THE EFFECT OF AMOUNT OF POROGEN ON MIP (MOLECULARLY IMPRINTED POLYMER) SYNTHESIS TOWARD THE ADSORPTION OF MIP-CHLORAMPHENICOL

  • Maria Monica Sianita Universitas Negeri Surabaya
  • Trifena Meysia Yusuf Universitas Negeri Surabaya

Abstract

The purpose of this study was to determine the effect of porogen acetonitrile volume during the synthesis of Molecularly Imprinted Polymer (MIP) toward the adsorption capability of chloramphenicol and to determine the characteristics of the functional groups contained in Non Imprinted Polymer (NIP) and MIP. The porogen variations used were 30 mL, 45 mL, dan 60 mL. The effect of volume of porogen to adsorption capability will be measured using High Performance Liquid Chromatography (HPLC) instruments, while the functional groups on NIP and MIP will be characterized using Fourier Transform Infra Red (FTIR). MIP was synthesized using the precipitation method. The results showed that the 60 mL of the porogen variation gave the highest adsorption capability value compared to other variation which was 7.32 mg/g. Characterization with FTIR showed that the presence of NO2 group in NIP which was indicated at wave number 1517.56 cm-1 and 1549,08 cm-1 while in MIP the  NO2 group was detected at wave number 1553.07 cm-1 with lower intensity.

 

Key words: MIP, chloramphenicol, acetonitrile, adsorption capability.

References

Azizah, F. F., Sianita, M. M., & Supriyatno, G. (2015). Optimasi Proses Reduksi Kloramfenikol Menggunakan Reduktor Zn Dengan Spektrofotometri UV-Vis. UNESA Journal of Chemistry, Volume 2 No.2, pp. 111-116.

Zhao, S., & Chanling Wei, D. (2019). Preparation of Restricted Access Media-Molecularly Imprinted Polymers for the Detection of Chloramphenicol in Bovine Serum. Journal of Analytical Methods in Chemistry, Volume 42, No.15, pp. 1-12

Schirmer, Christina. (2006). Synthesis of a Molecularly Imprinted Polymer for the Selective Solid-Phase Extraction of Chloramphenicol from Honey. Journal of Chromatography A, Volume 1132, No.2, pp. 325-328.

Kowalski, D., Pobozy, E., & Trojanowicz, M. (2011). Flow-Injection Preconcertration of Chloramphenicol Using Moleculary Imprinted Polymer for HPLC Determination in Enviromental Samples. Journal of Automated Methods and Management in Chemistry, Volume 2011, No.10 , pp. 1-10

FDA. “Food and Drug Administration”. Import Alret 16-136. (2016). [Online]. Available: https://www.accessdata.fda.gov/cms_ia/importalert_1153.html. [Accessed 7 Juli 2021].

Chrisnandari, R. D. (2018). Sintesis dan Karakterisasi Molecularly Imprinted Polymer Untuk Kloramfenikol Menggunakan Polimerisasai Fasa Ruah. Jounal of Pharmacy and Science, Volume 3, No.1, pp. 40-46.

Zhang, Y., & Lei, J. (2013). Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase. Bull. Korean Chem. Soc, Volume.34, No.6, pp. 1839-1844.

Holdsworth, K. F. (2018). Effect of Formulation on the Binding Efficiency and Selectivity of Precipitation Molecularly Imprinted Polymers. Molecules, Volume 23, No.11, pp. 1-29.

Hu, Y., Pan, J., Zhang, K., Lian, H., & Li, G. (2013). Novel Applications of Molecularly imprinted Polymers in Sample Preparation. Analytical Chemistry, Volume 23. No.1, pp. 37-52.

Pitaloka, I., & Destiani, D. P. (2017). Molecular Imprinting Solid Phase Extraction Monomer Asam Metakrilat (MAA) Metode Ruah dan Endapan. Farmaka, Volume 15, No.2, pp. 53-69.

Cacho, C., & E. Turiel, A. M.-E. (2004). Characterisation and Quality Assessment of Binding Sites on a Propazine-Imprinted Polymer Prepared. Journal of Chromatography . Volume 802, No.2, pp. 347-353.

Wloch, M., & Datta, J. (2019). Synthesis and Polymerisation Techniques of Milecularly Imprinted Polymers. Comprehensive Analytical Chemistry, Volume 86, No.1, pp. 17-40.

