Gangguan Magnetik dan Elektrik Akibat Perambatan Gelombang Tsunami

Authors

  • Fadia shifa arianto Universitas Negeri Surabaya
  • Muhammad Nurul Fahmi Universitas Negeri Surabaya
  • Arie Realita Universitas Negeri Surabaya

DOI:

https://doi.org/10.26740/ifi.v14n2.p292-306

Keywords:

gelombang tsunami, erupsi vulkanik, gempa bumi, variasi medan magnet sekunder, variasi TEC, tsunami waves, volcanic eruptions, earthquakes, secondary magnetic field variations, GNSS-TEC variations

Abstract

This research aims to study electromagnetic disturbances as the generation of secondary magnetic field signals and total electron content (TEC) variations in the ionosphere due to major trans-Pacific tsunamis. Analysis was conducted on three major tsunami events, namely Hunga Tonga 2022, Tohoku 2011, and Chile 2010. Magnetic disturbance data were obtained using three main parameters taken from the official NOAA website. The data was then compared with the observations from the global INTERMAGNET magnetic stations. Meanwhile, the electrical disturbance data was obtained through GNSS-TEC satellite observations. The data obtained is then processed using statistical methods and signal observation to detect anomalies before and during a tsunami. The analysis results show a high level of agreement in bz values between the analytical estimates and observations. In the Tonga tsunami 2022, the difference ranged from 0.04-0.60 nT; Tohoku 2011 ranged from 0.00-0.90 nT; and Chile 2010 ranged from 0.00-0.06 nT. Additionally, TEC variations show significant disturbances in the ionosphere, with decreases and fluctuations in TEC values detected from before to several hours after the tsunami event. These findings confirm that tsunamis, whether triggered by earthquakes or volcanic eruptions, can produce measurable electromagnetic disturbances, and have the potential to be utilized for preliminary studies of early disaster detection systems.

 

Downloads

Download data is not yet available.

References

Aa, E., Zhang, S.R., Erickson, P.J., Vierinen, J., Coster, A.J., Goncharenko, L.P., Spicher, A., William, R. 2022. Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Earh and Space Science, Vol. 20, pp. 7.

Adushkin, V.V., Rybnov, Y.S. and Spivak, A.A. 2022. Wave-related, electrical, and magnetic effects due to the January 15, 2022 catastrophic eruption of Hunga Tonga–Hunga Ha’apai volcano. Journal of Volcanology and Seismology, Vol. 16, No. 4, pp. 251–263.

Ajith, K.K., Sunil, A.S., Sunil, P.S., Thomas, D., Kunnummal, P. and Rose, M.S. 2022. Atmospheric and ionospheric signatures associated with the 15 January 2022 cataclysmic Hunga–Tonga volcanic eruption: a multi-layer observation. Pure and Applied Geophysics, Vol. 179, pp. 4267–4277.

Astafyeva, E., Rolland, L., Lognonne, P., Khelfi, K., Yahagi, T. 2013. Parameters of seismic sources as deducted from 1 Hz ionospheric GPS data: Case study of the 2011 Tohoku-Oki event. Journal of Geophysical Research, Vol.119, No. 9.

Astafyeva, E. 2019. Ionospheric detection of natural hazards. Reviews of Geophysics, Vol. 57, No. 4, pp. 1265–1288.

Astafyeva, E., Maletckii, B., Mikesell, T.D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F. and Rolland, L. 2022. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters, Vol. 49, No. 10.

Chernogor, L.F. 2023. Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth–atmosphere–ionosphere–magnetosphere system. Journal of Atmospheric and Solar Terrestrial Physics, Vol. 253, No. 106107.

Cholifah, L. 2016. Estimasi anomali lokal medan magnet Bumi akibat perambatan gelombang tsunami dalam perspektif teori dinamo aliran air laut. Skripsi. Tidak dipublikasikan. Prodi Fisika, FMIPA Unesa. Hal. 1–57.

