EFEKTIVITAS PENAMBAHAN rGO PADA KOMPOSIT TiO2/rGO SEBAGAI PENDEGRADASI PEWARNA METHYLENE BLUE DALAM SINAR TAMPAK
DOI:
https://doi.org/10.26740/ifi.v15n1.p103-114Keywords:
fotokatalis, methylene blue, TiO2/rGO, TiO2, rGO, GO, Hidrotermal autoclave, Hydrothermal Autoclave, PhotocatalystAbstract
Abstrak
Pencemaran lingkungan akibat pembuangan limbah berwarna seperti methylene blue menjadi perhatian serius karena sifatnya toksik, karsinogenik, dan sulit terurai. Fotokatalis berbasis semikonduktor seperti TiO2 dikenal efektif untuk memecah senyawa kompleks menjadi senyawa yang lebih sederhana, namun memiliki keterbatasan dalam menyerap sinar tampak. Sehingga diperlukan modifikasi TiO2 dengan material rGO yang bertujuan meningkatkan efisiensi degradasi di bawah sinar tampak. Penelitian ini bertujuan menganalisis efektivitas penambahan rGO pada komposit TiO2/rGO sebagai pendegradasi pewarna methylene blue dalam sinar tampak. rGO direduksi dari GO yang disintesis menggunakan metode Hummer’s termodifikasi dari arang kelapa, kemudian dikompositkan dengan TiO2 menggunakan metode hidrotermal autoclave dengan variasi massa rGO 45, 60, 75, 90, dan 105 mg. Selanjutnya dikarakterisasi menggunakan SEM dan UV-Vis. Hasil SEM menunjukkan partikel TiO2 menyelimuti lembaran rGO dengan distribusi partikel pada komposit TiO2/rGO-105 sebesar 214,12 nm. Nilai energy band gap terkecil pada TiO2/rGO-105 sebesar 2,26 eV. Efisiensi degradasi sebesar 99,8% pada menit ke-105. Hasil menunjukkan bahwa penambahan rGO dalam komposit TiO2/rGO dapat meningkatkan efektivitas fotokatalis di bawah sinar tampak.
Abstract
Environmental pollution due to the disposal of colored waste such as methylene blue is a serious concern due to its toxic, carcinogenic, and difficult to decompose properties. Semiconductor-based photocatalysts such as TiO2 are known to be effective in decomposing complex compounds into simpler compounds, but have limitations in absorbing visible light. Therefore, modification of TiO2 with rGO material is needed to increase degradation efficiency under visible light. This study aims to analyze the effectiveness of adding rGO to TiO2/rGO composites as a degrader of methylene blue dye in visible light. rGO was reduced from GO synthesized using the modified Hummer's method from coconut charcoal, then composited with TiO2 using the autoclave hydrothermal method with variations in rGO mass of 45, 60, 75, 90, and 105 mg. Furthermore, it was characterized using SEM and UV-Vis. The SEM results showed that TiO2 particles covered the rGO sheets with a particle distribution in the TiO2/rGO-105 composite of 214.12 nm. The smallest energy band gap value in TiO2/rGO-105 is 2.26 eV. The degradation efficiency is 99.8% at the 105th minute. The results show that the addition of rGO in the TiO2/rGO composite can increase the effectiveness of the photocatalyst under visible light. Keywords: Photocatalyst, Methylene Blue, TiO2, GO, rGO, Hydrothermal Autoclave.
Downloads
References
Aritonang, A. B., Parwaty, P., Wibowo, M. A., Ardiningsih, P., & Adhitiyawarman, A. (2023). Sintesis TiO2-rGO Dengan Pereduksi Alumunium untuk Fotokatalisis Degradasi Metilen Biru dibawah Irradiasi Sinar Tampak. Equilibrium Journal of Chemical Engineering, 6(2), 150. https://doi.org/10.20961/equilibrium.v6i2.65518
Aslam, M. A., Zhang, L., Liu, X., Xu, Y., Li, N., Zhang, P., Ragab, A. H., Deifalla, A., & Khan, M. (2023). Thermal, mechanical, and photocatalytic dye degradation performances of the functionalized GO and TiO2 decorated carbon foam composites. Journal of Materials Research and Technology, 26, 2830–2846. https://doi.org/10.1016/j.jmrt.2023.08.065
Ayala-Fonseca, L. A., Amieva, E. J. C., Rodriguez-Gonzalez, C., Angeles-Chavez, C., De la Rosa, E., Castaño, V. M., & Salas, P. (2020). Enhanced Raman Effect of Solvothermal Synthesized Reduced Graphene Oxide/Titanium Dioxide Nanocomposites. ChemistrySelect, 5(13), 3789–3797. https://doi.org/10.1002/slct.202000335
Baby, A., Trovato, L., & Di Valentin, C. (2021). Single Atom Catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon, 174, 772–788. https://doi.org/10.1016/j.carbon.2020.12.045
Baunsele, A. B., Boelan, E. G., Kopon, A. M., Leba, M. A. U., Missa, H., Rahayu, R., Nitsae, M., & Siswanta, D. (2024). Kinetika Adsorpsi Metilen Biru Memanfaatkan Serbuk Gergaji Kayu Jati Teraktivasi Asam Sulfat. Jurnal Inovasi Teknik Kimia, 9(4), 284–294.
