SYNTHESIS AND CHARACTERISATION OF TiO2-CELLULOSE NANOCOMPOSITE FROM SUGARCANE BAGASSE

Main Article Content

Cindhy Novita Sari
Dina Kartika Maharani

Abstract

Sugarcane bagasse is an abundant agricultural waste in Indonesia, reaching more than 750,000 tons annually, yet it remains underutilized. It contains a high cellulose content of up to 52.7%, one of the highest among agricultural residues. Considering its high fiber content and wide availability, sugarcane bagasse has significant potential to be recycled into high-value materials, including nanocellulose, a nanoscale biopolymer with high surface area, mechanical strength, and crystallinity. This study explores the utilization of cellulose derived from sugarcane bagasse, which was subsequently composited with titanium dioxide (TiO₂) nanoparticles to form nanocomposites. Cellulose isolation was carried out using a combined chemical and mechanical method involving alkali treatment, bleaching, and acid hydrolysis, followed by ultrasonication. The nanocomposite synthesis was performed through a wet dispersion method using a water–ethanol mixture. XRD analysis confirmed the successful isolation of nanocellulose, as indicated by an increase in crystallinity index from 51.37% to 70.55% after isolation, with crystal sizes in the nanometer range, that is 4.31 nm for nanocellulose and 35.41 nm for the nanocomposite. FTIR characterization corroborates the success of isolation, showing a decrease in the intensity of functional groups associated with amorphous components such as C=O and aromatic C=C, from 0.0181 to 0.0131 and from 0.0314 to 0.0140, respectively.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cindhy Novita Sari, & Dina Kartika Maharani. (2025). SYNTHESIS AND CHARACTERISATION OF TiO2-CELLULOSE NANOCOMPOSITE FROM SUGARCANE BAGASSE. Unesa Journal of Chemistry, 14(2), 33–40. Retrieved from https://ejournal.unesa.ac.id/index.php/unesa-journal-of-chemistry/article/view/72850
Section
Articles

References

1. Calia, A., Lettieri, M., Masieri, M., Pal, S., Licciulli, A., & Arima, V. 2017. Limestones coated with photocatalytic TiO2 to enhance building surface with self-cleaning and depolluting abilities. Journal of Cleaner Production, 165, 1036–1047. https://doi.org/10.1016/j.jclepro.2017.07.193

2. Nurillahi, R., Halimah, D. N., Apriliani, D. G., & Fatimah, I. 2018. Pengolahan limbah batik cair menggunakan fotokatalis tio2-abu vulkanik desa wukirsari yogyakarta. Khazanah: Jurnal Mahasiswa, 10(2), 1–8. https://doi.org/10.20885/khazanah.vol10.iss2.art3

3. Matsudo, A. 2024. Eco-Friendly Photocatalytic Solutions: Synthesized TiO2 Nanoparticles in Cellulose Membranes for Enhanced Degradation of Indigo Carmine dye ACS Paragon Plus Environment. https://doi.org/10.1021/acsomega.4c04017

4. Nina Hartati. 2023. Isolasi, Karakterisasi, Dan Aplikasi Nanokristal Selulosa : Review. JSSIT: Jurnal Sains Dan Sains Terapan, 1(2), 29–38. https://doi.org/10.30631/jssit.v1i2.19

5. Börjesson, M., & Westman, G. 2015. Crystalline Nanocellulose — Preparation, Modification, and Properties. Cellulose - Fundamental Aspects and Current Trends. https://doi.org/10.5772/61899

6. Gabryelle, K., Fadil Alif Ramadhan, M., & Sri Handayani, A. 2018. Synthesis Nanocomposites of Nanocellulose-TiO2 for Red Base 218 Waste Water Treatment. Jurnal IPTEK, 7(1), 51–57.

7. Fadilla, A., Amalia, V., Ryski Wahyuni, I., Kimia, J., Sains dan Teknologi, F., & Sunan Gunung Djati Bandung, U. 2023. Pengaruh Selulosa Ampas Tebu (Saccharum officinarum) sebagai Zat Pengisi Plastik Biodegradable berbasis Pati Kulit Singkong (Manihot fsculenta). Gunung Djati Conference Series, 34, 69–80. https://conferences.uinsgd.ac.id/index.php/gdcs/article/view/1940

8. Clarita Vikanova Seli, Kristina Tresia Leto, & Kartini Rahman Nisa. 2024. Pengaruh Penambahan Ampas Kopi Sebagai Adsorben Pada Limbah Cair Tenun Ikat. Journal Innovation In Education, 2(2), 01–07. https://doi.org/10.59841/inoved.v2i2.1057

