THE EFFECT OF CROSSLINKER AMOUNT ON THE SYNTHESIS OF MOLECULARLY IMPRINTED POLYMER (MIP) TOWARD ADSORPTION CAPABILITY OF CLORAMPHENICOL

  • Maria Monica Sianita Universitas Negeri Surabaya
  • Magdalena Butar Butar Universitas Negeri Surabaya

Abstract

This study aims to determine the effect of variations in the amount of crosslinker on the adsorption capability of Molecularly Imprinted Polymer (MIP)-Chloramphenicol (CAP) which was analyzed using the High-Performance Liquid Chromatography (HPLC) instrument and identify the –NO2 functional group in the polymer with the best variation in the amount of crosslinker using the instrument. Fourier Transform Infrared Spectroscopy (FTIR). In this study, MIP was synthesized using CAP as a template, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, methacrylic acid (MAA) as a monomer, benzoyl peroxide (BPO) as an initiator, and acetonitrile as a porogen. The results showed that the variation in the number of crosslinkers affected the adsorption capability of MIP with the composition between CAP: MAA: EGDMA, namely 1:3:18, resulting in the largest adsorption capability of 2,2 mg/g with an extraction percentage of 66.11%. The results of functional group identification with FTIR showed that NIP contained –NO2 group at wave number 1524.27 cm­­-1 while in MIP no –NO2 group was detected because most of the CAP had been extracted, and PB was made as a control polymer without adding template CAP.

 

Keywords: Chloramphenicol, Molecularly Imprinted Polymer, Crosslinker, Adsorption Capability

References

Alghifari, D., Kuswandi, B., and Pratoko, D. K. (2017). Pengembangan Sensor Kloramfenikol Berbasis Imobilisasi Bovine Serum Albumin (BSA) pada Selulosa Asetat dengan Metode Spektroflorometri. e-Jurnal Pustaka Kesehatan, 5(1): 40-45.

Katzung, Bertram G. 2007. Basic & Clinical Pharmacology, 10th ed. United States: Lange Medical Publications.

EU and Commission Decision. 2005. Laying Down Harmonized Standards For The Testing For Certain Residues In Product Of Animal Origin Imported From Third Countries.

Nurhamidah, N., Marinda P, and Koryanti, E. (2017). Pembuatan Molecularly Imprinted Polymer (MIP) Melamin Menggunakan Metode Cooling-Heating. Prosiding seminar nasional fisika (e-journal) UNJ, 6: 45-50. doi:10.21009/03.SNF2017.02.MPS.08.

Sianita, M. M., et al. (2019). Comparison of the method used for extraction chloramphenicol from its Molecularly Imprinted Polymer (MIP) using chloroform as porogen’, in Proceedings of the National Seminar on Chemistry (SNK-19), 1: 17-18. doi: 10.2991/snk-19.2019.5.

Hashemi-Moghaddam, H., Rahimian, M., and Niromand, B. (2013). Molecularly Imprinted Polymers for Solid-Phase Extraction of Sarcosine as Prostate Cancer Biomarker from Human Urine. Bulletin of the Korean Chemical Society, 34(8): 2330-2334. doi: 10.5012/BKCS.2013.34.8.2330.

Martín-Esteban, A. (2013). Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC Trends in Analytical Chemistry, 45: 169–181. doi: 10.1016/j.trac.2012.09.023.

BelBruno and Joseph, J. (2019). Moleculary Imprinted Polymer. ACS Publications, 199: 94-119.

Omidi, Fariborz., Behbahani, M., Hamid Sadeghi., Sedighi, Alireza., and Shahtaheri , Seyed Jamaleddin. (2014). Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2,4-dichlorophenoxyacetic acid in the human urine and different water samples. J Environ Health Sci Engineer, 12: 137. doi: 10.1186/s40201-014-0137-z.

Joke Chow, A. L. and Bhawani, S. A. (2016). Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Cinnamic Acid: Extraction of Cinnamic Acid from Spiked Blood Plasma. International Journal of Polymer Science, 1-5, doi: 10.1155/2016/2418915.

Ho Row, Kyung and Yan, Hongyuan. (2006). Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. IJMS, 7(5): 155-178, doi: 10.3390/i7050155.

Chrisnandari, R. D. (2018). Sintesis dan Karakterisasi Molecularly Imprinted Polymer Untuk Kloramfenikol Menggunakan Polimerisasi Fasa Ruah. Journal of Pharmacy and Science, 3(1): 40-46.

Hasanah, A. N., Kartasasmita, R. E., and Ibrahim, S. (2015). Sintesis Sorbent Ekstraksi Fase Padat dengan Teknik Molecular Imprinting dengan Monomer Akrilamid untuk Ekstraksi Glibenklamid dari Serum Darah. Journal of Pharmaceutical Analysis, 7(4): 233–241.

Wijayani, F., Supriyanto, G and Suyanto. (2014). Karakterisasi Molecularly Imprinted Polymer (MIP) Hasil Polimerisasi Presipitasi sebagai Adsorben Kloramfenikol. A Thesis, Universitas Airlangga.

Alizadeh, T., Reza Ganjali, Mohamad., Zare, Mashaalah., and Norouzi, Parviz. (2012). Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chemistry, 130(4): 1108-1114. doi: 10.1016/j.foodchem.2011.08.016.

Walsh, R. (2010). Development and Characterisation of Molecularly Imprinted Suspension Polymers, A Thesis, Waterford Institute of Technology.

Tom, L. A., Schneck, N. A., and Walter, C. (2012). Improving the imprinting effect by optimizing template:monomer:cross-linker ratios in a molecularly imprinted polymer for sulfadimethoxine. Journal of Chromatography B, 909: 61-64. doi: 10.1016/j.jchromb.2012.10.020.

Bhawani, S. A., Sen, T. S., and Mohammad Ibrahim, M. N. (2018). Synthesis of molecular imprinting polymer for extraction of gallic acid from urine. Chemistry Central Journal, 12(1): 1–7. https://doi.org/10.1186/s13065- 018-0392-7.

Zhao, S., et al. (2019). Preparation of Restricted Access Media-Molecularly Imprinted Polymers for the Detection of Chloramphenicol in Bovine Serum. Journal of Analytical Methods in Chemistry, pp. 1- 12.

Sianita, M. M. 2018. Pengembangan Metode Analisis Kloramfenikol dalam Akuakultur secara Fotometrik Menggunakan Molecularly Imprinted Polymer (MIP) sebagai Adsorben. Disertasi tidak diterbitkan. Surabaya: Universitas Airlangga.

Odian. G. (2004). Principles of Polymeryzation, Third Edition. New York.

Spivak, D. A. (2005). Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews, 57(12): 1779-1794.

Zhao, F., et al. (2017). Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer. Food Anal. Methods, 10(7): 2566-2575, 2017, doi: 10.1007/s12161-017-0810-9.

Yilmaz, E., et al. (2015). Utilizing the Cross-Reactivity of MIPs. Molecularly Imprinted Polymers in Biotechnology, 167-182. doi: 10.1007/10_2015_312.

Published
2022-02-11
Section
Articles
Abstract Views: 180
PDF Downloads: 275