REVIEW: IMOBILISASI ENZIM PAPAIN DENGAN SILIKA MESOPORI DAN KARAGENAN SEBAGAI BAHAN PENDUKUNG

IMMOBILIZATION OF PAPAIN ENZYME WITH SILICA MESOPOROUS AND CARRAGEENAN AS SUPPORT MATERIAL

  • Kuala Wirida Wening Universitas Negeri Surabaya
  • Nuniek Herdyastuti Universitas Negeri Surabaya

Abstract

Papain is a protease enzyme obtained from papaya plant that able to hydrolysis protein into amino acid. Papain plays an important role in the industrial fields so generally papain immobilized on support material to maximize its function. This review is intended to describe the recent development of papain immobilized in silica mesoporous and papain immobilized in carrageenan. The method used was a literature review. The review of secondary data includes papain can be immobilized using one or more methods, like adsorption, cross-linking, entrapment, and covalent binding. Electrostatic interaction becomes the main driving force for papain adsorbed onto silica mesoporous or entrapped in carrageenan. FTIR (Fourier-transform Infrared Spectroscopy), molecular docking, and MD simulation (Molecular Dynamics) were used to analyze the presence of papain in the support material. The characteristics of the papain such as pH, temperature, activity, and repeated usage will change as a result of the immobilization process.

Key words: Papain enzyme, enzyme immobilization, silica mesoporous, carrageenan

 

References

Min, K. & Yoo, Y. J. 2014, Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol. Bioprocess Eng. 19, 553–567.

Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R. & Rodrigues, R. C. 2011, Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 353, 2885–2904.

Zdarta, J., Meyer, A., Jesionowski, T. & Pinelo, M. 2018, A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts. 8, 92.

Soeka, Y. S., Rahayu, S. H., Setianingrum, N. & Naiola, E. 2011, Kemampuan Bacillus Licheniformis dalam Memproduksi Enzim Protease yang Bersifat Alkalin dan Termofilik. Media Litbang Kesehat. 21, 89–95.

Yuniati, R., Nugroho, T. T. & Puspita, F. 2015, Uji Aktivitas Enzim Protease dari Isolat Bacillus sp. Galur Lokal Riau. JOM FMIPA. 1, 116–122.

Noviyanti, T., Ardiningsih, P. & Rahmalia, W. 2012, Pengaruh Temperatur Terhadap Aktivitas Enzim Protease dari Daun Sansakng (Pycnarrhena cauliflora Diels). JKK 1, 31–34.

Moreira Filho, R. N. F., Vasconcelos, N. F., Andrade, F. K., Rosa, M. de F. & Vieira, R. S. 2020, Papain immobilized on alginate membrane for wound dressing application. Colloids Surf. B Biointerfaces 194, 111222.

Paul, B., Nasreen, M., Sarker, A. & Islam, M. R. 2013, Isolation, Purification and Modification of Papain Enzyme to Ascertain Industrially Valuable Nature. Int. J. Bio-Technol. Res. 3, 11–22.

S, N., S, A. K. & N, G. 2012, A Review on Methods, Application and Properties of Immobilized Enzyme. Chem. Sci. Rev. Lett. 1, 148–155.

Jesionowski, T., Zdarta, J. & Krajewska, B. 2014, Enzyme immobilization by adsorption: a review. Adsorption 20, 801–821.

Sun, L., Liang, H., Yuan, Q., Wang, T. & Zhang, H. 2012, Study on a carboxyl-activated carrier and its properties for papain immobilization. J. Chem. Technol. Biotechnol. 87, 1083–1088.

Barbosa, O. et al. 2013, Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules 14, 2433–2462.

Yushkova, E. D. et al. 2019, Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 67, 11553–11567.

Vaghari, H. et al. 2016, Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 38, 223–233.

Hartmann, M. & Kostrov, X. 2013, Immobilization of enzymes on porous silicas – benefits and challenges. Chem. Soc. Rev. 42, 6277.

Chakraborty, S. 2017, Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J. Carbohydr. Chem. 36, 1–19.

Homei, A., Sariri, R.,Vianello, F. & Stevanato,

R. 2013, Enzyme Immobilization: an Update. J Chem Biol. 6,185-205

Zhang, B., Weng, Y., Xu, H. & Mao, Z. 2012, Enzyme immobilization for biodiesel production. Appl. Microbiol. Biotechnol. 93, 61–70.

Es, I., Vieira, J. D. G. & Amaral, A. C. 2015, Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99, 2065–2082.

Bernardino, S., Estrela, N., Ochoa-Mendes, V., Fernandes, P. & Fonseca, L. P. 2011, Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties. J. Sol-Gel Sci. Technol. 58, 545–556.

Chapman, J., Ismail, A. & Dinu, C. 2018, Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 8, 238.

Liu, D.-M., Chen, J. & Shi, Y.-P. 2018, Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal. Chem. 102, 332–342.

Gorecka, E. & Jastrzebska, M. 2011, Immobilization techniques and biopolymer carriers. Biotechnol Food Scince 75, 65–68.

S, J. S., Seethadevi, A., Prabha, K. S., Muthuprasanna, P. & Pavitra, P. 2012, Microencapsulation: A Reviw. Int. J. Pharma Bio Sci. 3, 509–531.

Miletić, N., Nastasović, A. & Loos, K. 2012, Immobilization of biocatalysts for enzymatic polymerizations: Possibilities, advantages, applications. Bioresour. Technol. 115, 126–135.

Ungurean, M., Paul, C. & Peter, F. 2013, Cellulase immobilized by sol–gel entrapment for efficient hydrolysis of cellulose. Bioprocess Biosyst. Eng. 36, 1327–1338.

