Eksplorasi Senyawa Alkaloid Carbazole Murraya microphylla sebagai Antikanker Inhibitor SIRT1 dan CDK9: Studi In Silico
Isi Artikel Utama
Abstrak
Kanker saat ini menjadi masalah kesehatan utama karena jumlah kematian dan prevalensinya yang meningkat secara signifikan, salah satunya kanker payudara dan kanker serviks. Pengembangan obat baru menjadi upaya utama untuk mengatasi risiko kanker. Senyawa bahan alam merupakan sumber utama penemuan senyawa obat yang diyakini memiliki toksisitas yang lebih rendah dibandingkan obat sintetis. Penelitian ini bertujuan untuk mengungkap aktivitas antikanker dari senyawa alkaloid carbazole Murraya microphylla sebagai inhibitor SIRT1 dan CDK9 secara in silico. Berdasarkan hasil simulasi molecular docking, diperoleh senyawa isomahanimbine dan mahanimbine sebagai inhibitor SIRT1, dan senyawa girinimbine dan koenigine sebagai inhibitor CDK9 dengan nilai binding energy yang lebih rendah dari inhibitor kontrol, yang menunjukkan bahwa senyawa-senyawa tersebut berpotensi sebagai antikanker. Prediksi sifat fisikokimia, drug-likeness dan farmakokinetik keempat senyawa tersebut menunjukkan hasil yang baik dan memenuhi kriteria senyawa obat. Penelitian lebih lanjut diperlukan untuk mengungkap potensi senyawa-senyawa tersebut sebagai obat antikanker.
Unduhan
Rincian Artikel

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
1. E. A. Waters, J. Muff, and J. G. Hamilton, 2014, Multifactorial beliefs about the role of genetics and behavior in common health conditions: Prevalence and associations with participant characteristics and engagement in health behaviors, Genet. Med., vol. 16, no. 12, pp. 913–921, doi: 10.1038/gim.2014.49.
2. A. P. Wardana et al., 2022, 3,4,3′-Tri-O-methylellagic acid as an anticancer agent: in vitro and in silico studies, RSC Adv., vol. 12, no. 46, pp. 29884–29891, doi: 10.1039/d2ra05246f.
3. D. O. Nkwe et al., 2021, Anticancer Mechanisms of Bioactive Compounds from Solanaceae: An Update, Cancers (Basel)., vol. 13, no. 4989.
4. H. Sung et al., 2021, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, doi: 10.3322/caac.21660.
5. Y. A. Sonawane, M. A. Taylor, J. V. Napoleon, S. Rana, J. I. Contreras, and A. Natarajan, 2016, Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy, J. Med. Chem., vol. 59, no. 19, pp. 8667–8684, doi: 10.1021/acs.jmedchem.6b00150.
6. M. I. Abdjan, N. S. Aminah, I. Siswanto, A. N. Kristanti, Y. Takaya, and M. I. Choudhary, 2021, Exploration of stilbenoid trimers as potential inhibitors of sirtuin1 enzyme using a molecular docking and molecular dynamics simulation approach,” RSC Adv., vol. 11, no. 31, pp. 19323–19332, doi: 10.1039/d1ra02233d.
7. Andika, L. Erlina, Azminah, and A. Yanuar, 2018, Molecular dynamics simulation of sirt1 inhibitor from indonesian herbal database,” J. Young Pharm., vol. 10, no. 1, pp. 3–6, doi: 10.5530/jyp.2018.10.2.
8. B. Varghese et al., 2023, SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism, J. Transl. Med., vol. 21, no. 1, pp. 1–17, doi: 10.1186/s12967-023-04440-9.
9. E. Zhao et al., 2019, The roles of sirtuin family proteins in cancer progression, Cancers (Basel)., vol. 11, no. 12, pp. 1–22, doi: 10.3390/cancers11121949.
