ermawati, “Characterization of (Mg0.5Zn0.5)TiO3 Ceramics as Material Candidates for Dielectric Resonator at Microwave Frequency,” Indonesian Physical Review, vol. 5, 2022, doi: 10.29303/ip.
[14] A. P. Nabilla and F. U. Ermawati, “Pengaruh Variasi Waktu Tahan Sinter Terhadap Struktur Keramik Mg(Ti0,96Cr0,04)O3 serta Korelasinya dengan Analisis Elemental,” Jurnal Inovasi Fisika Indonesia (IFI), vol. 13, pp. 110–118, 2024.
[15] A. M. Glazer, “Crystal Structure,” in Encyclopedia of Condensed Matter Physics (Second Edition), Second Edition., T. Chakraborty, Ed., Oxford: Academic Press, 2024, pp. 11–16. doi: https://doi.org/10.1016/B978-0-323-90800-9.00110-4.
[16] A. Ali, Y. W. Chiang, and R. M. Santos, “X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions,” Minerals, vol. 12, no. 2, Feb. 2022, doi: 10.3390/min12020205.
[17] W. O. S. A, V. I. Variani, and F. Yaminsih, “Pembuatan Program Penghitung Parameter Kisi Kristal Suatu Material Berdasarkan Pola Difraksi Sinar-X (XRD) Menggunakan Metode Analitik dan Metode Cohen,” Jurnal Aplikasi Fisika, vol. 14, pp. 1–10, 2018.
[18] A. S. Batsanov, “X-Ray Diffraction, Small Molecule Applications,” in Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Third Edition., J. C. Lindon, G. E. Tranter, and D. W. Koppenaal, Eds., Oxford: Academic Press, 2017, pp. 656–666. doi: https://doi.org/10.1016/B978-0-12-409547-2.11370-8.
[19] V. V. Kulyk et al., “The Effect of Sintering Modes on the Crystal Lattice Parameters and the Morphology of the ZrO2–nY2O3 (n = 3–8 mol%) Ceramic Microstructure Components,” Archives of Materials Science and Engineering, vol. 128, no. 1, pp. 5–22, Jul. 2024, doi: 10.5604/01.3001.0054.8015.
[20] S. K. Dewangan, A. Mangish, S. Kumar, A. Sharma, B. Ahn, and V. Kumar, “A review on High-Temperature Applicability: A milestone for High Entropy Alloys,” Nov. 01, 2022, Elsevier B.V. doi: 10.1016/j.jestch.2022.101211.
[21] D. Ayu Suci Kinasih dan Iis Nurhasanah, “Estimasi Ukuran Kristal dan Parameter Elastisitas Nanokristal Zno:Ce menggunakan Metode Size-Strain Plot,” 2020.
[22] A. H. Kurda, S. A. Kakil, and Y. M. Hassan, “High Responsivity of Sol-Gel TiO2NPs/Si Photodetectors Deposited by Spin Coating Method,” Polytechnic Journal, vol. 14, no. 2, Sep. 2024, doi: 10.59341/2707-7799.1832.
[23] F. U. Ermawati, Difraksi Sinar-X: Teori dan Analisis Data Eksperimen (1st ed.). Surabaya: Unesa University Press, 2018.
[24] M. D. Z. Abror and F. U. Ermawati, “Analisis Rietveld Pola XRD Serbuk Mg(Ti0,98Sn0,02)O3 Hasil Sintesis dengan Metode Pencampuran Larutan,” Jurnal Inovasi Fisika Indonesia (IFI), vol. 12, pp. 26–34, 2023.
[25] S. Dolabella, A. Borzì, A. Dommann, and A. Neels, “Lattice Strain and Defects Analysis in Nanostructured Semiconductor Materials and Devices by High-Resolution X-Ray Diffraction: Theoretical and Practical Aspects,” Feb. 01, 2022, John Wiley and Sons Inc. doi: 10.1002/smtd.202100932.
[26] S. R. A. Rani, “Studi Analisis Data Difraksi Sinar-X Pada Material Zircon Pasir Alam melalui Metode Rietveld,” JFT: Jurnal Fisika dan Terapannya, vol. 9, no. 1, pp. 16–22, Aug. 2022, doi: 10.24252/jft.v9i1.25470.
[27] V. R. N. Safira, M. B. Perkasa, Fitrilawati, and N. Syakir, “Perbandingan Pendekatan Fungsi Gauss dan Fungsi Lorentz pada Dekomposisi Pola Xrd Oksida Grafena dan Oksida Grafena Tereduksi,” Jurnal Material dan Energi Indonesia, vol. 12, pp. 34–43, 2022.
[28] N. Rettiningtyas and F. U. Ermawati, “Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3+2 %wt. Bi2O3 sebagai Bahan Dielektrik serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter,” Jurnal Inovasi Fisika Indonesia (IFI), 2020.
[29] D. Nisa and F. U. Ermawati, “Fabrikasi Keramik (Mg0,6Zn0,4)TiO3+x %wt. Bi2O3 Hasil Sintesis dengan Metode Pencampuran Larutan dan Pengaruh Variasi x %wt. Bi2O3 Terhadap Struktur dan Densitas Keramik,” Jurnal Inovasi Fisika Indonesia (IFI, pp. 15–20, 2020.
[30] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Third Edition. Pearson Education, Inc, 2014.
[31] M. F. Z. Fardhany and F. U. Ermawati, “Microstrain pada Serbuk Mg(Ti0,95Sn0,05)O3 Hasil Sintesis dengan Metode Pencampuran Larutan Akibat Variasi Waktu Tahan Kalsinasi,” Jurnal Inovasi Fisika Indonesia (IFI), vol. 12, pp. 10–19, 2023.
[32] D. Bonardo and R. Siburian, “Analisis Struktur Nano Partikel Silika dari Abu Ampas Tebu menggunakan Metode XRD,” Journal Einstein, vol. 1, pp. 13–19, 2020.
[33] F. U. Ermawati, Y. Taryana, Y. Sulaeman, Y. N. Wijayanto, N. Sudrajat, and W. A. Adi, “Fabrication and Characterization of (Mg0.8Zn0.2)(Ti0.99Sn0.01)O3 Ceramics as a 4.0 GHz Resonator in Dielectric Resonator Oscillator Module,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 20, Jul. 2023, doi: 10.1007/s10854-023-10890-0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 nida alifah, Frida Ulfah Ermawati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0






1.png)