9. Asmoro, N. W., Afriyanti, A., & Ismawati, I. (2018). Ekstraksi Selulosa Batang Tanaman Jagung (Zea Mays) Metode Basa. Jurnal Ilmiah Teknosains, 4(1), 24–28. https://doi.org/10.26877/jitek.v4i1.1710

10. Vu, A. N., Nguyen, L. H., Tran, H. C. V., Yoshimura, K., Tran, T. D., Van Le, H., & Nguyen, N. U. T. 2024. Cellulose nanocrystals extracted from rice husk using the formic/peroxyformic acid process: isolation and structural characterization. RSC Advances, 14(3), 2048–2060. https://doi.org/10.1039/d3ra06724f

11. Pelissari, F. M., Sobral, P. J. D. A., & Menegalli, F. C. 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 21(1), 417–432. https://doi.org/10.1007/s10570-013-0138-6

12. Anaya-Esparza, L.M., Villagrán-de la Mora, Z., Ruvalcaba-Gómez, J.M., Romero-Toledo, R., Sandoval-Contreras, T., Aguilera-Aguirre, S., Montalvo-González, E. & Pérez-Larios, A., 2020. Use of titanium dioxide (TiO₂) nanoparticles as reinforcement agent of polysaccharide-based materials. Processes, 8(11), 1395

13. Rathod. 2018. Nanocellulose/TiO2 composites: Preparation, characterization and application in photocatalytic degradation of a potential endocrine disruptor, mefanamic acid, from aqueous media. Photochemical & Photobiological Sciences. 10.1039/C8PP00156A

14. Tibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. 2018. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192–201. https://doi.org/10.1016/j.foodhyd.2017.08.027

15. Sahlin, K., Forsgren, L., Moberg, T., Bernin, D., Rigdahl, M., & Westman, G. 2018. Surface treatment of cellulose nanocrystals (CNC): effects on dispersion rheology. Cellulose, 25(1), 331–345. https://doi.org/10.1007/s10570-017-1582-5

16. Amirudin, S., Rejeki, S., & Ilmu dan Teknologi Pangan Fakultas Pertanian Universitas Halu Oleo, J. 2024. Metode Sintesis Nanoselulosa: Kajian Pustaka. 2(1), 89–96.

17. Melenia, A. T., Jovita, S., Utami, D. I., Tamim, R., Holilah, H., Bahruji, H., Hamid, Z. A. A., Mubarok, F., Widiyastuti, W., Wibisono, A. T., Suprapto, S., Jalil, A. A., & Prasetyoko, D. 2024. Nanocrystalline cellulose from Calophyllum inophyllum shells waste by adjusting organic acid hydrolysis and optimization of reaction parameters using response surface methodology. International Journal of Biological Macromolecules, 281(xxxx), 135705. https://doi.org/10.1016/j.ijbiomac.2024.135705

18. Wijaya, C. J., Ismadji, S., Aparamarta, H. W., & Gunawan, S. 2019. Optimization of cellulose nanocrystals from bamboo shoots using Response Surface Methodology. Heliyon, 5(11). https://doi.org/10.1016/j.heliyon.2019.e02807

19. Wijaya, C. J., Saputra, S. N., Soetaredjo, F. E., Putro, J. N., Lin, C. X., Kurniawan, A., Ju, Y. H., & Ismadji, S. 2017. Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydrate Polymers, 175, 370–376. https://doi.org/10.1016/j.carbpol.2017.08.004

20. Samsalee, N., Meerasri, J., & Sothornvit, R. 2023. Rice husk nanocellulose : Extraction by high-pressure homogenization , chemical treatments and characterization. 6(August).

21. Khawas, P., & Deka, S. C. 2016. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. 137, 608–616.

22. Zharvan, V., As, N. I., Daniyati, R., & Yudoyono, G. 2020. Sintesis Serbuk Nano Titanium Dioksida Dan Identifikasi Struktur Kristalnya. Jurnal Sains Dan Pendidikan Fisika, 16(1), 80. https://doi.org/10.35580/jspf.v16i1.19097

23. Sabaruddin, F. A., Ariffin, H., Shazleen, S. S., Ng Yee Foong, L., Rujitanaroj, P. O., Thitiwutthisakul, K., Permpaisarnsakul, P., & Tinnasulanon, P. 2024. Enhanced mechanical strength of polypropylene bionanocomposites through spray-dried nanocrystalline cellulose reinforcement. RSC Sustainability, 3(1), 352–364. https://doi.org/10.1039/d4su00295d

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.