Do, H. H., Nguyen, D. L. T., Nguyen, X. C., Le, T. H., Nguyen, T. P., Trinh, Q. T., Ahn, S. H., Vo, D. V. N., Kim, S. Y., & Le, Q. Van. (2020). Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arabian Journal of Chemistry, 13(2), 3653–3671. https://doi.org/10.1016/j.arabjc.2019.12.012
Garrafa-Gálvez, H. E., Alvarado-Beltrán, C. G., Almaral-Sánchez, J. L., Hurtado-Macías, A., Garzon-Fontecha, A. M., Luque, P. A., & Castro-Beltrán, A. (2019). Graphene role in improved solar photocatalytic performance of TiO2-RGO nanocomposite. Chemical Physics, 521(September 2018), 35–43. https://doi.org/10.1016/j.chemphys.2019.01.013
Hidayati, U. F., Aritonang, A. B., & Destiarti, L. (2021). TiO2-rGO Composite for Photocatalytic Decolorization of Methylene Blue Under the Visible Light Illumination. Berkala Sainstek, 9(4), 167. https://doi.org/10.19184/bst.v9i4.27602
Hikmah, U., Yanti, D. R., & Axala, D. L. G. (2024). Synthesis of Material Composite rGO-TIO2 From Coconut Shells by Sol-Gel Methods as Photocatalyst. Indonesian Journal of Applied Physics, 14(1), 70. https://doi.org/10.13057/ijap.v14i1.77714
Hunge, Y. M., Yadav, A. A., Dhodamani, A. G., Suzuki, N., Terashima, C., Fujishima, A., & Mathe, V. L. (2020). Enhanced Photocatalytic Performance Of Ultrasound Treated GO/Tio2 Composite For Photocatalytic Degradation Of Salicylic Acid Under Sunlight Illumination. Ultrasonics Sonochemistry, 61(September 2019), 104849. https://doi.org/10.1016/j.ultsonch.2019.104849
Jin, Y., Zheng, Y., Podkolzin, S. G., & Lee, W. (2020). Band Gap Of Reduced Graphene Oxide Tuned By Controlling Functional Groups. Journal of Materials Chemistry C, 8(14), 4885–4894. https://doi.org/10.1039/c9tc07063j
Kojican, Martina, et al. (2021). Nanocomposite for Organic Pollutant Degradation under Solar. Catalysts, 11, 1–16.
Masriatini, R., & Fatimura, M. (2019). Penggunaan Arang Tempurung Kelapa Yang Diaktifkan Untuk Menyerap Zat Warna Limbah Cair Industri Kain Tradisional. Jurnal Redoks, 4, 37–40. https://jurnal.univpgripalembang.ac.id/index.php/redoks/article/view/3508%0Ahttps://jurnal.univpgri-palembang.ac.id/index.php/redoks/article/download/3508/3253
Pratama, A., Destiarti, L., & Adhitiyawarman, A. (2021). Sintesis Titanium Oksida/Reduced Graphene Oxide (TiO2/rGO) untuk Fotokatalisis Bahan Pewarna Metilen Biru. Positron, 11(1), 31. https://doi.org/10.26418/positron.v11i1.45355
Putri, N. A., & Supardi, Z. A. I. (2023). Sintesis Dan Karakterisasi Graphene Oxide (Go) Dari Bahan Alam Tempurung Kelapa. Inovasi Fisika Indonesia, 12(2), 47–55. https://doi.org/10.26740/ifi.v12n2.p47-55
Rafitasari, Y., Suhendar, H., Imani, N., Luciana, F., Radean, H., & Santoso, I. (2016). Sintesis Graphene Oxide Dan Reduced Graphene Oxide. V, SNF2016-MPS-95-SNF2016-MPS-98. https://doi.org/10.21009/0305020218
Rahayu, N. A. I., Sylvia, N., Bahri, S., Meriatna, M., & Muarif, A. (2022). Adsorpsi Zat Warna Methylene Blue Menggunakan Adsorben Dari Ampas Teh Pada Kolom. Chemical Engineering Journal Storage (CEJS), 2(2), 75. https://doi.org/10.29103/cejs.v2i2.7030
Xiong, N., Guo, Y., Nie, Y., Yao, Y., Ying, Z., Zhang, W., Liu, R., Wu, X., Zhou, H., Zhou, L., Wang, Y., He, J., & Yan, L. (2025). An Efficient Photocatalytic Material, rGO-TiO2, That Can Be Industrially Produced: Fabrication and Structural Characterization. Water (Switzerland), 17(2), 1–14. https://doi.org/10.3390/w17020161
Yanto Rahman, D., & Sulistyowati, R. (2023). Aplikasi Fotokatalis Tio2 Dan Alternatifnya Untuk Degradasi Pewarna Sintetis Dalam Limbah Cair. Environmental Science Journal (ESJo): Jurnal Ilmu Lingkungan , 1(2), 89–105. http://journal.univpgri-palembang.ac.id/index.php/esjo
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Aprillia Sinda Dinningrum, Diah Hari Kusumawati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0






1.png)