Sassolas, A., Blum, L. J. & Leca-Bouvier, B. D. 2012, Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511.

Nguyen, H. H. & Kim, M. 2017, An Overview of Techniques in Enzyme Immobilization. Appl. Sci. Converg. Technol. 26, 157–163.

Zucca, P. & Sanjust, E. 2014, Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 19, 14139–14194.

Zucca, P., Fernandez-Lafuente, R. & Sanjust, E. 2016, Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 21, 1577.

Rodrigues, R. C., Berenguer-Murcia, Á. & Fernandez-Lafuente, R. 2011, Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Adv. Synth. Catal. 353, 2216–2238.

Sheldon, R. A. 2011, Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Org. Process Res. Dev. 15, 213–223.

Tran, D. N. & Balkus, K. J. 2011, Perspective of Recent Progress in Immobilization of Enzymes. ACS Catal. 1, 956–968.

Velasco-Lozano, S., López-Gallego, F., Mateos-Díaz, J. C. & Favela-Torres, E. 2016, Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review. Biocatalysis 1.

Santos, J. C. S. dos et al. 2015, Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem 7, 2413–2432.

Datta, S., Christena, L. R. & Rajaram, Y. R. S. 2013, Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3, 1–9.

Lee, S., Yun, H.-S. & Kim, S.-H. 2011, The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32, 9434–9443.

Hartono, S. B. & Hadisoewignyo, L. 2017, Pembuatan, modifikasi dan pemanfaatan material nano-pori. Widya Tek. 16, 105–110.

Carlsson, N. et al. 2014, Enzymes immobilized in mesoporous silica: A physical–chemical perspective. Adv. Colloid Interface Sci. 205, 339–360.

Wahba, M. I. & Hassan, M. E. 2017, Agar-carrageenan hydrogel blend as a carrier for the covalent immobilization of β-D-galactosidase. Macromol. Res. 25, 913–923.

Tavassoli-Kafrani, E., Shekarchizadeh, H. & Masoudpour-Behabadi, M. 2016, Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 137, 360–374.

Hassan, M. E., Yang, Q. & Xiao, Z. 2019, Covalent immobilization of glucoamylase enzyme onto chemically activated surface of κ-carrageenan. Bull. Natl. Res. Cent. 43.

Ghanbarzadeh, M., Golmoradizadeh, A. & Homaei, A. 2018, Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes. Phytochem. Rev. 17, 535–571.

Zhang, B. et al. 2016, Papain/Zn3 (PO4)2 hybrid nanoflower: preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Adv. 6, 46702–46710.

Putri, R. A., Kusrijadi, A. & Suryatna, A. 2013, Kajian Penggunaan Amonium Sulfat Pada Pengendapan Enzim Protease (Papain) dari Buah Papaya Sebagai Koagulan dalam Produksi Keju Cottage. J. Sains Dan Teknol. Kim. 4, 159–168.

Amri, E. & Mamboya, F. 2012, PAPAIN, A PLANT ENZYME OF BIOLOGICAL IMPORTANCE: A REVIEW. Am. J. Biochem. Biotechnol. 8, 99–104.

Gu, Y.-J., Zhu, M.-L., Li, Y.-L. & Xiong, C.-H. 2018, Research of a new metal chelating carrier preparation and papain immobilization. Int. J. Biol. Macromol. 112, 1175–1182.

Fernández-Lucas, J., Castañeda, D. & Hormigo, D. 2017, New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends Food Sci. Technol. 68, 91–101.

Novinec, M. & Lenarčič, B. 2013, Papain-like peptidases: structure, function, and evolution. Biomol. Concepts 4, 287–308.

Sheng, W., Xi, Y., Zhang, L., Ye, T. & Zhao, X. 2018, Enhanced activity and stability of papain by covalent immobilization on porous magnetic nanoparticles. Int. J. Biol. Macromol. 114, 143–148.

Bian, W., Yan, B., Shi, N., Qiu, F., Lou, L.,

Qi, B. & Liu, S. 2012, Room Temperature Ionic Liquid (RTIL)-decorated Mesoporous Silica SBA-15 For Papain Immobilization: RTIL Increased The Amount and Activity of Immobilized Enzyme. Materials Sci and Eng C. 32, 364-368.

Yang, Y., Deka, J., Wu, C., Tsai, C., Saika, D.

& Kao, H. 2017, Cage Like Ordered Carboxylic Acid Funtionalized Mesoporous Silica With Enlarged Pores For Enzyme Adsorption. J Mater Sci. 52, 6322-6340.

He, J., Wu, M., Feng, X., Shao, X. & Cai, W. 2014, Immobilization of papain on nanoporous silica. RSC Adv 4, 13304–1331.

Dai, H., Ou, S., Liu, Z. & Huang, H. 2017, Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr. Polym. 169, 504–514.

Sankalia, M. G., Mashru, R. C., Sankalia, J. M. & Sutariya, V. B. 2006, Physicochemical Characterization of Papain Entrapped in Ionotropically Cross-Linked Kappa-Carrageenan Gel Beads for Stability Improvement Using Doehlert Shell Design. J. Pharm. Sci. 95, 1994–2013.

Wuryanti. 2009, Penggunaan Karagenan dari Rumput Laut (Euchema Cotonii) sebagai Bahan Pendukung (Support) pada Amobilisasi Enzim Papain. J. Sains Mat. 17.

Published
2021-11-13
Section
Articles
Abstract Views: 784
PDF Downloads: 1618