Analisis Keakuratan Katalog Data Gempa Bumi Indonesia pada Software Joko Tingkir terhadap Global Centroid Moment Tensor (GCMT) menggunakan Uji-T Berpasangan, Wilcoxon, dan Sudut Kagan

Authors

  • Adek Putri Dewanti Universitas Negeri Surabaya
  • Madlazim Madlazim Universitas Negeri Surabaya
  • Muhammad Nurul Fahmi Universitas Negeri Surabaya

DOI:

https://doi.org/10.26740/ifi.v14n2.p178-201

Keywords:

Solusi CMT, Sudut Kagan, Uji-T Berpasangan, Wilcoxon Test, Kagan Angle, Paired T-Test, CMT Solution

Abstract

Abstrak

Penelitian ini dilakukan dengan tujuan untuk menganalisis keakuratan focal mechanism yang dihasilkan software Joko Tingkir terhadap GCMT dengan perhitungan sudut Kagan dan menganalisis keakuratan data katalog Joko Tingkir terhadap GCMT melalui perhitungan uji-t berpasangan dan Wilcoxon ditinjau dari hipotesis yang telah ditetapkan. Data yang diuji memiliki magnitudo momen  ≥ 5,0 selama periode 2020-2024 dengan lima daerah penelitian yaitu daerah Jawa, Sumatera, Sulawesi, Maluku, Nusa Tenggara, dan Papua. Parameter yang diuji diantaranya waktu kejadian (origin time), kedalaman, longitude, latitude, dan focal mechanism diantaranya strike, dip, rake. Seluruh data gempa memiliki karakteristik gempa bumi tektonik atau presentase komponen Double Couple (DC) lebih dominan. Hasil perhitungan sudut Kagan dari 50 data uji menunjukkan tidak ada yang mencapai batas 60° sebagaimana dikemukakan oleh Kagan (1991). Nilai ini mengindikasikan bahwa focal mechanism dan bentuk beachball yang dihasilkan oleh software Joko Tingkir relatif sesuai dan homogen terhadap GCMT. Selain itu, nilai-t dari hasil uji-t berpasangan pada parameter kedalaman (-0,88), dip (1,64), dan longitude (-1,23) tidak ada yang mencapai nilai-t kritis . Begitupula untuk nilai z-score dari Wilcoxon pada parameter magnitudo momen (-1,46), strike (-0,25), rake (-0,69) dan latitude (-0,32) tidak ada yang mencapai nilai-z kritis . Dapat disimpulkan bahwa semua parameter peneilitian tidak memiliki perbedaan signifikan antara data katalog Joko Tingir terhadap GCMT.

 

Abstract

This study was conducted with the aim of analyzing the accuracy of focal mechanisms produced by the Joko Tingkir software compared to GCMT using Kagan angle calculations, as well as assessing the accuracy of the Joko Tingkir catalog data against GCMT through paired t-test and Wilcoxon test calculations based on the established hypotheses. The tested data consist of earthquakes with a moment magnitude  ≥ 5.0 during the 2020–2024 period across five study regions: Java, Sumatra, Sulawesi, Maluku, Nusa Tenggara, and Papua. The parameters analyzed include origin time, depth, longitude, latitude, and focal mechanism parameters such as strike, dip, and rake. All tested earthquakes exhibit tectonic characteristics or a dominant Double Couple (DC) component. The Kagan angle results from 50 test data points showed that none exceeded the 60° threshold as stated by Kagan (1991). This indicates that the focal mechanisms and beachball diagrams generated by the Joko Tingkir software are relatively consistent and homogeneous with those of GCMT. In addition, the t-values from the paired t-test for the parameters of depth (-0.88), dip (1.64), and longitude (-1.23) did not reach the critical t-value of ±2.01. Similarly, the z-scores from the Wilcoxon test for the parameters of moment magnitude (-1.46), strike (-0.25), rake (-0.69), and latitude (-0.32) did not reach the critical z-value of ±1.96. It can be concluded that none of the parameters in this study showed significant differences between the Joko Tingkir catalog data and GCMT.

Downloads

Download data is not yet available.

References

Aberman, K., Katzir, O., Zhou, Q., Luo, Z., Sharf, A., Greif, C., Chen, B., & Cohen-Or, D. (2017). Dip transform for 3D shape reconstruction. ACM Transactions on Graphics (TOG), 36(4), 1–11.

Adhitama, R., Hall, R., & White, L. T. (2017). Extension in the Kumawa block, west Papua, Indonesia.

Adii, J., Kusumawati, D., Falevi, C., & Sahara, D. P. (2021). Maluku Sea Plate Faulting Regime Analysis: A Preliminary Study. IOP Conference Series: Earth and Environmental Science, 873(1), 012100.

Aiman, Y. A., Delorey, A. A., Lu, Y., & Bokelmann, G. (2023). S Hmax orientation in the Alpine region from observations of stress-induced anisotropy of nonlinear elasticity. Geophysical Journal International, 235(3), 2137–2148.

Aribowo, Y. (2024). Geological Structure impacts to hydrocarbon potential and active faults in the East Java Basin, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 9(3), 373–377.

