DISTRIBUSI UKURAN BUTIR DAN PERMITIVITAS RELATIF KERAMIK TiO2 RUTIL

Authors

  • Wilda Kusumaningtyas Universitas Negeri Surabaya
  • Frida Ulfah Ermawati Universitas Negeri Surabaya

DOI:

https://doi.org/10.26740/ifi.v14n3.p421-428

Keywords:

keramik TiO2 rutil, distribusi ukuran butir, permitivitas relatif, XRD, SEM, VNA, rutile TiO2 ceramic, grain size distribution, relative permittivity

Abstract

Abstrak

TiO2 rutil adalah salah satu material fungsional yang mempunyai banyak potensi aplikasi, salah satunya adalah sebagai resonator dielektrik microwave. Agar dapat berfungsi sebagai resonator dielektrik, material ini harus memiliki permitivitas relatif yang unggul. Permitivitas relatif dipengaruhi oleh keberadaan fasa utama, fasa sekunder, ukuran butir, serta nilai densitas. Apabila material memiliki fasa tunggal dan densitas tinggi, maka faktor fasa sekunder dapat diabaikan sehingga menyisakan faktor ukuran butir. Tujuan dari makalah ini adalah melaporkan analisis ukuran butir dan permitivitas relatif dari keramik padat fasa tunggal TiO2 rutil melalui uji XRD, SEM, dan VNA. Serbuk rutil disintesis dari pelarutan serbuk logam Ti dengan HCl. Serbuk hasil dikalsinasi pada 800 °C selama 4 jam. Serbuk kristalin dikompkasi menggunakan cylindrical die press berdiameter 12 mm dan hydraulic hand press pada tekanan 10 MPa menghasilkan pelet. Pelet disinter pada 1000 °C ditahan 4 jam sehingga menghasilkan keramik TiO2 rutil. Hasil refinement XRD menunjukkan fasa tunggal TiO2 rutil dengan parameter kisi dan vol. sel satuan yang konsisten terhadap TiO2 rutil (PDF Nomor 21-1276). Hasil SEM memperlihatkan morfologi permukaan yang padat dengan distribusi ukuran butir yang memenuhi kurva normal pada rentang 0,30 - 2,60 µm dan rata-rata ukuran butir yaitu 1,00 ± 0,01 µm. Uji VNA menghasilkan permitivitas relatif sebesar 20,283 pada frekuensi 4-6 GHz.

 

Abstract

Rutile TiO2 exhibits versatile functionality with numerous potential applications, such as serving as a microwave dielectric resonator. To serve this purpose, the material must exhibit a high relative permittivity. The presence of a primary phase, secondary phases, as well as grain size and density, are key factors affecting this property. When the material achieves a single-phase structure with high density, the influence of secondary phases can be disregarded, leaving grain size as a critical factor. This study focuses on presenting the grain size characteristics and relative permittivity of dense single-phase rutile TiO2 ceramics based on XRD, SEM, and VNA analyses. The synthesis of rutile powder involved dissolving metallic Ti powder in HCl and subsequently performing calcination at 800 °C for 4 h. Pellets were produced by compacting the crystalline powder with a 12 mm cylindrical die press and applying a pressure of 10 MPa using a hydraulic hand press. The pellet was sintered at 1000 °C with a 4h dwell, yielding a rutile TiO2 ceramic. XRD refinement confirmed a single-phase rutile structure (PDF No. 21-1276) with consistent lattice parameters and unit cell volume. SEM observations showed a dense microstructure, with the grain size distribution fitting a normal curve, spanning from 0.30 – 2.60  micrometer and an average grain size of 1.00 ± 0.01micrometer. VNA measurements indicated a relative permittivity of 20.283 in the 4–6 GHz frequency range.

Downloads

Download data is not yet available.

References

[1] T. T. Widodo and C. S. Ayu M, “The Effect of Photocatalyst Effect of Titanium Dioxide Anatase on Heat Polymerized Acrylic Resin Plate Towards The Growth of Candida Albicans Colonies,” Makassar Dental Journal, vol. 11, no. 1, pp. 105–109, Apr. 2022, doi: 10.35856/mdj.v11i1.521.

[2] H. P. Setyawan and O. Suryani, “Modified Titanium Oxide with Metal Doping as Photocatalyst in Photochemical Water Splitting,” Jurnal Sains Natural, vol. 14, no. 1, pp. 1–12, 2024.

[3] S. I. Sadia et al., “Crystallographic Biography on Nanocrystalline Phase of Polymorphs Titanium Dioxide (TiO2): A Perspective Static Review,” S Afr J Chem Eng, vol. 50, pp. 51–64, Oct. 2024, doi: 10.1016/j.sajce.2024.07.005.

[4] B. Trujillo-Navarrete et al., “Effect of Nd3+ Doping on Structure, Microstructure, Lattice Distortion and Electronic Properties Of TiO2 Nanoparticles,” Journal of Rare Earths, vol. 35, no. 3, pp. 259–270, Mar. 2017, doi: 10.1016/S1002-0721(17)60909-8.

[5] K. B. Chetry, H. Sims, W. H. Butler, and A. Gupta, “A Comparison of The Growth Modes of (100)- And (110)-Oriented CrO2 Films Through The Calculation of Surface and Interface Energies,” J Appl Phys, vol. 110, no. 11, Dec. 2011, doi: 10.1063/1.3664768.

