IMPLEMENTASI ALGORITMA KNN UNTUK PENENTUAN JALUR EVAKUASI AMAN BERDASARKAN DATA SHAKEMAP DAN DATA TITIK EVAKUASI DI KABUPATEN MADIUN
DOI:
https://doi.org/10.26740/ifi.v15n1.p77-83Keywords:
gempa bumi, Jalur evakuasi, K-Nearest Neighbor, mmi, kabupaten madiun, Earthquake, Evacuation Route, K-Nearest Neighbour, Madiun RegencyAbstract
Abstrak
Bencana gempa bumi merupakan ancaman nyata di Indonesia, terutama pada daerah yang berada pada zona seismik aktif seperti Kabupaten Madiun. Penelitian ini memiliki tujuan untuk mengembangkan sistem rekomendasi titik evakuasi aman berbasis algoritma K-Nearest Neighbor (KNN) berdasarkan data intensitas gempa dari ShakeMap USGS dan distribusi titik evakuasi dari BPBD. Kriteria yang ditetapkan adalah wilayah dengan nilai Modified Mercalli Intensity (MMI) < 4 dan jarak maksimum 1.000 meter sesuai dengan pedoman BNPB. Pengujian dilakukan terhadap 1.000 titik pengguna simulasi yang tersebar di seluruh wilayah Kabupaten Madiun. KNN berhasil menunjukkan titik evakuasi rekomendasi yang valid sebanyak 370 titik (37.0%), 502 titik (50.2%) ditolak karena melebihi jarak, serta 128 titik (12.8%) gagal karena tidak memiliki titik aman. Temuan ini menunjukkan bahwa KNN efektif untuk mendeteksi awal titik evakuasi, namun keberhasilan KNN bergantung pada distribusi spasial titik evakuasi dan kontur guncangan. Dengan demikian, sistem ini dapat menjadi dasar dalam pengembangan sistem evakuasi berbasis spasial yang responsif dan akurat.
Abstract
Earthquakes are a real threat in Indonesia, especially in areas located in active seismic zones such as Madiun Regency. This study aims to develop a safe evacuation point recommendation system based on the K-Nearest Neighbour (KNN) algorithm using earthquake intensity data from the USGS ShakeMap and evacuation point distribution data from the Regional Disaster Management Agency (BPBD). The criteria set are areas with a Modified Mercalli Intensity (MMI) value < 4 and a maximum distance of 1,000 metres, in accordance with BNPB guidelines. The testing was conducted on 1,000 simulation user points spread across the entire Madiun Regency area. KNN successfully identified 370 valid recommended evacuation points (37.0%), 502 points (50.2%) were rejected due to exceeding the distance limit, and 128 points (12.8%) failed because they did not have safe points. These findings indicate that KNN is effective for detecting initial evacuation points; however, the success of KNN depends on the spatial distribution of evacuation points and earthquake contours. Thus, this system can serve as a foundation for developing a responsive and accurate spatial-based evacuation system.
Downloads
References
Airlangga, G. (2024). Analysis of machine learning algorithms for seismic anomaly detection in indonesia: Unveiling patterns in the pacific ring of fire. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 5(1), 37–48. https://doi.org/10.46306/lb.v5i1.489
Amiran, A., Behnam, B., & Seyedin, S. (2024). AI-based model for site-selecting earthquake emergency shelters. Scientific Reports, 14(1), 29033. https://doi.org/10.1038/s41598-024-80586-w
Ayuningtyas, D., Windiarti, S., Hadi, M. S., Fasrini, U. U., & Barinda, S. (2021). Disaster Preparedness and Mitigation in Indonesia: A Narrative Review. Iranian Journal of Public Health, 50(8), 1536–1546. https://doi.org/10.18502/ijph.v50i8.6799
Directorate of Preparedness Deputy for Prevention National Agency for Disaster Management (BNPB) of Indonesia. (2021). Preparation of {Evacuation} {Plan} [in Indonesian]. BNPB Indonesia.
