EFEKTIVITAS KARAKTERISTIK ANTIBAKTERI PADA HIDROGEL KITOSAN/GO SEBAGAI WOUND DRESSING

Authors

  • Pir Nanda Ningsih Universitas Negeri Surabaya
  • Diah Hari Kusumawati

DOI:

https://doi.org/10.26740/ifi.v15n1.p122-131

Keywords:

Kitosan, GO, Hidrogel, Wound dressing, Hydrogel, Chitosan, Wound Dressing

Abstract

Abstrak

Kitosan merupakan polimer alami yang memiliki potensi besar untuk aplikasi pembalut luka karena biokompatibilitas tinggi, toksisitas rendah, dan kemampuannya dalam merangsang respons imun. Penambahan graphene oxide (GO) diharapkan dapat meningkatkan sifat antibakteri dan daya serap material. Penelitian ini bertujuan untuk mengevaluasi karakteristik morfologi dan aktivitas antibakteri dari komposit kitosan/GO dalam bentuk hidrogel sebagai kandidat bahan pembalut luka. Kitosan disintesis dari limbah udang dan GO berasal dari arang tempurung kelapa menggunakan metode Hummers termodifikasi, kemudian dikompositkan melalui stirer dan ultrasonifikasi. Karakterisasi dilakukan menggunakan Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), dan uji antibakteri terhadap Staphylococcus aureus dan Escherichia coli. Hasil FTIR menunjukkan keberadaan gugus fungsional khas dari kitosan dan GO. Analisis morfologi dengan SEM menunjukkan permukaan hidrogel yang halus dan padat tanpa struktur pori, yang kurang ideal untuk penyerapan luka. Uji antibakteri menunjukkan bahwa penambahan GO tidak memberikan peningkatan signifikan terhadap aktivitas antibakteri terhadap Staphylococcus aureus dan Escherichia coli, kecuali pada komposit dengan 0,5 gr  GO yang menunjukkan zona hambat sebesar 12,4 mm terhadap S. aureus.

Abstract 

Chitosan is a natural polymer with great potential for wound dressing applications due to its high biocompatibility, low toxicity, and ability to stimulate immune responses. The incorporation of graphene oxide (GO) is expected to enhance the antibacterial properties and fluid absorption capacity of the material. This study aims to evaluate the morphological characteristics and antibacterial activity of chitosan/GO composites in hydrogel form as a potential wound dressing material. Chitosan was synthesized from shrimp shell waste, and graphene oxide (GO) was derived from coconut shell charcoal using a modified Hummers’ method. The two components were then composited using magnetic stirring followed by ultrasonication. Characterization was carried out using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and antibacterial testing against Staphylococcus aureus and Escherichia coli. FTIR results confirmed the presence of functional groups characteristic of chitosan and GO. SEM analysis revealed a smooth and dense surface morphology without porous structures, which is less favorable for optimal wound exudate absorption. Antibacterial tests showed that the addition of GO did not significantly enhance antibacterial activity against S. aureus and E. coli, except for the composite containing 0.5 g of GO, which exhibited an inhibition zone of 12.4 mm against S. aureus.

Downloads

Download data is not yet available.

References

Abbaszadeh, A., Tehmasebi-Foolad, A., Rajabzadeh, A., Beigi-Brojeni, N., & Zarei, L. 2019. Effects of Chitosan/Nano Selenium Biofilm on Infected Wound Healing in Rats; An Experimental Study. Bulletin of Emergency and Trauma, 7(3), 284–291. https://doi.org/10.29252/beat-0703012

Ashry, N. M., El Bahgy, H. E. K., Mohamed, A., Alsubhi, N. H., Alrefaei, G. I., Binothman, N., Alharbi, M., Almuhayawi, M. S., Alharbi, M. T., Nagshabandi, M. K., & Saad, A. M. 2022. Evaluation of graphene oxide, chitosan and their complex as antibacterial agents and anticancer apoptotic eeect on HeLa cell line. Front. Microbiol. 13.922324. doi: 10.3389/fmicb.2022.92232

Chen, E., Yang, L., Ye, C., Zhang, W., Ran, J., Xue, D., & Hu, Q. 2018. An asymmetyle chitosan scaffold for tendon tissue engineering. In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomateriala, 73, 377-387.

