PEMODELAN SEMI-EMPIRIK PENGARUH KETEBALAN SIO2 TERHADAP REFLEKTANSI, TRANSMITANSI, DAN ABSORPTANSI CERMIN ALUMINIUM
DOI:
https://doi.org/10.26740/ifi.v15n1.p48-60Keywords:
Cermin Al, lapisan SiO2, reflektansi, transmitansi, absorptansi, reflectance, SiO2 layer, transmittance, absorptanceAbstract
Abstrak
Cermin Aluminium (Al) banyak digunakan pada berbagai aplikasi dan teknologi seperti dekorasi, rekayasa energi baru terbarukan, dan eksplorasi luar angkasa. Namun, penelitian secara numerik yang memodelkan pengaruh lapisan pelindung SiO2 terhadap reflektansi, transmitansi, dan absorptansi cermin Al masih terbatas. Penelitian ini dilakukan secara komputasi menggunakan prinsip Hukum Snellius untuk dinamika antar lapisan dan matriks karakteristik untuk dinamika perambatan gelombang dalam lapisan, sebagai upaya mempelajari pengaruh ketebalan lapisan SiO2 terhadap karakteristik optik cermin Al. Diperoleh bahwa nilai rerata reflektansi cermin Al berkisar ~85%, nilai rerata transmitansi bervariasi dengan nilai ~0,0013%, dan nilai rerata absorptansi sebesar ~15%. Perubahan ketebalan lapisan SiO2 menyebabkan perubahan pola reflektansi, transmitansi, dan absorptansi yang periodik. Hasil penelitian ini menunjukkan adanya peluang rekayasa ukuran ketebalan lapisan SiO2 pada cermin Al untuk memperoleh nilai reflektansi, transmitansi, dan absorptansi yang relevan untuk kebutuhan teknologi maupun sensor optik.
Abstract
Aluminum (Al) mirrors are widely employed in various applications and technologies, including decorative coatings, renewable energy engineering, and space exploration. However, numerical studies that explicitly model the influence of protective SiO₂ layers on the reflectance, transmittance, and absorptance of Al mirrors remain limited. This study was conducted computationally by applying Snell’s Law to describe interlayer dynamics and the characteristic matrix method to model wave propagation within each layer, with the aim of investigating the effect of SiO₂ layer thickness on the optical characteristics of Al mirrors. The results show that the average reflectance of the Al mirror is approximately 85%, the average transmittance varies with a value of about 0.0013%, and the average absorptance is around 15%. Variations in the SiO₂ layer thickness induce periodic changes in the reflectance, transmittance, and absorptance spectra. These findings indicate that engineering the SiO₂ layer thickness on Al mirrors offers potential for achieving reflectance, transmittance, and absorptance values tailored to the requirements of optical technologies and sensing applications.
Downloads
References
Almanza, R., Hernández, P., Martínez, I., & Mazari, M. (2009). Development and mean life of aluminum first-surface mirrors for solar energy applications. Solar Energy Materials and Solar Cells, 93(9), 1647–1651. https://doi.org/10.1016/j.solmat.2009.05.004
Aziz, I., Chahid, Y., Keogh, J., Carruthers, J., Morris, K., Harman, J., McPhee, S., Fraser, E., Millan, L., & Bourgenot, C. (2025). Additive manufacturing in aluminium of a primary mirror for a CubeSat application: manufacture, testing, and evaluation. Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems V, 13624, 458–491.