Dalal, P., Kundu, B., Panda, J. and Jin, S. 2023. Atmospheric Lamb wave pulse and volcanic explosivity index following the 2022 Hunga Tonga (South Pacific) eruption. Frontiers in Earth Science, Vol. 10.

Feng, J., Yuan, Y., Zhang, T., Zhang, Z., Meng, D. 2023. Analysis of ionospheric anomalies before the Tonga volcanic eruption on 15 January 2022, Multidisciplinary Digital Publishing Institute, Vol. 15, pp. 19.

Ghent, J.N. and Crowell, B.W. 2022. Spectral characteristics of ionospheric disturbances over the southwestern Pacific from the 15 January 2022 Tonga eruption and tsunami. Geophysical Research Letters, Vol. 49, Issue 20.

Hamidi, M., Ahadi, S., Friska, V. and Marzuki, M. 2024. Investigating ultra-low frequency emissions and total electron content anomalies as earthquake precursors in Sumatra (2019–2020). Kuwait Journal of Science, Vol. 51, No. 100196.

Han, S.C., McClusky, S., Mikesell, T.D., Rolland, L., Okal, M., Benson, C. 2023. CubeSat GPS observation of travelling ionospheric disturbances after the 2022 Hunga-Tonga Hunga-Ha`apai volcanic eruption and its potential use for tsunami warning. Earh and Space Science, Vol. 10, pp. 4.

He, L., Wu, L., Heki, K., Guo, C. 2022. The conjugate ionospheric anomalies preceding the 2011 Tohoku-Oki earthquake. Earth Science: Geohazards and Georisks, Vol. 10.

Heki, K. 2011. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, Vol. 38, pp. 17.

Heki, H. 2024. Atmospheric resonant oscillations by the 2022 January 15 eruption of the Hunga Tonga–Hunga Ha’apai volcano from GNSS-TEC observations, Geophysical Journal International, Vol. 236, pp. 1840–1847.

Ho, T-C., Mori, N. and Yamada, M. 2023. Ocean gravity waves generated by the meteotsunami at the Japan Trench following the 2022 Tonga volcanic eruption. Earth, Planets and Space, Vol. 75, No. 25.

Hu, G., Li, L., Ren, Z. and Zhang, K. 2023. The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean. Natural Hazards and Earth System Sciences, Vol. 23, Issue 2, pp. 675–691.

Ichihara, H., Hamano, Y., Baba, K. and Kasaya, T. 2013. Tsunami source of the 2011 Tohoku earthquake detected by an ocean-bottom magnetometer. Earth and Planetary Science Letters, Vol. 382, pp. 117–124.

Kamogawa, M. and Kakinami, Y. 2013. Is an ionospheric electron enhancement preceding the 2011 Tohoku-oki earthquake a precursor? Journal of Geophysical Research: Space Physics, Vol.118, No. 4, pp. 1751–1754.

Kashkin, V., Rubleva, T., Simonov, K., Zabrodin, A., Kabanov, A. 2021. Variations of the total electronic concentration in the ionosphere in seismically active region. E3S Web of Conferences 333, Vol. 02012.

Le, H., Liu, L., Liu, Y.J., Zhao, B., Chen, Y., Wan, W. 2012. The ionospheric anomalies prior to the M9,0 Tohoku-Oki earthquake. Journal of Asian Earth Sciences, Vol. 62, pp. 476–484.

Lin, Z., Toh, H. and Minami, T. 2021. Direct comparison of the tsunami generated magnetic field with sea level change for the 2009 Samoa and 2010 Chile tsunamis. Journal of Geophysical Research: Solid Earth, Vol. 126, Issue 11.

Liu, J.Y., Tsai, H.F., Lin, C.H., Kamogawa, M., Chen, Y.I., Lin, C.H., Huang, B.S., Yu, S.B., Yeh, Y.H. 2010. Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake. Journal of Geophysical Research, Vol. 115(8), pp. 1–12.