Basso, T., Moraes, R. L. O., Sanches, B. P., & Jino, M. (2009). An investigation of java faults operators derived from a field data study on java software faults. Workshop de Testes e Tolerância a Falhas (WTF), 156–168.

Bayoud, H. A. (2021). Tests of normality: new test and comparative study. Communications in Statistics-Simulation and Computation, 50(12), 4442–4463.

Carlucci, M. E., & Wright, D. B. (2020). Inferential statistics. Research Methods in Psychology, 395.

Charlton, T. (2014). The Bird’s Head-Halmahera microplate: an unrecognised plate simplifies present-day SE Asia tectonic.

Chin, T.-L., Chen, K.-Y., Chen, D.-Y., & Wang, T.-H. (2021). An attention-based hypocenter estimator for earthquake localization. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–10.

Christensen, D. H., & Lay, T. (1988). Large earthquakes in the Tonga region associated with subduction of the Louisville Ridge. Journal of Geophysical Research: Solid Earth, 93(B11), 13367–13389.

Cummins, P. R., Pranantyo, I. R., Pownall, J. M., Griffin, J. D., Meilano, I., & Zhao, S. (2020). Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. Nature Geoscience, 13(4), 312–318.

Dziewonski, A. M., Chou, T., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852.

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.

Franco, S. I., Iglesias, A., & Fukuyama, E. (2020). Moment tensor catalog for Mexican earthquakes: almost two decades of seismicity. Geofísica Internacional, 59(2), 54–80.

Fu, Y., Zhang, G., Wang, W., Yang, A., He, T., Zhou, Z., & Han, X. (2024). Identification of the Caroline Plate boundary: constraints from magnetic anomaly. Acta Oceanologica Sinica, 43(8), 1–12.

González, Á. (2024). Improvements and heterogeneities of the Global Centroid Moment Tensor catalog. Seismological Research Letters, 95(6), 3566–3578.

Hosseini, H., Pakzad, M., & Naserieh, S. (2019). Iranian regional centroid moment tensor catalog: Solutions for 2012–2017. Physics of the Earth and Planetary Interiors, 286. https://doi.org/10.1016/j.pepi.2018.11.001

Hutchings, S. J., & Mooney, W. D. (2021). The seismicity of Indonesia and tectonic implications. Geochemistry, Geophysics, Geosystems, 22(9), e2021GC009812.

Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709–716.

Kagan, Y. Y. (2000). Temporal correlations of earthquake focal mechanisms. Geophysical Journal International, 143(3), 881–897.

Katili, J. A. (1978). Past and present geotectonic position of Sulawesi, Indonesia. Tectonophysics, 45(4), 289–322.

Madlazim, M. (2015). Validation of Joko Tingkir software using tsunami. Journal of Tsunami Society International, 34(3).

Mardhatillah, E., Anggraini, A., & Nukman, M. (2020). Tinjauan Perubahan Stress Coulomb Ko-Seismik Pada Sekuens Gempa Palu M 7, 5 28 September 2018. Jurnal Fisika Indonesia, 24(3), 175–184.

Massinai, M. A., Ismullah, M. M. F., Harimei, B., & Alimuddin, F. (2018). Analysis of Focal Mechanism Distribution in Northern Sulawesi. Journal of Physics: Conference Series, 1093(1), 012038.

Maulida, P., Laksono, S. A., Herawati, Y. A., Rizkiya, P., & Kurniawan, A. (2024a). Analysis of Deformation Along the Flores Back-Arc Thrust Using GPS Observation Data. IOP Conference Series: Earth and Environmental Science, 1418(1), 012033.

Maulida, P., Laksono, S. A., Herawati, Y. A., Rizkiya, P., & Kurniawan, A. (2024b). Analysis of Deformation Along the Flores Back-Arc Thrust Using GPS Observation Data. IOP Conference Series: Earth and Environmental Science, 1418(1), 012033.

McCaughey, J., Lubis, A. M., Huang, Z., Yao, Y., Hill, E. M., Eriksson, S., & Sieh, K. (2012). Earthquake and tsunami hazard in West Sumatra: integrating science, outreach, and local stakeholder needs. EGU General Assembly Conference Abstracts, 8535.

Morgan, P. M., Feng, L., Meltzner, A. J., Mallick, R., & Hill, E. M. (2020). Diverse slip behavior of the banyak islands subsegment of the sunda megathrust in Sumatra, Indonesia. Journal of Geophysical Research: Solid Earth, 125(11), e2020JB020011.

Natawidjaja, D. H., & Daryono, M. R. (2015). The Lawanopo Fault, Central Sulawesi, East Indonesia. AIP Conference Proceedings, 1658(1).

Natawidjaja, D. H., Sieh, K., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., & Chlieh, M. (2007). Interseismic deformation above the Sunda Megathrust recorded in coral microatolls of the Mentawai islands, West Sumatra. Journal of Geophysical Research: Solid Earth, 112(B2).

Park, H. M. (2015). Hypothesis testing and statistical power of a test.

