THE USE OF FE CHELATE COMPLEX COMPOUNDS (EDTA, DTPA, EDDHA, AMINO) IN AGRICULTURE: A REVIEW

Main Article Content

Hanisah Hasibuan
Anjany Tasya Br Tarigan
Iis Siti Jahro
Nurfajriani

Abstract

This study discussed the use of iron (Fe) complex compounds in the form of chelates such as EDTA, DTPA, EDDHA, and amino chelates to overcome Fe deficiency in plants. Fe deficiency often occurs in soils with high pH or calcareous soils, which can be seen from chlorosis in leaves and decreased productivity. This study was aimed to review the synthesis, stability, agronomic effectiveness, and environmental impact of various types of Fe chelates. The methods used in this study were literature studies, with data sources covering articles from 2016 to 2025, with a particular focus on articles discussing the use of Fe chelates in plants. The findings of this study indicated that Fe-EDTA works well at low to moderate pH levels but is less stable in alkaline soils. Fe-DTPA showed moderate stability up to pH 7, while Fe-EDDHA had high stability even at pH 9, making it more suitable for calcareous soils. More environmentally friendly alternatives such as Fe-amino chelates have been proven to be more easily absorbed, have a positive impact on the environment, and also function as biostimulants. Therefore, further research is recommended to explore the development of environmentally friendly and effective Fe-chelates in alkaline soils to reduce residues from synthetic materials.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hasibuan, H., Tarigan, A. T. B., Jahro, I. S., & Nurfajriani. (2025). THE USE OF FE CHELATE COMPLEX COMPOUNDS (EDTA, DTPA, EDDHA, AMINO) IN AGRICULTURE: A REVIEW. Unesa Journal of Chemistry, 14(2), 41–49. https://doi.org/10.26740/ujc.v14n2.p41-49
Section
Articles
Author Biographies

Anjany Tasya Br Tarigan, Universitas Negeri Medan

Chemistry Education, Postgraduate Program

Iis Siti Jahro

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Nurfajriani, Universitas Negeri Medan

Department of Chemistry, Faculty of Mathematics and Natural Sciences

References

[1] N. A. Hasyyati, N. Nurmi, and Z. Ilahude, “Analisis kandungan unsur hara mikro (Mn, Fe, Zn), C-organik dan kadar air pada lahan jagung (Zea mays L.) di Kecamatan Tabongo Kabupaten Gorontalo,” Jurnal Lahan Pertanian Tropis (JLPT), vol. 2, no. 2, pp. 104–109, 2023.

[2] D. Saprudin, C. A. Palupi, and E. Rohaeti, “Evaluasi pemberian unsur hara besi pada kandungan asam amino dan mineral dalam biji jagung,” Jurnal Kimia Riset, vol. 4, no. 1, pp. 49–61, 2019.

[3] H. Furqoni, “Pengaruh pemberian pupuk Fe terhadap pertumbuhan, produksi, dan kelayakan ekonomi tanaman tomat (Solanum lycopersicum),” Agrivet: Jurnal Ilmu-Ilmu Pertanian dan Peternakan (Journal of Agricultural Sciences and Veteriner), vol. 13, no. 1, pp. 130–139, 2025.

[4] A. M. Ashari and R. K. Apindiati, “Determination of The Essential Micro Element Content of Padina sp from Lemukutan Waters as a Biostimulant Candidate,” Jurnal Biologi Tropis, vol. 24, no. 2, pp. 476–481, 2024.

[5] V. K. Jain, Fundamentals of Plants Physiology Nineteenth Edition. New Delhi: S Chand & Company Limited, 2022.

[6] A. Arcas, S. Valverde, J. J. Lucena, and S. López-Rayo, “Photocatalytic degradation of iron chelates fertilizers under UV light: a rapid evaluation for hydroponic growing systems,” Chemical and Biological Technologies in Agriculture, vol. 12, no. 1, Dec. 2025, doi: 10.1186/s40538-025-00817-8.

[7] S. Sumiati, A. Chofifawati, and N. A. R. Al Faroqi, “Nutrient Deficiency Analysis on Maize Plant Morphology,” Jurnal Biologi Tropis, vol. 24, no. 2b, pp. 327–339, 2024.

[8] I. Priyono and S. E. S. H. MM, Nutrisi Bagi Tanaman. Surakarta: Unisri Press, 2020.

[9] M. C. López-Pérez, J. L. Espinoza-Acosta, and F. Pérez-Labrada, “Iron Nutrition Management in Calcisol Soils as a Tool to Mitigate Chlorosis and Promote Crop Quality—An Overview,” J Appl Biol Biotechnol, vol. 12, pp. 17–29, 2024.

[10] E. Hertrampf and M. Olivares, “Iron amino acid chelates,” in International Journal for Vitamin and Nutrition Research, Nov. 2004, pp. 435–443. doi: 10.1024/0300-9831.74.6.435.

[11] M. Jalali, “Effect of iron-amino acid chelates on antioxidant capacity and nutritional value of soybean,” Journal of Plant Productions, vol. 43, no. 4, pp. 477–486, 2020.

[12] M. Y. A. Zuluaga, M. Cardarelli, Y. Rouphael, S. Cesco, Y. Pii, and G. Colla, “Iron nutrition in agriculture: From synthetic chelates to biochelates,” Sci Hortic, vol. 312, Mar. 2023, doi: 10.1016/j.scienta.2023.111833.

[13] F. Pérez-Labrada, A. Benavides-Mendoza, A. Juárez-Maldonado, S. Solís-Gaona, and S. González-Morales, “Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil,” J Soil Sci Plant Nutr, vol. 20, no. 2, pp. 673–683, 2020, doi: 10.1007/s42729-019-00155-3.

