PEMODELAN SEMI-EMPIRIK PENGARUH KETEBALAN SIO2 TERHADAP REFLEKTANSI, TRANSMITANSI, DAN ABSORPTANSI CERMIN ALUMINIUM

Authors

  • I Wayan Windu Sara Universitas Jember

DOI:

https://doi.org/10.26740/ifi.v15n1.p48-60

Keywords:

Cermin Al, lapisan SiO2, reflektansi, transmitansi, absorptansi, reflectance, SiO2 layer, transmittance, absorptance

Abstract

Abstrak

Cermin Aluminium (Al) banyak digunakan pada berbagai aplikasi dan teknologi seperti dekorasi, rekayasa energi baru terbarukan, dan eksplorasi luar angkasa. Namun, penelitian secara numerik yang memodelkan pengaruh lapisan pelindung SiO2 terhadap reflektansi, transmitansi, dan absorptansi cermin Al masih terbatas. Penelitian ini dilakukan secara komputasi menggunakan prinsip Hukum Snellius untuk dinamika antar lapisan dan matriks karakteristik untuk dinamika perambatan gelombang dalam lapisan, sebagai upaya mempelajari pengaruh ketebalan lapisan SiO2 terhadap karakteristik optik cermin Al. Diperoleh bahwa nilai rerata reflektansi cermin Al berkisar ~85%, nilai rerata transmitansi bervariasi dengan nilai ~0,0013%, dan nilai rerata absorptansi sebesar ~15%. Perubahan ketebalan lapisan SiO2 menyebabkan perubahan pola reflektansi, transmitansi, dan absorptansi yang periodik. Hasil penelitian ini menunjukkan adanya peluang rekayasa ukuran ketebalan lapisan SiO2 pada cermin Al untuk memperoleh nilai reflektansi, transmitansi, dan absorptansi yang relevan untuk kebutuhan teknologi maupun sensor optik.

 

Abstract

Aluminum (Al) mirrors are widely employed in various applications and technologies, including decorative coatings, renewable energy engineering, and space exploration. However, numerical studies that explicitly model the influence of protective SiO layers on the reflectance, transmittance, and absorptance of Al mirrors remain limited. This study was conducted computationally by applying Snell’s Law to describe interlayer dynamics and the characteristic matrix method to model wave propagation within each layer, with the aim of investigating the effect of SiO layer thickness on the optical characteristics of Al mirrors. The results show that the average reflectance of the Al mirror is approximately 85%, the average transmittance varies with a value of about 0.0013%, and the average absorptance is around 15%. Variations in the SiO layer thickness induce periodic changes in the reflectance, transmittance, and absorptance spectra. These findings indicate that engineering the SiO layer thickness on Al mirrors offers potential for achieving reflectance, transmittance, and absorptance values tailored to the requirements of optical technologies and sensing applications.

Downloads

Download data is not yet available.

References

Almanza, R., Hernández, P., Martínez, I., & Mazari, M. (2009). Development and mean life of aluminum first-surface mirrors for solar energy applications. Solar Energy Materials and Solar Cells, 93(9), 1647–1651. https://doi.org/10.1016/j.solmat.2009.05.004

Aziz, I., Chahid, Y., Keogh, J., Carruthers, J., Morris, K., Harman, J., McPhee, S., Fraser, E., Millan, L., & Bourgenot, C. (2025). Additive manufacturing in aluminium of a primary mirror for a CubeSat application: manufacture, testing, and evaluation. Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems V, 13624, 458–491.

Bonnal, T., Belarouci, A., Orobtchouk, R., & Prud’homme, E. (2020). How to determine the complex refractive index from infrared reflectance spectroscopy? https://doi.org/10.1007/s42452-020-03869-7ï

Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P., & Osvay, K. (2008). Dispersion measurement of inert gases and gas mixtures at 800 nm. Applied Optics, 47(27), 4856–4863. https://doi.org/10.1364/AO.47.004856

Campos, J., Fontecha, J., Pons, A., Corredera, P., & Corróns, A. (1998). Measurement of standard aluminium mirrors, reflectance versus light polarization. Measurement Science and Technology, 9(2), 256. https://doi.org/10.1088/0957-0233/9/2/013

