Sentiment Analysis on Social Media Regarding the Boycott of Pro-Israel Products Using Machine Learning

Authors

  • Nurul Aulia Fitriani Universitas Negeri Makassar
  • Syamsu Alam Universitas Negeri Makassar
  • Muhammad Taufik Universitas Negeri Makassar

Keywords:

Sentiment Analysis, Pro-Israel Product Boycott, Machine Learning, Twitte, Instagram.

Abstract

This study aims to analyze public sentiment towards the boycott of pro-Israel products on social media using machine learning. Data was collected through crawling on Instagram tweets and comments, then processed through preprocessing stages such as cleaning, tokenizing, normalizing, stopword removal, and stemming. The analysis was carried out using four machine learning algorithms, namely Naïve Bayes, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Decision Tree. The results showed that SVM provided the highest accuracy in sentiment classification. Positive sentiment dominated, in the form of support for the boycott movement as humanitarian solidarity for Palestine, while negative sentiment included the view that this movement was ineffective and potentially detrimental to the economy. A comparison of social media shows that Twitter, with its real-time nature, tends to present fast, emotional, and argument-based responses. In contrast, Instagram focuses more on visual content such as infographics and short videos, with more passive discussions in the comments column. This study shows that sentiment analysis on social media can be an important tool for businesses to understand public perceptions of sensitive issues, detect potential crises, and design more effective communication strategies.

Downloads

Download data is not yet available.

References

Acckermann, K., & Gundelach, B. (2020). Psychological roots of political consumerism: Personality traits and participation in boycott and buycott. SageJournals, 43(1).

Ardhani, N. D. (2023). Analisis Dampak Boikot Pro Israel terhadap Perekonomian di Indonesia. Jurnal Oportunitas Unirow Tuban, 04(02), 13–16.

Ardhi, S. (2023, October 16). Konflik Palestina-Israel Kembali Memanas, Indonesia Konsisten Dukung Palestina. UGM.Ac.Id.

BDS Movement. (2024). Block the Boat: End maritime arms transfer to Israel. BDS Movement .

Bin Mohd Yunus, A., Binti Abd Wahid, N., & Bin W Hassan, W. S. (2018). Hukum Boikot Barangan Israel berdasarkan kepada Fiqh Al-Jihad. Jurnal Pengurusan Dan Penyelidikan Fatwa, 4(1), 135–160.

Bostrom, M. (2019). The Oxford handbook of political consumerism. Oxford University Press.

Boulianne, S., Copeland, L., & Koc-Michalska, C. (2022). Digital media and political consumerism in the United States, United Kingdom, and France. SageJournals, 26(4).

Boycott Israel. (2024). The Boycott List. Boycott Israel.

Copeland, L., & Boulianne, S. (2020). Political consumerism: A meta-analysis. SageJournals, 43(1).

Fahrezi, M. F., & Permana, A. A. (2022). Sentimen Analisis Opini Masyarakat Pada Sosial Media Twitter Terhadap Organisasi Aksi Cepat Tanggap Menggunakan Naïve Bayes Classifier. JT: Jurnal Teknik, 11(02), 113–121. http://jurnal.umt.ac.id/index.php/jt/index

Ferran, Í. V. (2022). Emotions and Sentiments: Two Distinct Forms of Affective Intentionality. Phenomenology, Axiology, and Metaethics, 1(1), 20–34.

Fitra Rizki, M., Auliasari, K., & Primaswara Prasetya, R. (2021). Analisis Sentiment Cyberbullying pada Sosial Media Twitter Menggunakan Metode Support Vector Machine. Jurnal Mahasiswa Teknik Informatika), 5(2), 548–556.

Fridom Mailo, F., & Lazuardi, L. (2021). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia. Jurnal Sistem Informasi Kesehatan Masyarakat Journal of Information Systems for Public Health, 6(1).

Hudaya, C. S., Fakhrurroja, H., & Alamsyah, A. (2019). Analisis Persepsi Konsumen terhadap Brand Go-Jek pada Media Sosial Twitter Menggunakan Metode Sentiment Analysis dan Topic Modelling. Jurnal Mitra Manajemen, 3(6), 664–673. https://doi.org/10.52160/ejmm.v3i6.244

Irsyad, H., & Taqwiym, A. (2021). Sentimen Analisis Masyarakat Terhadap Rakyat Palestina dengan Klasifikasi Naive Bayes. Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem & Komputer, 1(2), 2776–5822.

Jaelani, A., & Nursyifa, Y. (2024). Perilaku Konsumen Islam Terhadap Boikot Produk Israel. Karimah Tauhid, 3(2).

Keynes, J. M. (1936). The General Theory of Employment, Interest, and Money. Palgrave Macmillan.

Khoiruman, M., & Wariati, A. (2023). Analisa Motivasi Boikot (Boycott Motivation) Terhadap Produk Mc Donald Di Surakarta Pasca Serangan Israel Ke Palestina. Jurnal Manajemen, Bisnis Dan Pendidikan, 10(2), 247–257.

Knell, Y. (2024, March 1). Lebih dari 30.000 orang tewas di Gaza, kata kementerian kesehatan yang dikelola Hamas. BBC News. https://www-bbc-com

Kottler, P., & Keller, K. L. (2016). Handbook Of Research Of Effective Advertising Strategies In The Social Media Age. Cambridge: IGI Global.

