RANCANG BANGUN ALAT DETEKSI DISLEKSIA BERBASIS ELEKTROENSEFALOGRAFI DAN MIKROKONTROLER
DOI:
https://doi.org/10.26740/ifi.v15n1.p1-13Keywords:
Disleksia, EEG, Mikrokontroler, Gelombang Neuron, Bandpass Filter, DyslexiaAbstract
Abstrak
Disleksia adalah gangguan neurobiologis yang memengaruhi kemampuan membaca, menulis, dan mengeja, yang berdampak pada sekitar 19,8% siswa sekolah dasar di Indonesia. Penelitian ini bertujuan untuk mengembangkan alat deteksi disleksia berbasis Elektroensefalografi (EEG) yang terintegrasi dengan mikrokontroler ESP32. Sistem ini dirancang untuk memproses sinyal EEG dari subjek normal dan disleksia untuk merekam data aktivitas listrik otak selama pengujian. Dalam penelitian ini, sistem deteksi terdiri dari elektroda EEG, penguat sinyal AD8232, dan mikrokontroler ESP32 yang mengirimkan data ke platform ThingSpeak untuk analisis lebih lanjut. Alat ini dikalibrasi menggunakan input Audio Function Generator (AFG) dan output osiloskop untuk memastikan kemampuan membaca sinyal frekuensi gelombang neuron (4 Hz, 20 Hz, 40 Hz). Proses pengambilan data dilakukan dengan menempatkan elektroda pada titik-titik tertentu di kepala subjek, diikuti dengan pencatatan aktivitas listrik otak saat subjek mengerjakan tugas tertentu. Data yang diperoleh kemudian diproses melalui filter bandpass untuk menyaring sinyal yang tidak relevan, sebelum diubah menjadi amplitudo frekuensi gelombang otak (theta, beta, gamma) yang digunakan untuk analisis. Hasil penelitian menunjukkan adanya perbedaan signifikan dalam amplitudo gelombang theta dan gamma antara subjek disleksia dan subjek normal, yang menandakan adanya gangguan dalam pemrosesan informasi kognitif pada subjek disleksia. Dengan demikian, sistem ini menawarkan solusi yang lebih efisien, portabel, dan terjangkau untuk deteksi dini disleksia. Alat ini berpotensi untuk memperluas aksesibilitas diagnosis dan intervensi yang lebih cepat dan tepat bagi anak-anak dengan disleksia, serta dapat menjadi dasar untuk pengembangan lebih lanjut dalam bidang ini.
Abstract
Dyslexia is a neurobiological disorder that affects the ability to read, write, and spell, impacting approximately 19.8% of primary school students in Indonesia. This study aims to develop a dyslexia detection tool based on Electroencephalography (EEG), integrated with the ESP32 microcontroller. The system is designed to process EEG signals from both normal and dyslexic subjects to record brain electrical activity during testing. In this study, the detection system consists of EEG electrodes, the AD8232 signal amplifier, and the ESP32 microcontroller, which sends data to the ThingSpeak platform for further analysis. The tool was calibrated using an Audio Function Generator (AFG) input and oscilloscope output to ensure the ability to read neural wave frequency signals (4 Hz, 20 Hz, 40 Hz). Data acquisition was performed by positioning electrodes at specific points on the subject's head, followed by recording brain activity as the subject performed a task. The obtained data was then processed through bandpass filtering to remove irrelevant signals, before being converted into amplitude frequency data for theta, beta, and gamma waves used for analysis. The results show a significant difference in the amplitude of theta and gamma waves between dyslexic and normal subjects, indicating disruptions in cognitive information processing in dyslexic subjects. Therefore, this system offers a more efficient, portable, and affordable solution for early dyslexia detection. The tool has the potential to expand accessibility to diagnosis and enable faster, more accurate interventions for children with dyslexia, and can serve as a foundation for further development in this field.