[6] G. Narejo and W. F. Perger, “First Principles Computations of Second-Order Elastic Constants (SOEC) And Equations Of State Of Rutile TiO2,” Physics Research International, 2011, doi: 10.1155/2011/536183.

[7] H. Eidsvåg, S. Bentouba, P. Vajeeston, S. Yohi, and D. Velauthapillai, “TiO2 As a Photocatalyst for Water Splitting—An Experimental and Theoretical Review,” 2021, MDPI AG. doi: 10.3390/molecules26061687.

[8] M. M. I. Megat Hasnan et al., “Improvement of Facile Hydrothermal TiO2 Rutile Nanorod-Flower Using Second Hipims Deposition for DSSC Performance Enhancement,” Opt Mater (Amst), vol. 117, Jul. 2021, doi: 10.1016/j.optmat.2021.111149.

[9] P. Oruç, N. Turan, S. Cavdar, N. Tuğluoğlu, and H. Koralay, “Investigation of Dielectric Properties of Amorphous, Anatase, And Rutile TiO2 Structures,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 6, Feb. 2023, doi: 10.1007/s10854-023-09924-4.

[10] C. Tian, “Effects of Structural Factors of Hydrated TiO2 on Rutile TiO2 Pigment Preparation via Short Sulfate Process,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-64976-4.

[11] Y. Song et al., “Origin of Colossal Dielectric Permittivity of Rutile Ti0.9In0.05Nb0.05O2: Single Crystal and Polycrystalline,” Sci Rep, vol. 6, Feb. 2016, doi: 10.1038/srep21478.

[12] S. Marinel, D. H. Choi, R. Heuguet, D. Agrawal, and M. Lanagan, “Broadband Dielectric Characterization of TiO2 Ceramics Sintered Through Microwave and Conventional Processes,” Ceram Int, vol. 39, no. 1, pp. 299–306, Jan. 2013, doi: 10.1016/j.ceramint.2012.06.025.

[13] A. E. Freitas et al., “Development and Characterization of Titanium Dioxide Ceramic Substrates with High Dielectric Permittivities,” Materials, vol. 13, no. 2, Jan. 2020, doi: 10.3390/ma13020386.

[14] M. Sumadiyasa and I. B. S. Manuaba, “Determining Crystallite Size Using Scherrer Formula,” Buletin Fisika, vol. 19, no. 1, pp. 28–35, 2018.

[15] S. Chao, V. Petrovsky, and F. Dogan, “Effects of Sintering Temperature on The Microstructure and Dielectric Properties of Titanium Dioxide Ceramics,” J Mater Sci, vol. 45, no. 24, pp. 6685–6693, Dec. 2010, doi: 10.1007/s10853-010-4761-4.

[16] H. M. Kotb, A. Alshoaibi, J. Mazher, N. M. Shaalan, and M. M. Ahmad, “Colossal Permittivity Characteristics of (Nb, Si) Co-Doped TiO2 Ceramics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/ma15134701.

[17] S. A. Hermadianti and F. U. Ermawati, “Pengaruh Waktu Tahan Kalsinasi Terhadap Komposisi Fasa dan Ukuran Kristalit Serbuk Mg(Ti0,99Sn0,01)O3,” Jurnal Inovasi Fisika Indonesia (IFI), vol. 12, pp. 1–9, 2023.

[18] L. B. Mccusker, R. B. Von Dreele, D. E. Cox, D. Loue, and P. Scardi, “Rietveld Refinement Guidelines,” International Union of Crystallography Journal of Applied Crystallography J. Appl. Cryst, vol. 32, pp. 36–50, 1999, [Online]. Available: http://www.iucr.org/iucr-top/comm/

[19] Putri, V. O., & Ermawati, F. U, “Fabrikasi Dan Karakterisasi Keramik Dielektrik Mg(Ti0,94Cr0,06)O3”. Jurnal Inovasi Fisika Indonesia (IFI), 13(02), 100–109, 2024.

[20] A. Vasilenko, S. Koynov, B. J. Glasser, and F. J. Muzzio, “Role of Consolidation State in The Measurement of Bulk Density and Cohesion,” Powder Technol, vol. 239, pp. 366–373, 2013, doi: 10.1016/j.powtec.2013.02.011.

[21] N. A. Imamah and F. U. Ermawati, “Analisis Struktur dan Komposisi Fasa Serta Distribusi Ukuran Partikel Serbuk ZnTiO3 Hasil Preparasi Dengan Metode Pencampuran Larutan,” Jurnal Inovasi Fisika Indonesia (IFI), vol. 07, no. 02, pp. 83–86, 2018.

[22] K. Kanehara, S. Urata, S. Yasuhara, T. Tsurumi, and T. Hoshina, “Dielectric Response and Polarization Mechanism of Alkali Silicate Glasses in Gigahertz to Terahertz Frequency Range,” Journal of the American Ceramic Society, vol. 106, no. 9, pp. 5341–5350, Sep. 2023, doi: 10.1111/jace.19189.

Downloads

Published

2025-12-15

How to Cite

Wilda Kusumaningtyas, & Frida Ulfah Ermawati. (2025). DISTRIBUSI UKURAN BUTIR DAN PERMITIVITAS RELATIF KERAMIK TiO2 RUTIL. Inovasi Fisika Indonesia, 14(3), 421–428. https://doi.org/10.26740/ifi.v14n3.p421-428

Issue

Section

Fisika Material
Abstract views: 0 , PDF Downloads: 0

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.