Patria, A., Tsutsumi, H., & Natawidjaja, D. H. (2021). Active fault mapping in the onshore northern Banda Arc, Indonesia: Implications for active tectonics and seismic potential. Journal of Asian Earth Sciences, 218, 104881.

Prastowo, T., & Hardy, T. (2015). SCIENCE OF TSUNAMI HAZARDS Journal of Tsunami Society International Volume 34 Number 3 2015 VALIDATION OF JOKO TINGKIR SOFTWARE USING TSUNAMI IMPORTANCE. 34(3), 189. http://ww.iris.edu

Pratama, I. P. D. (2021). Koreksi Instrumen pada Seismometer Broadband Trilium-120p dan Short-Period DS-04A Co-Located di Stasiun Geofisika Denpasar (Studi Kasus: Gempabumi Lombok 31 Maret 2016). Megasains, 12(1), 1–7.

Pratama, W., & Kita, S. (2022). Stress field orientation obtained from earthquake focal mechanisms.

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.

Sapiie, B., Danio, H., Priyono, A., Asikin, A. R., Widarto, D. S., Widianto, E., & Tsuji, T. (2015). Geological characteristic and fault stability of the Gundih CCS pilot project at central Java, Indonesia. Proceedings of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November 2015, 110–113.

Saputra, R. W., Diputra, A. S. G., Sahara, D. P., Surya, T. S. C., Sharfina, N. P., & Kusumawati, D. (2025). Stress Inversion and Fault Instability Analysis of Seram-Buru Region. IOP Conference Series: Earth and Environmental Science, 1458(1), 012029.

Saputra, S. E. A., Fergusson, C. L., Dosseto, A., Dougherty, A., & Murray-Wallace, C. V. (2022). Late Quaternary neotectonics in the Bird’s Head Peninsula (West Papua), Indonesia: implications for plate motions in northwestern New Guinea, western Pacific. Journal of Asian Earth Sciences, 236, 105336.

Sawade, L., Beller, S., Lei, W., & Tromp, J. (2022). Global centroid moment tensor solutions in a heterogeneous earth: the CMT3D catalogue. Geophysical Journal International, 231(3), 1727–1738.

Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., Ambrosius, B., & Spakman, W. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal of Geophysical Research: Solid Earth, 111(B8).

Sokos, E. N., & Zahradnik, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34(8), 967–977.

Sugiyono, P. D. (2018). Quantitative, qualitative, and R&D research methods. Bandung:(ALFABETA, Ed.).

Taruna, R. M., & Banyunegoro, V. H. (2018). Earthquake relocation using double difference method for 2d modelling of subducting slab and back arc thrust in West Nusa Tenggara. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 8(2), 132–143.

Triantafyllis, N., Sokos, E., Ilias, A., & Zahradník, J. (2016). Scisola: automatic moment tensor solution for SeisComP3. Seismological Research Letters, 87(1), 157–163.

Triantafyllis, N., Venetis, I. E., Fountoulakis, I., Pikoulis, E., Sokos, E., & Evangelidis, C. P. (2022). Gisola: A high‐performance computing application for real‐time moment tensor inversion. Seismological Society of America, 93(2A), 957–966.

Triantafyllis, N., Venetis, I., Fountoulakis, I., Pikoulis, E.-V., Sokos, E., & Evangelidis, C. (2021). Gisola: real-time moment tensor computation optimized for multicore and manycore architectures. EGU General Assembly Conference Abstracts, EGU21-15888.

Uchide, T., Shiina, T., & Imanishi, K. (2022). Stress map of Japan: Detailed nationwide crustal stress field inferred from focal mechanism solutions of numerous microearthquakes. Journal of Geophysical Research: Solid Earth, 127(6), e2022JB024036.

Vackář, J., Burjánek, J., Gallovič, F., Zahradník, J., & Clinton, J. (2017). Bayesian ISOLA: new tool for automated centroid moment tensor inversion. Geophysical Journal International, 210(2), 693–705.

Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., & Vergoz, J. (2011). SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophysical Journal International, 184(1), 338–358.

Yuliatmoko, R. S., & Kurniawan, T. (2019). Analysis of Stress Drop Variations in Fault and Subduction Zones of Maluku and Halmahera Earthquakes in 2019. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 9(2), 152–162.

Zhang, Z., Li, S., Wang, G., Suo, Y., Wang, G., & Wang, P. (2022). Plate boundary processes of the Caroline Plate. Science China Earth Sciences, 65(8), 1554–1567.

Downloads

Published

2025-09-02

How to Cite

Dewanti, A. P., Madlazim, M., & Fahmi, M. N. (2025). Analisis Keakuratan Katalog Data Gempa Bumi Indonesia pada Software Joko Tingkir terhadap Global Centroid Moment Tensor (GCMT) menggunakan Uji-T Berpasangan, Wilcoxon, dan Sudut Kagan. Inovasi Fisika Indonesia, 14(2), 178–201. https://doi.org/10.26740/ifi.v14n2.p178-201

Issue

Section

Fisika Kebumian
Abstract views: 32 , PDF Downloads: 12

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.