Bonnal, T., Belarouci, A., Orobtchouk, R., & Prud’homme, E. (2020). How to determine the complex refractive index from infrared reflectance spectroscopy? https://doi.org/10.1007/s42452-020-03869-7ï
Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P., & Osvay, K. (2008). Dispersion measurement of inert gases and gas mixtures at 800 nm. Applied Optics, 47(27), 4856–4863. https://doi.org/10.1364/AO.47.004856
Campos, J., Fontecha, J., Pons, A., Corredera, P., & Corróns, A. (1998). Measurement of standard aluminium mirrors, reflectance versus light polarization. Measurement Science and Technology, 9(2), 256. https://doi.org/10.1088/0957-0233/9/2/013
Cheng, F., Su, P.-H., Choi, J., Gwo, S., Li, X., & Shih, C.-K. (2016). Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano, 10(11), 9852–9860. https://doi.org/10.1021/acsnano.6b05556
Dadsetani, M., & Omidi, A. R. (2015). Optical properties of multilayer (III-V semiconductors) thin films within the framework of DFT + characteristic matrix. Optik, 126(21), 2999–3003. https://doi.org/10.1016/j.ijleo.2015.07.088
Danis, B. S., & Zayim, E. (2025). TMMax: High-performance modeling of multilayer thin-film structures using transfer matrix method with JAX. https://doi.org/10.21105/joss.09088
Flaschmann, R., Schmid, C., Zugliani, L., Strohauer, S., Wietschorke, F., Grotowski, S., Jonas, B., Müller, M., Althammer, M., Gross, R., Finley, J. J., & Müller, K. (2023). Optimizing the growth conditions of Al mirrors for superconducting nanowire single-photon detectors. Materials for Quantum Technology, 3(3). https://doi.org/10.1088/2633-4356/ace490
Förster, A., Arrmstrong, T., Chadwick, P., & Held, M. (2013). Dielectric Coatings for IACT Mirrors. http://arxiv.org/abs/1307.4557
Grosjean, A., Soum-Glaude, A., & Thomas, L. (2021). Replacing silver by aluminum in solar mirrors by improving solar reflectance with dielectric top layers. Sustainable Materials and Technologies, 29, e00307. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00307
Guenther, K. H., Lee, C., Han, X. F., Balasubramanian, K., & Jorgensen, G. J. (1992). Weather Resistant Aluminum Mirrors with Enhanced UV Reflectance. Proceedings of the 35th Annual Technical Symposiuim of the Society of Vacuum Coaters, Baltimore, MD.
Heisig, L.-M., Markuske, K., Werzner, E., Wulf, R., & Fieback, T. M. (2022). Experimental and Simplified Predictive Determination of Extinction Coefficients of Ceramic Open-Cell Foams Used for Metal Melt Filtration. Advanced Engineering Materials, 24(2), 2100723. https://doi.org/https://doi.org/10.1002/adem.202100723
Kamptner, A., Scharber, M. C., & Schiek, M. (2024). Accurate Determination of the Uniaxial Complex Refractive Index and the Optical Band Gap of Polymer Thin Films to Correlate Their Absorption Strength and Onset of Absorption. ChemPhysChem, 25(23), e202400233. https://doi.org/https://doi.org/10.1002/cphc.202400233
Keskar, D., Survase, S., & Thakurdesai, M. (2021). Reflectivity simulation by using transfer matrix method. Journal of Physics: Conference Series, 1913(1). https://doi.org/10.1088/1742-6596/1913/1/012051
Liu, C., Guo, Q., Cao, G., Ai, W., & Guan, Y. (2022). Vacuum ultraviolet high-reflectance aluminum mirrors on copper substrate for application in noble liquid time projection chamber. Vacuum, 197. https://doi.org/10.1016/j.vacuum.2021.110806
Luce, A., Mahdavi, A., Marquardt, F., & Wankerl, H. (2022). TMM-Fast, a transfer matrix computation package for multilayer thin-film optimization: tutorial. Journal of the Optical Society of America A, 39(6), 1007. https://doi.org/10.1364/josaa.450928
Mandong, A. M., & Uzum, A. (2021). Fresnel calculations of double/multi-layer antireflection coatings on silicon substrates. Research on Engineering Structures and Materials, 7(4), 539–550. https://doi.org/10.17515/resm2020.241en1217