Liu, L., Morton, Y.J., Cheng, P.H., Amores, A., Wright, C.J. and Hofmann, L. 2023. Concentric traveling ionospheric disturbances (CTIDs) triggered by the 2022 Tonga volcanic eruption. Journal of Geophysical Research, Vol. 128, Issue 2.

Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa’anunu, O., Bosserelle, C., Jaffe, B., Selle, S.L., Ritchle, A., Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B. and Cinar, G.E. 2022. Diverse tsunamigenesis triggered by the Hunga Tonga–Hunga Ha’apai eruption. Nature, Vol. 609, Issue 7928, pp. 728–743.

Manoj, C. Maus, S. and Chulliat, A. 2011. Observation of magnetic fields generated by tsunamis. Earth and Observatory System, Vol. 92, No. 2, pp. 13–14.

Minami, T. and Toh, H. 2013. Two-dimensional simulations of the tsunami dynamo effect using the finite element method. Geophysical Research Letters. Vol. 40, pp. 4560–4564.

Minami, T., Toh, H. and Tyler, R.H. 2015. Properties of electromagnetic fields generated by tsunami first arrivals: classification based on the ocean depth. Geophysical Research Letters, Vol. 42, pp. 2171–2178.

Minami, T. 2017. Motional induction by tsunamis and ocean tides: 10 years of progress. Survey in Geophysics, Vol. 38, pp. 1097–1132.

Minami, T., Toh, H., Ichihara, H. and Kawashima, I. 2017. Three-dimensional time domain simulation of tsunami-generated electromagnetic fields: Application to the 2011 Tohoku earthquake tsunami: simulation of tsunami magnetic signals. Journal of Geophysical Research: Solid Earth, Vol. 122, Issue 12, pp. 9559–9579.

Minami, T., Schnepf, N.R. and Toh, H. 2021. Tsunami-generated magnetic fields have primary and secondary arrivals like seismic waves. Scientific Reports, Vol. 11, No. 2287.

Miyoshi, Y. and Shinagawa, H. 2023. Upward propagation of gravity waves and ionospheric perturbations triggered by the 2022 Hunga-Tonga volcanic eruption. Earth, Planet and Space, Vol. 75, No. 68.

Nishioka,M., Saito, S., Tao, C., Shiota, D., Tsugawa, T., Ishii, M. 2021. Statistical analysis of ionospheric total electron content (TEC): long-term estimation of extreme TEC in Japan. Earth, Planet and Space, Vol. 73, No. 52.

Prastowo, T., Madlazim and Cholifah, L. 2020. Analysis of tsunami-magnetic anomaly signal in Indonesian regions using theoretical approach and recorded magnetogram. Science of Tsunami Hazards, Vol. 39, No. 1, pp. 1–17.

Prianbikasatiarsa, N. dan Prastowo, T. 2024. Analisis pembangkitan medan magnetik sekunder akibat perambatan gelombang tsunami pada kasus Hunga Tonga–Hunga Ha’apai, Tonga 2022. Inovasi Fisika Indonesia, Vol. 13, No. 2, pp. 80–89.

Putra. and eka, M. 2022. Analisa gangguan ionosfer akibat tsunami menggunakan model 3D tomografi dengan metode GNSS-TEC. Thesis. Institut Teknologi Sepuluh Nopember. Surabaya.

Ravanelli, M., Crespi, M., Foster, J. 2020. Tids detection from ship-bases GNSS Receiver: First test on 2010 Maule tsunami. Institute of Electrical and Electronics Engineers.

Rolland, L.M., Occhipinti, G., Lognonne, P., Loevenbruck, A. 2010. Ionospheric gravity waves detected offshore Hawaii after tsunamis. Geophysical Research Letters, Vol. 37.

Ravanelli, M., Astafyeva, E., Munaibari, E., Rolland, L. and Mikesell, T.D. 2023. Ocean-ionosphere disturbances due to the 15 January 2022 Hunga–Tonga Hunga-Ha’apai eruption. Geophysical Research Letters, Vol. 50, No. 10.