Efentakis, A., Pfoser, D., & Vassiliou, Y. (2015). SALT. A Unified Framework for All Shortest-Path Query Variants on Road Networks. In E. Bampis (Ed.), Experimental Algorithms (pp. 298–311). Springer International Publishing.
Fajriadi, A. I. (2024). Mengenal Aplikasi Info BMKG untuk Ponsel, Bisa Unduh di Play Store dan App Store. https://tekno.tempo.co/read/1817091/mengenal-aplikasi-info-bmkg-untuk-ponsel-bisa-unduh-di-play-store-dan-app-store
Fajriyah, P. A., Indiyati, D., & Hadi, A. (2019). The Effect of InfoBMKG Application Using Toward Disaster Responsiveness Attitude of Mataram University Students Post Lombok Earthquake. JCommsci - Journal of Media and Communication Science. https://api.semanticscholar.org/CorpusID:198095072
Fan, X., Zhang, X., Wang, X., & Yu, X. (2023). A deep reinforcement learning model for resilient road network recovery under earthquake or flooding hazards. Journal of Infrastructure Preservation and Resilience, 4(1), 8. https://doi.org/10.1186/s43065-023-00072-x
Finazzi, F., Cotton, F., & Bossu, R. (2025). Citizens’ smartphones unravel earthquake shaking in urban areas. Nature Communications, 16(1), 9527. https://doi.org/10.1038/s41467-025-64543-3
Julius, A. M., Daryono, & Widana, I. D. K. K. (2021). Preface of destructive m<5 earthquakes in Java island, 2015-2019. IOP Conference Series: Earth and Environmental Science, 708(1), 012106. https://doi.org/10.1088/1755-1315/708/1/012106
Lubis, A., Lubis, M., & Al-Khowarizmi, A. (2020). Optimization of Distance Formula in k-Nearest Neighbor Method. 9. https://doi.org/10.11591/eei.v9i1.1464
Nugraha, A. D., Supendi, P., Shiddiqi, H. A., & Widiyantoro, S. (2016). Unexpected earthquake of June 25th, 2015 in Madiun, East Java. AIP Conference Proceedings, 1730(1), 20001. https://doi.org/10.1063/1.4947369
Nurlaili, F., & Irawan, R. H. (2021). Penerapan Metode KNN Dalam Menentukan Titik Lokasi Wisata Di Kecamatan Ngancar. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 5(2), 272–276. https://doi.org/10.29407/inotek.v5i2.1143
Putri, D. M. S., Wibiseno, P. S., Maharani, E. T., Aribowo, B. W., Fauzan, M. A., & Alfaiz, K. (2022). Peak Ground Acceleration (PGA) Analysis of Kendeng Fault Using Earthquake Information of The Last 50 Years.
Wagh, V. K., Pathak, P., Stynes, P., & Nardin, L. G. (2020). An evacuation route model for disaster affected areas. CEUR Workshop Proceedings, 2771, 61–72.
Wald, D., Goded, T., Hortascu, A., & Loos, S. (2024). Developing and implementing an International Macroseismic Scale (IMS) for earthquake engineering, earthquake science, and rapid damage assessment (Report Nos. 2023–1098; Open-File Report). USGS Publications Warehouse. https://doi.org/10.3133/ofr20231098
Wald, D., Lin, K.-W., & Quitoriano, V. (2008). Quantifying and Qualifying USGS ShakeMap Uncertainty (Report Nos. 2008–1238; Version 1.0, Open-File Report). USGS Publications Warehouse. https://doi.org/10.3133/ofr20081238
Wang, X. (2012). A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality. Proceedings of ... International Joint Conference on Neural Networks. International Joint Conference on Neural Networks, 43(6), 2351–2358. https://doi.org/10.1016/j.patcog.2010.01.003
Worden, C. B., Wald, D. J., Allen, T. I., Lin, K., Garcia, D., & Cua, G. (2010). A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap . Bulletin of the Seismological Society of America, 100(6), 3083–3096. https://doi.org/10.1785/0120100101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Chaidar Aria Bayu Pratama, Madlazim, Muhammad Nurul Fahmi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0






1.png)