ANALYSIS OF PRESTRESSED FORCE LOSS DUE TO VEHICLE OVERLOADING ON RIGID PRESTRESSED PAVEMENT STRUCTURES

CASE STUDY: MARGOMULYO ROAD, SURABAYA

Authors

  • Dhea Ayuning Kraton Universitas Negeri Surabaya
  • Meity Wulandari

DOI:

https://doi.org/10.26740/rekats.v13n01.p30-38

Keywords:

Loss of Prestressed Forc, Flex, Prestressed Concrete, Westergaad Method, PPCP

Abstract

The development of road pavement structures is indispensable in building advanced Indonesian infrastructure, one of which is the implementation of the Precast Pre-Stressed Concrete Pavement (PPCP) System. In 2018 on Jalan Margomulyo, Surabaya has applied PT. Waskita Beton Precast Tbk. known as SPRigWP. However, traffic characteristics in Indonesia often experience overloading. By assuming overloading loads of 5%, 10%, and 15% from the LHR survey data, the number of prestressed and deflection force losses is known. In this study, the westergaard method is used in analyzing the amount of voltage that occurs as a result of traffic load. Based on data from the Surabaya City Government Transportation Office, the Margomulyo Road section has experienced an increase in vehicles of 6.17% per year so that it can be estimated that the number of vehicles with a planned age in 2038 is 50,882 vehicles Meanwhile, the results of the traffic survey for 7x15 hours recorded the highest LHR of 2263.133 kend/hour. The result of this study is that the traffic load of the survey results is 486,477 kN with an increase in load of 5%, 10% and 15% is 511,361.1 kN; 535,616 kN; and 559,938.2 kN. The value of prestressed force loss due to traffic load meets the maximum limit of 20% and the deflection value meets the maximum deflection requirement of 50 mm.

Keywords: Loss of Prestressed Force, Flex, Prestressed Concrete, Westergaad Method, PPCP

 

Downloads

Download data is not yet available.

References

American Concrete Institude. (2017). Recommendations For Designingf Prestressed Concrete Pavements. ACI 325.7R-88. ACI Committee 325, 21.

American Association of State Highway, Transportation, & Officials. (1993). AASHTO Guide for Design of pavement structures. In Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste (Issue 15, pp. 1–624).

CEB-FIP C. (1993). Model Code 1990 for Concrete Structures, Comit e Euro-International du Beton and Federation Internationale de laPrecontrainte. In FIB bulletin (p. 105).

Dachlan, A. (2018). Kajian Perancangan Perkerasan Jalan Beton Prategang (The Study of Prestressed Concrete Pavement Design).

Hendriansyah, C. G., & Widayanti Ari. (2023). Analisis Pemilihan Perkerasan Lentur Dan Kaku Berdasarkan Life Cycle Cost Analysis Di Kota Kediri. Jurnal Rekayasa Teknik Sipil 11(2).

Jalan, B. K., & Nasional, J. (2019). Analisis Disain Perkerasan Jalan Dengan. Ciastech, 269–274.

Karya, J., Sipil, T., Karya, J., & Sipil, T. (2014). Aplikasi rekayasa nilai. 3, 674–684.

Krishna Raju. (2020). Beton Prategang. In Penerbit Erlangga (Issue 11, pp. 3–5).

Pratama, S. A., & Purwanto, E. (2015). Efek Susut Dan Rangkak Terhadap Redistribusi Tegangan Dan Lendutan Pada Elemen Balok Prategang ( Studi Kasus Hotel. 22–29.

Putra, S. A., & Abdillah, N. (2020). Analisa Kerusakan Jalan Beton. (Studi Kasus Jalan Arifin Ahmad Kota Dumai), 13(1), 74–83.

Safitra, P. A., Sendow, T. K., & Pandey, S. V. (2019). Rencana Jalan (Studi Kasus : Ruas Jalan Manado – Bitung). 7(3), 319–328.

Sulaiman, K. P., & Wasono, S. B. (2019). Perencanaan Perkerasan Kaku (Rigid Pavement) Dengan Menggunakan Wiremesh Pada Ruas Jalan HOS. Cokroaminoto Dan Jalan Moch. Yamin (Tuban). Ge-STRAM: Jurnal Perencanaan Dan Rekayasa Sipil, 2(2), 63–68.

Tumpu miswar, P. R. R. (2020). Struktur Beton Prategang (Teori dan Prinsip Desain) (Issue April).

Downloads

Published

2025-01-10

Issue

Section

Articles
Abstract views: 54 , PDF Downloads: 0