Oktay, S., Duru, İ., Bakır, H., & Tabaru, T. E. (2025). Deep learning and machine learning based highly accurate reflection prediction model for multi layers anti-reflection coatings. Optical and Quantum Electronics, 57(1), 101. https://doi.org/10.1007/s11082-024-08006-x
Polyanskiy, M. N. (2024). Refractiveindex.info database of optical constants. Scientific Data, 11(1), 94. https://doi.org/10.1038/s41597-023-02898-2
Renganathan, P., Duffy, T. S., & Gupta, Y. M. (2020). Hugoniot states and optical response of soda lime glass shock compressed to 120 GPa. Journal of Applied Physics, 127(20), 205901. https://doi.org/10.1063/5.0010396
Rincón-Llorente, G., Heras, I., Rodríguez, E. G., Schumann, E., Krause, M., & Escobar-Galindo, R. (2018). On the effect of thin film growth mechanisms on the specular reflectance of aluminium thin films deposited via filtered cathodic vacuum arc. Coatings, 8(9). https://doi.org/10.3390/coatings8090321
Rodríguez-de Marcos, L. V, Larruquert, J. I., Méndez, J. A., & Aznárez, J. A. (2016). Self-consistent optical constants of SiO2 and Ta2O5 films. Optical Materials Express, 6(11), 3622–3637. https://doi.org/10.1364/OME.6.003622
Sharhan, A. A. (2020). Transfer Matrix Mathematical Method for Evaluation the DBR Mirror for Light Emitting Diode and Laser. Journal of Physics: Conference Series, 1535(1). https://doi.org/10.1088/1742-6596/1535/1/012018
Sheppard, C. J. R., & Aguilar, F. (1999). Fresnel coefficients for weak reflection, and the scattering potential for three-dimensional imaging. In Optics Communications (Vol. 162).
Sultan, Z., Tota, R., Ali, E., Obayedulla, M., & Yadav, B. (2024). Analysis of Optical Thin-films: Towards Lower Reflectivity for High Performance Solar Cells and Modern Photonic Devices Applications. International Journal of Materials Science and Applications, 13(6), 101–112. https://doi.org/10.11648/j.ijmsa.20241306.11
T R, M. K., Srihari, P. V, & Krupashankara, M. S. (2020). Simulation and Optimization of Coating thickness for Absorptance and Reflectance in Multilayered Thin Films. International Journal of ChemTech Research, 13(4), 364–373. https://doi.org/10.20902/ijctr.2019.130405
Tchenka, A., Amiri, L., Bousseta, M., Lebrini, N., Ourbaa, M., & Ech-Chamikh, E. (2025). Influence of refractive index, thickness and extinction coefficient on thin film reflectance. Journal of Physics and Chemistry of Solids, 206, 112849. https://doi.org/https://doi.org/10.1016/j.jpcs.2025.112849
Tuomas, T. (2022). MULTILAYER THIN FILM-BASED HYPERSPECTRAL CAMOUFLAGE COATINGS.
Walther, M., Siefke, T., Gerold, K., & Zeitner, U. D. (2023). Switchable optics based on guided mode resonance in lithographically patterned vanadium dioxide with integrated heating layer. Journal of the European Optical Society-Rapid Publications, 19(1). https://doi.org/10.1051/jeos/2023019
Wette, J., Sutter, F., Sánchez-Moreno, R., & Fernández-García, A. (2023). Comparison of Commercial Reflectometers for Solar Mirrors. SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.666
Zhang, J., Wang, C., Qu, H., Guan, H., Wang, H., Zhang, X., Xie, X., Wang, H., Zhang, K., & Li, L. (2022). Design and Fabrication of an Additively Manufactured Aluminum Mirror with Compound Surfaces. Materials, 15(20). https://doi.org/10.3390/ma15207050
Zhang, J., Zhang, X., Tan, S., & Xie, X. (2017). Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging. Current Optics and Photonics, 1(4), 364–371. https://opg.optica.org/copp/abstract.cfm?URI=copp-1-4-364
Zhang, K., Qu, H., Guan, H., Zhang, J., Zhang, X., Xie, X., Yan, L., & Wang, C. (2021). Design and fabrication technology of metal mirrors based on additive manufacturing: A review. In Applied Sciences (Switzerland) (Vol. 11, Issue 22). MDPI. https://doi.org/10.3390/app112210630
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I Wayan Windu Sara

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 34
,
PDF Downloads: 19






1.png)