Ren, Z., Higuera, P. and Liu, P.L-F. 2023. On tsunami waves induced by atmospheric pressure shock waves after the 2022 Hunga Tonga–Hunga Ha'apai volcano eruption. Journal of Geophysical Research: Oceans, Vol. 128, Issue 4, pp. 1–21.

Saito, T., Matsumoto, S., Nakahara, H., Lida, H. 2019. Tsunami effects on geomagnetic variations. Pure and Applied Geophysics.

Santellanes, S.R., Ruiz-Angulo, A. and Melgar, D. 2022. Tsunami waveform stacking and complex tsunami forcings from the Hunga–Tonga eruption. Pure and Applied Geophysics, Vol. 180, pp. 1861–1875.

Schnepf, N.R., Manoj, C., An, C., Sugioka, H. and Toh, H. 2016. Time-frequency characteristics of tsunami magnetic signals from four Pacific Ocean events. Pure and Applied Geophysics, Vol. 173, pp. 3935–3953.

Schnepf, N.R., Minami, T., Toh, H. and Nair, M.C. 2022. Magnetic signatures of the 15 January 2022 Hunga Tonga–Hunga Ha'apai volcanic eruption. Geophysical Research Letters, Vol. 49, Issue 10.

Shinagawa, H. and Miyoshi, Y. 2024. Simulation study of atmosphere–ionosphere variations driven by the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. Earth, Planets and Space, Vol. 76, No. 15.

Shinbori, A., Otsuka, Y., Sori, T., Nishioka, M., Septi, P., Tsuda, T., Nishitani, N., Kumamoto, A., Tsuchiya, F., Matsuda, S., Kasahara, Y., Matsuoka, A., Nakamura, S., Miyoshi, Y. and Shinohara, I. 2023. New aspects of the upper atmospheric disturbances caused by the explosive eruption of the 2022 Hunga Tonga–Hunga Ha’apai volcano. Earth, Planet and Space, Vol. 75, No. 175.

Spivak, A.A., Rybnov, Y.S., A. Riabov, S.A., Soloviev, S.P. and Kharlamov, V.A. 2020. Acoustic, magnetic, and electric effects of Stromboli volcano eruption, Italy, in July–August 2019. Physics of the Solid Earth, Vol. 56, No. 5, pp. 708–720.

Sugioka, H., Hamano, Y., Baba, K., Kasaya, T., Tada, N. and Suetsugu, D. 2014. Tsunami: ocean dynamo generator. Scientific Reports, Vol. 4, No. 3596.

Themens, D.R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A. and Jayachandran, P.T. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophysical Research Letters, Vol. 49, No. 7.

Tyler, R.H. 2005. A simple formula for estimating the magnetic field generated by tsunami flow. Geophysical Research Letters, Vol. 32, L09608.

Witze, A. 2022. Why the Tongan volcanic eruption was so shocking. Nature, Vol. 602, pp. 376–378.

Wright, C. J., Hindley, N., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C., et al. 2022. Tonga eruption triggered waves propagating globally from surface to edge of space. Earth and Space Science Open Archive, Vol. 60, pp. 741–746.

Zhang, S.R., Vierinen, J., Aa, E., Goncharenko, L.P., Erickson, P.J., Rideout, W., Coster, A.J., Spicher, A. 2022. Tonga volcanic induced global propagation of ionospheric disturbances via lamb waves. Frontier in Astronomy and Space Sciences, Vol. 9, pp. 871–275.

Downloads

Published

2025-10-06

How to Cite

arianto, F. shifa, Fahmi, M. N., & Realita, A. (2025). Gangguan Magnetik dan Elektrik Akibat Perambatan Gelombang Tsunami. Inovasi Fisika Indonesia, 14(2), 292–306. https://doi.org/10.26740/ifi.v14n2.p292-306

Issue

Section

Fisika Kebumian
Abstract views: 80 , PDF Downloads: 27

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.