Kurniasari, I., Kusrini, & Al Fatta, H. (2021). Analisis Sentimen Opini Publik pada Instagram mengenai Covid-19 dengan SVM. JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem & Komputer, 1(1), 67–74.

Kusrini, & Luthfi, E. T. (2009). Algoritma Data Mining. Penerbit Andi.

Mara, A. A. P. T., Sediyono, E., & Purnomo, H. (2021). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba. JOINTER-JOURNAL OF INFORMATICS ENGINEERING, 01(02), 24–31.

Mondaref Jon, A., & Vitra Paputungan, I. (2023). Analisis Sentimen pada Media Sosial Instagram Klub PERSIJA JAKARTA Menggunakan Metode Naive Bayes. Journal Universitas Islam Indonesia, 4(1), 9–16.

Munandar, A., Yaasin, M. S., & Firdaus, R. A. (2023). Analisis Sentimen Netizen Indonesia Mengenai Boikot Produk. Tauhidinomics: Journal of Islamic Banking and Economics, 3(1), 23–40.

Muttaqin, M. N., & Kharisudin, I. (2021). Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor. UNNES Journal of Mathematics, 10(2), 22–27. http://journal.unnes.ac.id/sju/index.php/ujm

Permana, R. (2024). MUI Ajak Umat Islam Boikot Produk Israel Saat Ramadhan: Bisa Memperlemah Ekonomi Mereka. Disway.Id.

Puspita, R., & Widodo, A. (2020). Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS. Jurnal Informatika Universitas Pamulang, 5(4), 646–654.

Rahayu, M. P., & Farlina, Y. (2021). Penerapan Metode Naive Bayes Dalam Prediksi Penyebab Kecelakaan Kerja CV. Deka Utama. Jurnal Larik, 1(1). http://jurnal.bsi.ac.id/index.php/larik

Ramadani, N. C., Tahyudin, I., & Shouni Barkah, A. (2024). Perbandingan Algoritma Support Vector Machine, Decision Tree, dan Logistic Regresion Pada Analisis Sentimen Ulasan Aplikasi Netflix. Jurnal Nasional Teknologi Dan Sistem Informasi, 10(2), 110–117. https://doi.org/10.25077/TEKNOSI.v10i2.2024.110-117

Ramanizar, H., Fajri, A., Binsar Sinaga, R., Mubarok, H., Pangestu, A. D., & Prasvita, D. S. (2021). Analisis Sentimen Pengguna Twitter terhadap Konflik antara Palestina dan Israel Menggunakan Metode Naïve Bayesian Classification dan Support Vector Machine. In Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia.

Rusdiaman, D., & Rosiyadi, D. (2019). Analisa Sentimen terhadap Tokoh Publik Menggunakan Metode Naïve Bayes Classifier dan Support Vector Machine. Journal of Computer Engineering System and Science, 4(2), 2502–7131.

Serdarevic, N., & Tjotta, S. (2022). Applying Adam Smith’s Theory of Moral Sentiments to elicited social norms: Giving and taking in dictator games. Social Sciences & Humanities Open, 6(1).

Smith, A. (2002). Teori Sentimen Moral (Indonesia). Freedom Institute dan Youth Freedom Network .

Sugito, Sairun, A., Pratama, I., & Azzahra, I. (2022). Media Sosial (Inovasi Pada Produk & Perkembangan Usaha) (Y. Anisa & A. Zuhaira, Eds.). Universitas Medan Area Press.

Syahrul, A., Purnamasari, A. I., & Ali, I. (2024). Analisis Sentimen Twitter terhadap Cryptocurrency menggunakan Algoritma Naive Bayes dan Decision Tree. Jurnal Mahasiswa Teknik Informatika, 8(2), 2213–2220.

Thaib, E. J. (2021). Problematika Dakwah di Media Sosial. Insan Cendikia Mandiri, 1(1).

Tiara Susilawati, A., Anjeni Lestari, N., & Alpria Nina, P. (2024). Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes. Jurnal Ilmiah Mahasiswa, 2(1), 26–35. https://doi.org/10.59603/niantanasikka.v2i1.240

Trisnawati, R. (2024). Boikot dan Aktivisme: Perilaku Konsumen dalam Isu Konflik Israel-Palestina. Journal of Economics Business Ethic and Science of History, 2(23), 20–25.

Yasir, M., & Suraji, R. (2023). Perbandingan Metode Klasifikasi Naïve Bayes, Decision Tree, Random Forest Terhadap Analisis Sentimen Kenaikan Biaya Haji 2023 Pada Media Sosial Youtube. Jurnal Cahaya Mandalika, 3(2).

Downloads

Published

2025-07-13

How to Cite

Fitriani, N. A., Alam, S., & Muhammad Taufik. (2025). Sentiment Analysis on Social Media Regarding the Boycott of Pro-Israel Products Using Machine Learning. Journal of Digital Business and Innovation Management, 4(2). Retrieved from https://ejournal.unesa.ac.id/index.php/jdbim/article/view/70633
Abstract views: 27 , PDF Downloads: 19