SYNTHESIS OF CELLULOSE FROM SUGAR CANE BAGASSE WASTE (Saccharum Officinarum L.) USING ACID HYDROLYSIS AND ULTRASONICATION METHODS
Main Article Content
Abstract
The annual increase in sugar factory production can lead to a yearly rise in bagasse waste. An alternative to minimize the increase in bagasse waste is to utilize it as nanocellulose. Bagasse contains 52.7% cellulose, 20% hemicellulose, and 24.2% lignin. The synthesis of nanocellulose was carried out using a combination of chemical and mechanical methods, namely acid hydrolysis and ultrasonication, resulting in a final yield of 39.96%. The FTIR spectra of raw bagasse and bagasse-derived nanocellulose showed changes indicating that the synthesis successfully removed non-cellulosic components such as lignin and hemicellulose. After the nanocellulose synthesis process, a small shoulder appeared at a 2θ angle of 14.5˚, indicating that the synthesis had successfully removed most of the amorphous structures such as lignin and hemicellulose. The nanocellulose from bagasse exhibited two diffraction peaks at 2θ angles of 16.2˚ and 22.2˚, which are characteristic of type I cellulose.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] A. S. D. Saptati, N. Hidayati, S. Kurniawan, N. W. Restu, and B. Ismuyanto, “Kandungan Ampas Tebu,” vol. 3, no. 4, 2016.
[2] A. Fadilla, V. Amalia, I. Ryski Wahyuni, J. Kimia, F. Sains dan Teknologi, and U. Sunan Gunung Djati Bandung, “Pengaruh Selulosa Ampas Tebu (Saccharum officinarum) sebagai Zat Pengisi Plastik Biodegradable berbasis Pati Kulit Singkong (Manihot fsculenta),” Gunung Djati Conf. Ser., vol. 34, pp. 69–80, 2023, [Online]. Available: https://conferences.uinsgd.ac.id/index.php/gdcs/article/view/1940
[3] V. Kumar et al., “Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges,” Carbohydr. Polym. Technol. Appl., vol. 6, no. September, p. 100366, 2023, doi: 10.1016/j.carpta.2023.100366.
[4] N. Samsalee, J. Meerasri, and R. Sothornvit, “Rice husk nanocellulose: Extraction by high-pressure homogenization, chemical treatments and characterization,” Carbohydr. Polym. Technol. Appl., vol. 6, no. August, p. 100353, 2023, doi: 10.1016/j.carpta.2023.100353.
[5] J. E. James and H. I. Maarof, “Production of cellulose from sugarcane bagasse for adsorption of copper ions,” Desalin. Water Treat., vol. 257, no. September 2021, pp. 204–212, 2022, doi: 10.5004/dwt.2022.28173.
[6] C. Trilokesh and K. B. Uppuluri, “Isolation and characterization of cellulose nanocrystals from jackfruit peel,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-53412-x.
[7] M. A. Mahmud and F. R. Anannya, “Sugarcane bagasse - A source of cellulosic fiber for diverse applications,” Heliyon, vol. 7, no. 8, p. e07771, 2021, doi: 10.1016/j.heliyon.2021.e07771.
[8] A. B. Nugraha, A. Nuruddin, and B. Sunendar, “Isolasi Nanoselulosa Terkarboksilasi dari Limbah Kulit Pisang Ambon Lumut dengan Metode Oksidasi,” J. Sci. Appl. Technol., vol. 5, no. 1, p. 236, 2021, doi: 10.35472/jsat.v5i1.413.
[9] H. Tibolla, F. M. Pelissari, J. T. Martins, A. A. Vicente, and F. C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment,” Food Hydrocoll., vol. 75, pp. 192–201, 2018, doi: 10.1016/j.foodhyd.2017.08.027.
[10] M. S. Anjarwati, A. Meidinariasty, and M. Yerizam, “Sintesis Selulosa Asetat dari Ampas Tebu sebagai Bahan Baku Biodegradable Foam,” J. Serambi Eng., vol. 8, no. 4, pp. 7160–7167, 2023, doi: 10.32672/jse.v8i4.5893.
[11] E. KUSTIYAH, D. NOVITASARI, L. A. WARDANI, H. HASAYA, and M. WIDIANTORO, “Pemanfaatan Limbah Ampas Tebu untuk Pembuatan Plastik Biodegradable dengan Metode Melt Intercalation,” J. Teknol. Lingkung., vol. 24, no. 2, pp. 300–306, 2023, doi: 10.55981/jtl.2023.993.
[12] A. Surya Pradana et al., “Pemanfaatan Ampas Tebu Untuk Pembuatan Pulp,” Pros. Semin. Nas., vol. 6, no. Desember, p. 2, 2024, [Online]. Available: https://doi.org/10.29103/sntk.v4.2024
[13] K. Charoensopa, K. Thangunpai, P. Kong, T. Enomae, and W. Ploysri, “Extraction of Nanocellulose from the Residue of Sugarcane Bagasse Fiber for Anti-Staphylococcus aureus (S. aureus) Application,” Polymers (Basel)., vol. 16, no. 11, 2024, doi: 10.3390/polym16111612.
[14] L. M. Dewi, “Sintesis Nanokristal Selulosa Dari Ampas Tebu Dan Aplikasinya Sebagai Adsorben Ion Logam Tembaga(Ii) Synthesis of Cellulose Nanocrytals From Bagasse and Application As a Copper(Ii) Metal Ion Adsorben,” Eprints.Unram.Ac.Id, no. Ii, 2023.
[15] J. Gong, J. Li, J. Xu, Z. Xiang, and L. Mo, “Research on cellulose nanocrystals produced from cellulose sources with various polymorphs,” RSC Adv., vol. 7, no. 53, pp. 33486–33493, 2017, doi: 10.1039/c7ra06222b.
[16] O. A. Oyewo, A. Adeniyi, B. B. Sithole, and M. S. Onyango, “Sawdust-Based Cellulose Nanocrystals Incorporated with ZnO Nanoparticles as Efficient Adsorption Media in the Removal of Methylene Blue Dye,” ACS Omega, vol. 5, no. 30, pp. 18798–18807, 2020, doi: 10.1021/acsomega.0c01924.