Cheng, F., Su, P.-H., Choi, J., Gwo, S., Li, X., & Shih, C.-K. (2016). Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano, 10(11), 9852–9860. https://doi.org/10.1021/acsnano.6b05556

Dadsetani, M., & Omidi, A. R. (2015). Optical properties of multilayer (III-V semiconductors) thin films within the framework of DFT + characteristic matrix. Optik, 126(21), 2999–3003. https://doi.org/10.1016/j.ijleo.2015.07.088

Danis, B. S., & Zayim, E. (2025). TMMax: High-performance modeling of multilayer thin-film structures using transfer matrix method with JAX. https://doi.org/10.21105/joss.09088

Flaschmann, R., Schmid, C., Zugliani, L., Strohauer, S., Wietschorke, F., Grotowski, S., Jonas, B., Müller, M., Althammer, M., Gross, R., Finley, J. J., & Müller, K. (2023). Optimizing the growth conditions of Al mirrors for superconducting nanowire single-photon detectors. Materials for Quantum Technology, 3(3). https://doi.org/10.1088/2633-4356/ace490

Förster, A., Arrmstrong, T., Chadwick, P., & Held, M. (2013). Dielectric Coatings for IACT Mirrors. http://arxiv.org/abs/1307.4557

Grosjean, A., Soum-Glaude, A., & Thomas, L. (2021). Replacing silver by aluminum in solar mirrors by improving solar reflectance with dielectric top layers. Sustainable Materials and Technologies, 29, e00307. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00307

Guenther, K. H., Lee, C., Han, X. F., Balasubramanian, K., & Jorgensen, G. J. (1992). Weather Resistant Aluminum Mirrors with Enhanced UV Reflectance. Proceedings of the 35th Annual Technical Symposiuim of the Society of Vacuum Coaters, Baltimore, MD.

Heisig, L.-M., Markuske, K., Werzner, E., Wulf, R., & Fieback, T. M. (2022). Experimental and Simplified Predictive Determination of Extinction Coefficients of Ceramic Open-Cell Foams Used for Metal Melt Filtration. Advanced Engineering Materials, 24(2), 2100723. https://doi.org/https://doi.org/10.1002/adem.202100723

Kamptner, A., Scharber, M. C., & Schiek, M. (2024). Accurate Determination of the Uniaxial Complex Refractive Index and the Optical Band Gap of Polymer Thin Films to Correlate Their Absorption Strength and Onset of Absorption. ChemPhysChem, 25(23), e202400233. https://doi.org/https://doi.org/10.1002/cphc.202400233

Keskar, D., Survase, S., & Thakurdesai, M. (2021). Reflectivity simulation by using transfer matrix method. Journal of Physics: Conference Series, 1913(1). https://doi.org/10.1088/1742-6596/1913/1/012051

Liu, C., Guo, Q., Cao, G., Ai, W., & Guan, Y. (2022). Vacuum ultraviolet high-reflectance aluminum mirrors on copper substrate for application in noble liquid time projection chamber. Vacuum, 197. https://doi.org/10.1016/j.vacuum.2021.110806

Luce, A., Mahdavi, A., Marquardt, F., & Wankerl, H. (2022). TMM-Fast, a transfer matrix computation package for multilayer thin-film optimization: tutorial. Journal of the Optical Society of America A, 39(6), 1007. https://doi.org/10.1364/josaa.450928

Mandong, A. M., & Uzum, A. (2021). Fresnel calculations of double/multi-layer antireflection coatings on silicon substrates. Research on Engineering Structures and Materials, 7(4), 539–550. https://doi.org/10.17515/resm2020.241en1217

Oktay, S., Duru, İ., Bakır, H., & Tabaru, T. E. (2025). Deep learning and machine learning based highly accurate reflection prediction model for multi layers anti-reflection coatings. Optical and Quantum Electronics, 57(1), 101. https://doi.org/10.1007/s11082-024-08006-x

Polyanskiy, M. N. (2024). Refractiveindex.info database of optical constants. Scientific Data, 11(1), 94. https://doi.org/10.1038/s41597-023-02898-2

Renganathan, P., Duffy, T. S., & Gupta, Y. M. (2020). Hugoniot states and optical response of soda lime glass shock compressed to 120 GPa. Journal of Applied Physics, 127(20), 205901. https://doi.org/10.1063/5.0010396