Feng, W., & Wang, Z. 2022. Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydrate Polymers, 294. https://doi.org/10.1016/j.carbpol.2022.119824

Ghomi, E. R., Khalili, S., Khorasani, S. N., Neisiany, R. E., & Ramakrishna, S. 2019. Wound dressings: Current advances and future directions. In Journal of Applied Polymer Science (Vol. 136, Issue 27). John Wiley and Sons Inc. https://doi.org/10.1002/app.47738

Giraldo, L., Fajardo, C. A. G., & Piraján, J. C. M. 2025. Innovative chitosan/graphene oxide composites: A thermodynamic and calorimetric approach to pharmaceutical waste removal from water. Results in Engineering, 25. https://doi.org/10.1016/j.rineng.2024.103697

Jamilatun. M., Aminah, A., & Shufiyani, S. 2020. Uji Daya Hambat Antibakteri Kapang Endofit Dari Tanaman Alang-Alang (Imperata Cylindrica (L) Beauv.) Terhadap Pertumbuhan Bakteri Staphylococcus Aureus Dan Escherichia Coli. Jurnal Medikes (Media Informasi Kesehatan), 7(2): 335-346.

Khalil, W. F., El-Sayyad, G. S., el Rouby, W. M. A., Sadek, M. A., Farghali, A. A., & El-Batal, A. I. 2020. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. International Journal of Biological Macromolecules, 164, 1370–1383. https://doi.org/10.1016/j.ijbiomac.2020.07.205

Kusumawati, E., Supomo., dan Libiyah. 2017. Uji Daya Antibakteri pada Sediaan Hand Sanitizer Kitosan Terhadap Bakteri Staphylococcus aureus dan Escherichia Coli. Jurnal Sains dan Terapan Politeknik Hasnur; 5(1): 1-8.

Liang, Y., Chen, B., Li, M., He, J., Yin, Z., & Guo, B. 2020, Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromolecules, 21(5), 1841-1852.

Lin, X., Shen, Y., & Wang, L. 2021. Multi-scale photoacoustic assessment of wound healing using chitosan graphene oxide hemostatic sponge. Nanomaterials, 11(11), 2879.

Lucas, A.J., da-Silva, E.Q., Oreste, H., Le˜ao, G., Costa, A., H´ector, M., L´opez, C.C.D., Medeiros, S.A., & Prentice, C., 2021. Extraction, Physicochemical Characterization, and Morphological Properties of Chitin and Chitosan from Cuticles of Edible Insects. Food Chemistry, 343, pp.128550.

Mahatmanti, F. W., Kusumastuti, E., Jumaeri, J., Sulistyani, M., Susiyanti, A., Haryati, U., & Dirgantari, P. S. 2022. Pembuatan Kitin dan Kitosan dari Limbah Cangkang Udang sebagai Upaya Memanfaatkan Limbah menjadi Material Maju. Inovasi Kimia, 1, 1–38. https://doi.org/10.15294/ik.v1i1.60

Maher, C., & Hassan, K. A. 2023. The Gram-negative permeability barrier: tipping the balance of the in and the out. In mBio (Vol. 14, Issue 6). American Society for Microbiology. https://doi.org/10.1128/mbio.01205-23

Mahin, M. I., Rashid, M. H. A., & Mredul, A. R. 2025. Effects of shrimp chitosan based edible coating on the shelf life of selected vegetables in context of attaining SDGs. Applied Food Research, 5(1). https://doi.org/10.1016/j.afres.2024.100682

Ningsih, S. N. R., Tania, E., Azizah, N. N., Lutfiah, S. L., & Gunarti, N. S. 2022. Aktivitas Antibakteri Kitosan dari Berbagai Jenis Bahan Baku Kewani: Review Journal. Jurnal Buana Farma, 2(4), 25–30. https://doi.org/10.36805/jbf.v2i4.576