10. T. M. Thant, N. S. Aminah, A. N. Kristanti, R. Ramadhan, H. T. Aung, and Y. Takaya, 2020, Cytotoxic Carbazole Alkaloid from the Root of Clausena cxcavata on Hela Cell Line,” no. May 2020, pp. 141–144, doi: 10.5220/0008858101410144.
11. W. W. Peng, L. X. Zheng, C. J. Ji, X. G. Shi, Z. H. Xiong, and X. C. Shangguan, 2018, Carbazole alkaloids isolated from the branch and leaf extracts of Clausena lansium, Chin. J. Nat. Med., vol. 16, no. 7, pp. 509–512, doi: 10.1016/S1875-5364(18)30087-6.
12. H.-N. Lv, K.-W. Zeng, B.-Y. Liu, Y. Zhang, P.-F. Tu, and Y. Jiang, 2015, Biological Activity and Chemical Constituents of Essential Oil and Extracts of Murraya microphylla, Nat. Prod. Commun., vol. 10, no. 9.
13. O. Trott and A. J. Olson, 2010, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., vol. 31, no. 2, pp. 455–461, doi: 10.1002/jcc.21334.
14. E. Lara et al., 2009, Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect (Oncogene (2009) 28, (781-791) DOI: 10.1038/onc.2008.436),” Oncogene, vol. 28, no. 8, p. 1168, doi: 10.1038/onc.2009.1.
15. A. Daina, O. Michielin, and V. Zoete, 2016, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., vol. 7, no. October pp. 1–13, 2017, doi: 10.1038/srep42717.
16. K. Grillberger, E. Cöllen, C. I. Trivisani, J. Blum, M. Leist, and G. F. Ecker, 2023, Structural Insights into Neonicotinoids and N-Unsubstituted Metabolites on Human nAChRs by Molecular Docking, Dynamics Simulations, and Calcium Imaging,” Int. J. Mol. Sci., vol. 24, no. 17, doi: 10.3390/ijms241713170.
17. Z. Yin et al., 2023, LSD1-Based Reversible Inhibitors Virtual Screening and Binding Mechanism Computational Study, Molecules, vol. 28, no. 14, pp. 1–21, doi: 10.3390/molecules28145315.
18. C. Schlicker, G. Boanca, M. Lakshminarasimhan, and C. Steegborn, 2011, Structure-based development of novel sirtuin inhibitors, Aging (Albany. NY)., vol. 3, no. 9, pp. 852–872, doi: 10.18632/aging.100388.
19. H. Rasyid, B. Purwono, T. S. Hofer, and H. D. Pranowo, 2019, Hydrogen bond stability of quinazoline derivatives compounds in complex against EGFR using molecular dynamics simulation, Indones. J. Chem., vol. 19, no. 2, pp. 461–469, doi: 10.22146/ijc.39567.
20. R. Ruswanto, R. Mardianingrum, and A. Yanuar, 2022, Computational Studies of Thiourea Derivatives as Anticancer Candidates through Inhibition of Sirtuin-1 (SIRT1), J. Kim. Sains dan Apl., vol. 25, no. 3, pp. 87–96, doi: 10.14710/jksa.25.3.87-96.
21. A. M. Shawky, N. A. Ibrahim, M. A. S. Abourehab, A. N. Abdalla, and A. M. Gouda, 2021, Pharmacophore-based virtual screening, synthesis, biological evaluation, and molecular docking study of novel pyrrolizines bearing urea/thiourea moieties with potential cytotoxicity and CDK inhibitory activities,” J. Enzyme Inhib. Med. Chem., vol. 36, no. 1, pp. 15–33, doi: 10.1080/14756366.2020.1837124.
22. S. Yasmeen and P. Gupta, 2019, Interaction of Selected Terpenoids From Dalbergia sissoo With Catalytic Domain of Matrix Metalloproteinase-1: An In Silico Assessment of Their Anti-wrinkling Potential, Bioinform. Biol. Insights, vol. 13, doi: 10.1177/1177932219896538