Rincón-Llorente, G., Heras, I., Rodríguez, E. G., Schumann, E., Krause, M., & Escobar-Galindo, R. (2018). On the effect of thin film growth mechanisms on the specular reflectance of aluminium thin films deposited via filtered cathodic vacuum arc. Coatings, 8(9). https://doi.org/10.3390/coatings8090321

Rodríguez-de Marcos, L. V, Larruquert, J. I., Méndez, J. A., & Aznárez, J. A. (2016). Self-consistent optical constants of SiO2 and Ta2O5 films. Optical Materials Express, 6(11), 3622–3637. https://doi.org/10.1364/OME.6.003622

Sharhan, A. A. (2020). Transfer Matrix Mathematical Method for Evaluation the DBR Mirror for Light Emitting Diode and Laser. Journal of Physics: Conference Series, 1535(1). https://doi.org/10.1088/1742-6596/1535/1/012018

Sheppard, C. J. R., & Aguilar, F. (1999). Fresnel coefficients for weak reflection, and the scattering potential for three-dimensional imaging. In Optics Communications (Vol. 162).

Sultan, Z., Tota, R., Ali, E., Obayedulla, M., & Yadav, B. (2024). Analysis of Optical Thin-films: Towards Lower Reflectivity for High Performance Solar Cells and Modern Photonic Devices Applications. International Journal of Materials Science and Applications, 13(6), 101–112. https://doi.org/10.11648/j.ijmsa.20241306.11

T R, M. K., Srihari, P. V, & Krupashankara, M. S. (2020). Simulation and Optimization of Coating thickness for Absorptance and Reflectance in Multilayered Thin Films. International Journal of ChemTech Research, 13(4), 364–373. https://doi.org/10.20902/ijctr.2019.130405

Tchenka, A., Amiri, L., Bousseta, M., Lebrini, N., Ourbaa, M., & Ech-Chamikh, E. (2025). Influence of refractive index, thickness and extinction coefficient on thin film reflectance. Journal of Physics and Chemistry of Solids, 206, 112849. https://doi.org/https://doi.org/10.1016/j.jpcs.2025.112849

Tuomas, T. (2022). MULTILAYER THIN FILM-BASED HYPERSPECTRAL CAMOUFLAGE COATINGS.

Walther, M., Siefke, T., Gerold, K., & Zeitner, U. D. (2023). Switchable optics based on guided mode resonance in lithographically patterned vanadium dioxide with integrated heating layer. Journal of the European Optical Society-Rapid Publications, 19(1). https://doi.org/10.1051/jeos/2023019

Wette, J., Sutter, F., Sánchez-Moreno, R., & Fernández-García, A. (2023). Comparison of Commercial Reflectometers for Solar Mirrors. SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.666

Zhang, J., Wang, C., Qu, H., Guan, H., Wang, H., Zhang, X., Xie, X., Wang, H., Zhang, K., & Li, L. (2022). Design and Fabrication of an Additively Manufactured Aluminum Mirror with Compound Surfaces. Materials, 15(20). https://doi.org/10.3390/ma15207050

Zhang, J., Zhang, X., Tan, S., & Xie, X. (2017). Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging. Current Optics and Photonics, 1(4), 364–371. https://opg.optica.org/copp/abstract.cfm?URI=copp-1-4-364

Zhang, K., Qu, H., Guan, H., Zhang, J., Zhang, X., Xie, X., Yan, L., & Wang, C. (2021). Design and fabrication technology of metal mirrors based on additive manufacturing: A review. In Applied Sciences (Switzerland) (Vol. 11, Issue 22). MDPI. https://doi.org/10.3390/app112210630

Downloads

Published

2026-01-02

How to Cite

I Wayan Windu Sara. (2026). PEMODELAN SEMI-EMPIRIK PENGARUH KETEBALAN SIO2 TERHADAP REFLEKTANSI, TRANSMITANSI, DAN ABSORPTANSI CERMIN ALUMINIUM. Inovasi Fisika Indonesia, 15(1), 48–60. https://doi.org/10.26740/ifi.v15n1.p48-60

Issue

Section

Fisika Material
Abstract views: 34 , PDF Downloads: 19

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.