Chen, L. W. (2016). Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev., Volume 45, No.8, pp. 2137-2211.

Cao, H., Xu, Fei., Li, Dai-Xi., & Zhang, Xio-Gang. (2013). Preparation and Performance Valuation of High Selective Moleculary Imprinted Polymers for Malachite Green. Res Chem Intermed, Volume 39, pp. 2321-233.

Afgani, A. Q., & Destiani, D. P. (2018). Review Artikel: Pengaruh Polaritas Porogen Pada Sintesis Moleculary Imprinted Polymer (MIP) . Farmaka, Volume 16, No.3, pp. 224-233.

Fauziah, St., Hartina, A., & Soekamto, N.H., (2019). Characterization Molecularly Imprinted Polymers as a Selective Adsorbent in the Solid-Phase Extraction Method. Jounal of Physics: Conference Series. Volume 1341, No.3, pp. 1-8.

Putri, L. M. A., Prihandono, T., & Supriadi, B., (2017). Pengaruh Konsentrasi Larutan Terhadap Laju Kenaikan Suhu Larutan. Jurnal Pembelajaran Fisika, Volume 6, No.2, pp. 147-153

Sianita, M. M. (2019). Comparison of the Method Used for Extraction Chloramphenicol From its Molecularly Imprinted Polymer (MIP) Using Chloroform as Porogen . Atlantis Highlights in Chemistry and Pharmaceutical Sciences, Volume 1. No. 19, pp. 17-18.

Wijayani, F., & Ganden Supriyatno, S., (2014). Karakterisasi Moleculary Imprinted Polymer (MIP) Hasil Polimerisasi Presipitasi Sebagai Adsorben Kloramfenikol. Jurnal Matematika dan Ilmu Pengetahuan Alam, Volume 17, No.2, pp. 1-10.

Esfandyari-Manesh, M., Javanbakht, M., Shahmoradi, E., & Atyabi, R. D. A. F., (2013). The Control of Morphological and Size Properties of Carbamazepine Imprinted Microspheres and Nanospheres Under Different Synthesis Conditions. Materials Research Society, Volume 28. No.19, pp. 2677-2686.

Spivak, David., (2005). Optimization, Evaluation, and Characterization of Molecularly Imprinted Polymers. Adv. Drug Delivery, Volume 57, No.12, pp. 1779-1794.

Hart, B., & Shea, K. (2001). Synthetic peptide receptors: Molecularly Imprinted Polymers for the Recognition of Peptides Using Peptide-Metal Interactions. J. Am. Chem. Volume 123, No.9, pp. 2072-2073.

Yan, M., & Ramstrong, O. (2005). Molecularly Imprinted Material Science and Technology, pp. 65. New York: Marcel Dekker.

Shafqat, S. R., Bhawani, S. A., Bakhtiar, S. & Ibrahim, M. N. M., (2020). Synthesis of Molecularly Imprinted Polymer for Removal of Congo red. BMC Chemistry, Volume 14, No.1, pp. 27.

Omidi, F., Behbahani, Mohammad., Abandasari, H. S., Sedighi, A., & Shahteheri. (2014). Application of Molecular Imprinted Polymer Nanoparticles as a Selective Solid Phase Extraction for Preconcentration and Trace Determination of 2,4-Dichlorophenoxyacetic Acid in the Human Urine and Different Water Samples. Journal of Environmental Health Science & Engineering, Volume 12, No.1, pp. 137.

Ferdinand, M., Pratiwi, R., & Hasanah, A. N., (2020). Characterization of Diazepam Imprinted Polymer with Methacrylic Acid and Hydroxyethyl Methacrylate Monomer in Chloroform for Selective Adsorption of Diazepam. Indonesian Journal of Pharmaceutical Science and Technology , Volume 7, No.2, pp. 46-56.

Ellawanger, Arndt., Karlsson, L., Owens, P., & Berggren, C.(2001). Evaluation Of Methods Aimed At Complete Removal Of Template From Molecularly Imprinted Polymers. The Analyst, Volume. 126, No.6, pp. 784-792.

Published
2022-02-11
Section
Articles
Abstract Views: 244
PDF Downloads: 294