[14] R. J. Goos, “Laboratory and greenhouse evaluation of four iron fertilizer sources,” 2021, John Wiley and Sons Inc. doi: 10.1002/ael2.20052.

[15] M. S. K. Nasution, “Peranan Senyawa Kompleks dalam Bidang Medis: Literatur Studi,” Jurnal Impresi Indonesia, vol. 1, no. 5, pp. 546–554, 2022.

[16] İ. Gulcin and S. H. Alwasel, “Metal ions, metal chelators and metal chelating assay as antioxidant method,” Processes, vol. 10, no. 1, p. 132, 2022.

[17] A. K. Yadav, G. G. Gurnule, N. I. Gour, U. There, and V. C. Choudhar, “Micronutrients and fertilizers for improving and maintaining crop value: a review,” International Journal of Environment, Agriculture and Biotechnology, vol. 7, no. 1, pp. 125–140, 2022.

[18] D. Madhupriyaa et al., “Efficacy of chelated micronutrients in plant nutrition,” Commun Soil Sci Plant Anal, vol. 55, no. 22, pp. 3609–3637, 2024.

[19] S. López-Rayo, S. Valverde, and J. J. Lucena, “[S, S]-EDDS ligand as a soil solubilizer of Fe, Mn, Zn, and Cu to improve plant nutrition in deficient soils,” J Agric Food Chem, vol. 71, no. 25, pp. 9728–9737, 2023.

[20] M. Leporino, P. Bonini, M. Cardarelli, Y. Rouphael, and G. Colla, “Biochelate as an eco-friendly alternative to synthetic chelate for micronutrients supply in tomato grown under alkaline conditions: A multi-omics approach,” Sci Hortic, vol. 346, p. 114166, 2025.

[21] E. Mathuthu, A. Janse van Rensburg, D. Du Plessis, and S. Mason, “EDTA as a chelating agent in quantitative 1H-NMR of biologically important ions,” Biochemistry and Cell Biology, vol. 99, no. 4, pp. 465–475, 2021.

[22] J. Xiao et al., “Diethylenetriaminepentaacetic acid (DTPA)-reinforced fenton-like process for efficient abatement of sulfamethazine at circumneutral pH in simulated groundwater,” Sep Purif Technol, vol. 336, p. 126266, 2024.

[23] S. Rajabi Hamedani, M. Cardarelli, Y. Rouphael, P. Bonini, A. Colantoni, and G. Colla, “Comparative environmental assessment of the iron fertilisers’ production: Fe-Biochelate versus Fe-EDDHA,” Sustainability, vol. 15, no. 9, p. 7488, 2023.

[24] A. Mirbolook, M. Alikhani, J. Sadeghi, and A. Lakzian, “Synthesis and characterization of the Schiff base Fe (II) complex as a new iron source in nutrient solution,” Rhizosphere, vol. 25, p. 100664, 2023.

[25] E. Klem-Marciniak, J. Hoffmann, M. Huculak-Maczka, K. Marecka, and K. Hoffmann, “Chemical stability of the fertilizer chelates fe-eddha and fe-eddhsa over time,” Molecules, vol. 26, no. 7, Apr. 2021, doi: 10.3390/molecules26071933.

[26] J. A. Hershkowitz, M. G. Dey, R. Heins, and B. Bugbee, “Fertigation with Fe-EDTA, Fe-DTPA, and Fe-EDDHA Chelates to Prevent Iron Chlorosis of Sensitive Species in High-pH Soilless Media,” HortScience, vol. 60, no. 3, pp. 404–410, Mar. 2025, doi: 10.21273/HORTSCI17892-24.

[27] A. Arcas, S. Valverde, J. J. Lucena, and S. López-Rayo, “Photocatalytic degradation of iron chelates fertilizers under UV light: a rapid evaluation for hydroponic growing systems,” Chemical and Biological Technologies in Agriculture, vol. 12, no. 1, Dec. 2025, doi: 10.1186/s40538-025-00817-8.

[28] K. Ram, A. R. Ninama, R. Choudhary, and B. P. Solanki, “A Comprehensive Review on Aminochelates: Advances and Applications in Plant Nutrition,” International Journal of Environment and Climate Change, vol. 14, no. 1, pp. 120–127, Jan. 2024, doi: 10.9734/ijecc/2024/v14i13814.

[29] P. Niharika et al., “Amino acid-chelated micronutrients: A new frontier in crop nutrition and abiotic stress mitigation,” 2025, Horizon e-Publishing Group. doi: 10.14719/pst.8302.

[30] A. Ay, S. Demirkaya, R. Kızılkaya, and C. Gülser, “The effects of two Fe-EDDHA chelated fertilizers on dry matter production and Fe uptake of tomato seedlings and Fe forms of a calcareous soil,” Eurasian Journal of Soil Science, vol. 11, no. 3, pp. 259–265, Jul. 2022, doi: 10.18393/ejss.1085194.

[31] B. Keskin, Y. Akhoundnejad, H. Y. Dasgan, and N. S. Gruda, “Fulvic Acid, Amino Acids, and Vermicompost Enhanced Yield and Improved Nutrient Profile of Soilless Iceberg Lettuce,” Plants, vol. 14, no. 4, Feb. 2025, doi: 10.3390/plants14040609.

[32] H. Y. Dasgan, K. S. Aksu, K. Zikaria, and N. S. Gruda, “Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes,” Plants, vol. 13, no. 18, Sep. 2024, doi: 10.3390/plants13182587.