Downloads
References
Abed, M. G., & Shackelford, T. K. (2022). Saudi public primary school teachers’ knowledge and beliefs about developmental dyslexia. Dyslexia, 28(2), 244–251. https://doi.org/https://doi.org/10.1002/dys.1705
Ahmad Zainuddin, A. Z., Mansor, W., Y. Lee, K., & Mahmoodin, Z. (2019). Performance of Extreme Learning Machine Kernels in Classifying EEG Signal Pattern of Dyslexic Children in Writing. International Journal of Integrated Engineering, 11(3). https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/4547
Aldehim, G., Rashid, M., Alluhaidan, A. S., Sakri, S., & Basheer, S. (2024). Deep Learning for Dyslexia Detection: A Comprehensive CNN Approach with Handwriting Analysis and Benchmark Comparisons. Journal of Disability Research, 3(2), 1–8. https://doi.org/10.57197/jdr-2024-0010
Alkhurayyif, Y., & Sait, A. R. W. (2023). Developing an Image-Based Dyslexia Detection Model Using the Deep Learning Technique. Journal of Disability Research. https://doi.org/10.57197/jdr-2023-0057
Azhar, A., Paul Carlo, D., & Hassan, Z. (2023). Are dyslexic children involved in delinquency? Issues and recommendations for a more fulfilling life. Power and Education, 15(3), 291–308. https://doi.org/10.1177/17577438221137767
Bhattarai, C., Yadav, S. K., & Koirala, S. (2022). IoT Based ECG Using AD8232 and ESP32. Nepal Journal of Science and Technology, 21(2), 115–121. https://doi.org/10.3126/njst.v21i2.62361
Guhan Seshadri, N. P., Geethanjali, B., & Singh, B. K. (2020). Resting state EEG signal analysis in Indian Dyslexic children. 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), 404, 300–304. https://doi.org/10.1109/ICPC2T48082.2020.9071499
Ha, J., Baek, S.-C., Lim, Y., & Chung, J. H. (2023). Validation of cost-efficient EEG experimental setup for neural tracking in an auditory attention task. Scientific Reports, 13(1), 22682. https://doi.org/10.1038/s41598-023-49990-6
Kaye, E. L., Lozada, V., & Briggs, C. (2022). Early Identification of and Intervention for Children with and without Dyslexia Characteristics: A Comparison Study. Literacy Research and Instruction, 61(3), 298–313. https://doi.org/10.1080/19388071.2022.2059418
Keshavarzi, M., Mandke, K., Macfarlane, A., Parvez, L., Gabrielczyk, F., Wilson, A., & Goswami, U. (2024). Atypical beta-band effects in children with dyslexia in response to rhythmic audio-visual speech. Clinical Neurophysiology, 160, 47–55. https://doi.org/https://doi.org/10.1016/j.clinph.2024.02.008
Kirana, A. W. (2022). Issues in reading comprehension: A case of an Indonesian bilingual dyslexic student. Indonesian Journal of Applied Linguistics; Vol 11, No 3 (2022): Vol. 11, No. 3, January 2022DO - 10.17509/ijal.v11i3.33581 . https://ejournal.upi.edu/index.php/IJAL/article/view/33581
Martínez-briones, B. J., Fernández, T., & Silva-pereyra, J. (2025). Electroencephalographic power spectrum patterns related to the intelligence of children with learning disorders. 1–24. https://doi.org/10.7717/peerj.19138
Martinez-Murcia, F. J., Ortiz, A., Gorriz, J. M., Ramirez, J., Lopez-Abarejo, P. J., Lopez-Zamora, M., & Luque, J. L. (2020). EEG Connectivity Analysis Using Denoising Autoencoders for the Detection of Dyslexia. International Journal of Neural Systems, 30(07), 2050037. https://doi.org/10.1142/S0129065720500379
Mendes Junior, J. J., Campos, D. P., Biassio, L. C., Passos, P. C., Júnior, P. B., Lazzaretti, A. E., & Krueger, E. (2023). AD8232 to Biopotentials Sensors: Open Source Project and Benchmark. In Electronics (Vol. 12, Nomor 4). https://doi.org/10.3390/electronics12040833
Nkomo, D., & Dube, B. (2023). Crucial Factors in the Implementation of Intervention Programmes for Learners with Dyslexia: An Examination. The International Journal of Humanities & Social Studies. https://doi.org/10.24940/theijhss/2023/v11/i3/hs2301-007
Sanfilippo, J., Ness, M., Petscher, Y., Rappaport, L., Zuckerman, B., & Gaab, N. (2020). Reintroducing Dyslexia: Early Identification and Implications for Pediatric Practice. Pediatrics, 146(1), e20193046. https://doi.org/10.1542/peds.2019-3046
Smirni, P., Vetri, L., Misuraca, E., Cappadonna, M., Operto, F. F., Pastorino, G. M. G., & Marotta, R. (2020). Misunderstandings about Developmental Dyslexia: A Historical Overview. Pediatric Reports, 12(2), 8505. https://doi.org/10.4081/pr.2020.8505
Sturm, V. E., Roy, A. R. K., Datta, S., Wang, C., Sible, I. J., Holley, S. R., Watson, C., Palser, E. R., Morris, N. A., Battistella, G., Rah, E., Meyer, M., Pakvasa, M., Mandelli, M. L., Deleon, J., Hoeft, F., Caverzasi, E., Miller, Z. A., Shapiro, K. A., … Gorno-Tempini, M. L. (2021). Enhanced visceromotor emotional reactivity in dyslexia and its relation to salience network connectivity. Cortex, 134, 278–295. https://doi.org/https://doi.org/10.1016/j.cortex.2020.10.022
Xue, H., Wang, Z., Tan, Y., Yang, H., Fu, W., Xue, L., & Zhao, J. (2020). Resting-state EEG reveals global network deficiency in dyslexic children. Neuropsychologia, 138, 107343. https://doi.org/10.1016/j.neuropsychologia.2020.107343
Zhang, B., Zhang, Y., Dang, Z., Zhu, H., Chen, Y., & Duan, Z. (2024). A Compact and High-Efficiency 220-GHz Power Amplifier Module Based on TE 11 -Mode Radial Power Combiner. IEEE Transactions on Microwave Theory and Techniques, 72(5), 3118–3129. https://doi.org/10.1109/TMTT.2023.3319825
Zuppardo, L., Serrano, F., Pirrone, C., & Rodriguez-Fuentes, A. (2023). More Than Words: Anxiety, Self-Esteem, and Behavioral Problems in Children and Adolescents With Dyslexia. Learning Disability Quarterly, 46(2), 77–91. https://doi.org/10.1177/07319487211041103
Downloads
Published
Versions
- 2026-01-06 (2)
- 2026-01-02 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 Dharmayuda Febrianto, Muhimmatul Khoiro

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0






1.png)