IMPLEMENTASI METODE BACKPROPAGATION NEURAL NETWORK DALAM MERAMALKAN TINGKAT INFLASI DI INDONESIA

Authors

  • Ahmad Rizki Wiranto Matematika, FMIPA, Universitas Lampung
  • Eri Setiawan Matematika, FMIPA, Universitas Lampung
  • Aang Nuryaman Matematika, FMIPA, Universitas Lampung
  • Mustofa Usman Matematika, FMIPA, Universitas Lampung

DOI:

https://doi.org/10.26740/mathunesa.v11n1.p8-16

Abstract

Peramalan  merupakan upaya dalam memperkirakan sesuatu di masa depan berdasarkan pada pola data atau informasi di masa lalu. Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, dan Seasonal Autoregressive Integrated Moving Average (SARIMA) merupakan beberapa metode yang sering digunakan dalam peramalan data deret waktu. Namun, metode tersebut memiliki kelemahan yaitu data yang digunakan harus stasioner serta akurasi yang dihasilkan kurang baik. Untuk mengatasi kelemahan tersebut, peneliti banyak yang menerapkan metode Jaringan Syaraf Tiruan salah satunya Backpropagation Neural Network. Metode Backpropagation Neural Network sangat baik digunakan dalam peramalan bidang ekonomi. Masalah ekonomi di Indonesia yang sampai saat ini masih menjadi permasalahan besar adalah inflasi. Dalam kajian ini, dilakukan peramalan inflasi di Indonesia menggunakan data inflasi periode Januari 2000 hingga Oktober 2022. Hasil yang diperoleh menunjukan pembagian data terbaik yaitu 50% training dan 50% testing dengan menggunakan fungsi aktivasi sigmoid biner didapatkan arsitektur terbaik yaitu 12-21-1 dengan nilai Mean Square Error (MSE) pada tahapan training sebesar 0,00067535 dan pada tahapan testing yaitu 0,0767. Setelah dilakukan peramalan, diperoleh bahwa inflasi tertinggi terjadi pada bulan Oktober 2023 sebesar 0,5579 serta peramalan inflasi terkecil terjadi pada Februari 2023 sebesar 0,203.

Downloads

Download data is not yet available.

Downloads

Published

2023-05-17

Issue

Section

Articles
Abstract views: 357 , PDF Downloads: 325