PREPARATION AND CHARACTERIZATION OF ZNO/TIO2 NANOPARTICLES WITH PAPAYA LEAF EXTRACT (CARICA PAPAYA L)
Abstract
Green synthesis of metal nanoparticles has become an interesting research area because it offers an environmentally friendly and cost-effective alternative. Green synthesis was successfully carried out using papaya leaf extract (Carica papaya L) where polyphenol compounds were responsible as reducing agents and capping agents. The aim of this research is to determine the characteristics of nanoparticles that have been successfully synthesized using the sol-gel method. ZnO/TiO2 (ZT) nanoparticles have been successfully synthesized using the green synthesis method with papaya (Carica papaya L.) as a reducing agent. FTIR results from ZnO2 nanoparticles produced an absorption pattern of 880.18 cm-1; 850.43 cm-1; 868.57 cm-1; and 874.76 cm-1 is the stretching vibration of Zn-O-Ti. The particle size of ZnO/TiO2 nanoparticles in variations ZT-0, ZT-1, ZT-3, ZT-5, and ZT-7 is 10.469 nm; 10.98nm; 10.21nm; 11.65nm; and 11.04 nm.
References
[2] M. Nasrollahzadeh, M. Atarod, M. Sajjadi, S. M. Sajadi, and Z. Issaabadi, Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications, 1st ed., vol. 28. Elsevier Ltd., 2019. doi: 10.1016/B978-0-12-813586-0.00006-7.
[3] P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan, “Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report,” Saudi Pharm. J., vol. 24, no. 4, pp. 473–484, 2016, doi: 10.1016/j.jsps.2014.11.013.
[4] H. Kaur, S. Kaur, J. Singh, M. Rawat, and S. Kumar, “Expanding horizon : green synthesis of TiO 2 nanoparticles using Carica papaya leaves for photocatalysis application Expanding horizon : green synthesis of TiO 2 nanoparticles using Carica papaya leaves for photocatalysis application,” 2019.
[5] E. Rusman, H. Heryanto, A. Nurul Fahri, D. Tahir, and I. Mutmainna, Green Synthesis ZnO/TiO2 for High Recyclability Rapid Sunlight Photodegradation Textile Dyes Applications. 2021.
[6] I. Ijaz, E. Gilani, A. Nazir, and A. Bukhari, “Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles,” Green Chem. Lett. Rev., vol. 13, no. 3, pp. 59–81, 2020, doi: 10.1080/17518253.2020.1802517.
[7] A. A. Olajire and E. O. Adesina, “Green Approach to Synthesis of Pt and Bimetallic Au@Pt Nanoparticles using Carica Papaya Leaf Extract and their Characterization,” J. Nanostructures, vol. 7, no. 4, pp. 338–344, 2017, doi: 10.22052/jns.2017.54219.
[8] R. V Karthik S, Suriyaprabha R, Balu KS, Manivasakan P, “Green synthesis of silver nanoparticles using Carica papaya leaf extract and its biological activities,” Bioprocess Biosyst. Eng., vol. 40, no. 10, pp. 1593–1601, 2017, doi: DOI: 10.1007/s00449-017-1798-8.
[9] R. Rathnasamy, P. Thangasamy, and R. Thangamuthu, “Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications,” J. Mater. Sci. Mater. Electron., vol. 0, no. 0, p. 0, 2017, doi: 10.1007/s10854-017-6807-8.
[10] A. Halida Ramadanti and D. Kartika Maharani, “Green Synthesis of ZnO Nanoparticles with Papaya Leaf Extract (Carica papaya L.) as a Reductor and its Application on Cotton Fabrics,” Indones. J. Chem. Sci., vol. 11, no. 3, 2022.
[11] H. Ali and N. Hameed, “Preparation of Cellulose Acetate Nanocomposite Films Based on TiO2-ZnO Nanoparticles Modification as Food Packaging Applications,” J. Appl. Sci. Nanotechnol., vol. 2, no. 3, pp. 115–125, 2022, doi: 10.53293/jasn.2022.4542.1122.
[12] K. Karthikeyan, M. N. Chandraprabha, R. Hari Krishna, K. Samrat, A. Sakunthala, and M. Sasikumar, “Optical and antibacterial activity of biogenic core-shell ZnO@TiO2 nanoparticles,” J. Indian Chem. Soc., vol. 99, no. 3, p. 100361, 2022, doi: 10.1016/j.jics.2022.100361.
[13] P. L. & A. S. Tournebize, J., A. Boudier, O. Joubert, H. Eidi, G. Bartosz, P. Maincent, “Impact of gold nanoparticle coating on redox hoeostasis,” Int. J. Pharm., vol. 438, pp. 107–116, 2012.
[14] N. Nurbayasari, R., Saridewi, “Biosynthesis and Characterization of ZnO Nanoparticles with Extract of Green Seaweed,” J. Perikan. Univ. Gadjah Mada, vol. 19, no. 1, pp. 17–28, 2017.
[15] N. F. Hamedani and F. Farzaneh, “Synthesis of ZnO Nanocrystals with Hexagonal ( Wurtzite ) Structure in Water Using Microwave Irradiation,” vol. 17, no. 3, pp. 231–234, 2006.
[16] W. F. Wolkers, A. E. Oliver, F. Tablin, and J. H. Crowe, “A Fourier-transform infrared spectroscopy study of sugar glasses,” Carbohydr. Res., vol. 339, no. 6, pp. 1077–1085, 2004, doi: 10.1016/j.carres.2004.01.016.
[17] R. A. Shathy et al., “Natural Sunlight Driven Photocatalytic Removal of Toxic Textile Dyes in Water Using B-Doped,” 2022.
[18] B. A. Bhanvase, A. Veer, S. R. Shirsath, and S. H. Sonawane, “Ultrasound Assisted Preparation , Characterization and Adsorption Study of Ternary Chitosan-ZnO-TiO 2 Nanocomposite : Advantage over conventional,” Ultrason. - Sonochemistry, 2018, doi: 10.1016/j.ultsonch.2018.11.003.
[19] M. Ramesh, M. Anbuvannan, and G. Viruthagiri, “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity,” Spectrochim. ACTA PART A Mol. Biomol. Spectrosc., 2014, doi: 10.1016/j.saa.2014.09.105.
[20] M. Saeed, M. Ibrahim, M. Muneer, N. Akram, M. Usman, and I. Maqbool, “ZnO – TiO 2 : Synthesis , Characterization and Evaluation of Photo Catalytic Activity towards Degradation of Methyl Orange,” 2019.
[21] F. Iradatullah and I. K. Murwani, “Pembentukan Mg1-xNixF2 Melalui Doping Logam Ni dalamMgF2,” vol. 4, no. 2, pp. 117–119.
[22] M. M. Ali, M. J. Haque, M. H. Kabir, M. A. Kaiyum, and M. S. Rahman, “Nano synthesis of ZnO–TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities,” Results Mater., vol. 11, 2021, doi: 10.1016/j.rinma.2021.100199.
PDF Downloads: 0