Pulingam, T., Thong, K. L., Ali, M. E., Appaturi, J. N., Dinshaw, I. J., Ong, Z. Y., & Leo, B. F. 2019. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids and Surfaces B: Biointerfaces, 181, 6–15. https://doi.org/10.1016/j.colsurfb.2019.05.023

Purnama, H., Sriwidodo, & Ratnawulan, S. 2017. Review Sistematik: Proses Penyembuhan dan Perawatan Luka. Farmaka, 15, 251–258.

Putri, N. A., & Supardi, Z. A. I. 2023. Sintesis dan Karakterisasi Graphene Oxide (GO) dari Bahan Alam Tempurung Kelapa. Jurnal Inovasi Fisika Indonesia (IFI), 12, 47–55.

Sareło, P., Wiśniewska-Wrona, M., Sikora, M., Mielan, B., Gerasymchuk, Y., Wędzyńska, A., Boiko, V., Hreniak, D., Szymonowicz, M., Sobieszczańska, B., & Wawrzyńska, M. 2025. Development and Evaluation of Graphene Oxide-Enhanced Chitosan Sponges as a Potential Antimicrobial Wound Dressing for Infected Wound Management. International Journal of Molecular Sciences, 26(15). https://doi.org/10.3390/ijms26157403

Sayed, A., Mazrouaa, A. M., Mohamed, M. G., & Abdel-Raouf, M. E. S. 2023. Green synthesis of chitosan/erythritol/graphene oxide composites for simultaneous removal of some toxic species from simulated solution. Environmental Science and Pollution Research, 30(10), 25903–25919. https://doi.org/10.1007/s11356-022-23951-4

Sharma, B., Malik, P., & Jain, P. 2018. Bioplymer reinforced nanocomposites: A comprehensive review. Materials Today Communications, 16, 353-363.

Sjamsuhidajat. 2010. Buku Ajar Ilmu Bedah; Sistem organ dan Tindak Bedahnya (1).

Sujiono, E. H., Zurnansyah, Zabrian, D., Dahlan, M. Y., Amin, B. D., Samnur, & Agus, J. 2020. Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04568

Wang, S., Li, X., Zhang, Y., Abou-Elsoud, M., Ahn, D. U., Shu, D., Liu, M., & Huang, X. 2024. Eggshell membrane hydrolysate incorporated GO/CS as an novel dressing for promoting wound healing in vivo. Food Bioscience, 61. https://doi.org/10.1016/j.fbio.2024.104699

Wardani, G., Mahmiah & Sudjarwo, S.A. 2018. Antibacterial Activity of Chitosan Nanoparticles against Mycobacterium tuberculosis. 10(1);162-166

Wrońska, N., Anouar, A., Achaby, M. el, Zawadzka, K., Kȩdzierska, M., Milowska, K., Katir, N., Draoui, K., Rózalska, S., Piwonskiń, I., Bryszewska, M., Kadib, A. el, & Lisowska, K. 2020. Chitosan-functionalized graphene nanocomposite films: Interfacial interplay and biological activity. Materials, 13(4). https://doi.org/10.3390/ma13040998

Zuo, P.-P., Feng, H.-F., Xu, Z.-Z., Zhang, L.-F., Zhang, Y.-L., Xia, W., & Zhang, W.-Q. 2013. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. http://journal.chemistrycentral.com/content/7/1/39

Downloads

Published

2026-02-21

How to Cite

Pir Nanda Ningsih, & Diah Hari Kusumawati. (2026). EFEKTIVITAS KARAKTERISTIK ANTIBAKTERI PADA HIDROGEL KITOSAN/GO SEBAGAI WOUND DRESSING. Inovasi Fisika Indonesia, 15(1), 122–131. https://doi.org/10.26740/ifi.v15n1.p122-131

Issue

Section

Fisika Material
Abstract views: 0 , PDF Downloads: 0