PEMANFAATAN SENYAWA KOMPLEKS FE KELAT (EDTA, DTPA, EDDHA, AMINO) DALAM BIDANG PERTANIAN: SEBUAH TINJAUAN

Isi Artikel Utama

Hanisah Hasibuan
Anjany Tasya Br Tarigan
Iis Siti Jahro
Nurfajriani

Abstrak

Penelitian ini membahas pemanfaatan senyawa kompleks besi (Fe) dalam bentuk kelat seperti EDTA, DTPA, EDDHA, dan amino kelat untuk mengatasi kekurangan Fe pada tanaman. Kekurangan Fe sering terjadi di tanah yang memiliki pH tinggi atau berkapur, yang terlihat dari klorosis pada daun dan penurunan produktivitas. Penelitian ini  bertujuan untuk meninjau aspek sintesis, stabilitas, efektivitas agronomis, dan dampak lingkungan dari berbagai jenis kelat Fe. Metode yang digunakan dalam penelitian ini adalah studi literatur, sumber data yang diambil mencakup artikel dari tahun 2016 hingga 2025, dengan perhatian khusus pada artikel yang membahas penggunaan Fe-kelat pada tanaman. Temuan dari penelitian ini menunjukkan bahwa Fe-EDTA bekerja dengan baik pada pH rendah hingga sedang, tetapi kurang stabil pada tanah alkalis. Fe-DTPA menunjukkan kestabilan yang moderat hingga pH 7, sementara Fe-EDDHA memiliki kestabilan yang tinggi bahkan pada pH 9, sehingga lebih cocok untuk tanah berkapur. Alternatif yang lebih ramah lingkungan seperti Fe-amino kelat terbukti lebih mudah diserap, memiliki pengaruh positif terhadap lingkungan, dan juga berfungsi ganda sebagai biostimulan. Sehingga, penelitian selanjutnya disarankan untuk mengeksplorasi pengembangan Fe-kelat yang ramah lingkungan dan efektif pada tanah alkalis guna mengurangi residu dari bahan sintetis.

Unduhan

Data unduhan belum tersedia.

Rincian Artikel

Cara Mengutip
Hasibuan, H., Tarigan, A. T. B., Jahro, I. S., & Nurfajriani. (2025). PEMANFAATAN SENYAWA KOMPLEKS FE KELAT (EDTA, DTPA, EDDHA, AMINO) DALAM BIDANG PERTANIAN: SEBUAH TINJAUAN. Unesa Journal of Chemistry, 14(2), 41–49. https://doi.org/10.26740/ujc.v14n2.p41-49
Bagian
Articles
Biografi Penulis

Anjany Tasya Br Tarigan, Universitas Negeri Medan

Chemistry Education, Postgraduate Program

Iis Siti Jahro

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Nurfajriani, Universitas Negeri Medan

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Referensi

[1] N. A. Hasyyati, N. Nurmi, and Z. Ilahude, “Analisis kandungan unsur hara mikro (Mn, Fe, Zn), C-organik dan kadar air pada lahan jagung (Zea mays L.) di Kecamatan Tabongo Kabupaten Gorontalo,” Jurnal Lahan Pertanian Tropis (JLPT), vol. 2, no. 2, pp. 104–109, 2023.

[2] D. Saprudin, C. A. Palupi, and E. Rohaeti, “Evaluasi pemberian unsur hara besi pada kandungan asam amino dan mineral dalam biji jagung,” Jurnal Kimia Riset, vol. 4, no. 1, pp. 49–61, 2019.

[3] H. Furqoni, “Pengaruh pemberian pupuk Fe terhadap pertumbuhan, produksi, dan kelayakan ekonomi tanaman tomat (Solanum lycopersicum),” Agrivet: Jurnal Ilmu-Ilmu Pertanian dan Peternakan (Journal of Agricultural Sciences and Veteriner), vol. 13, no. 1, pp. 130–139, 2025.

[4] A. M. Ashari and R. K. Apindiati, “Determination of The Essential Micro Element Content of Padina sp from Lemukutan Waters as a Biostimulant Candidate,” Jurnal Biologi Tropis, vol. 24, no. 2, pp. 476–481, 2024.

[5] V. K. Jain, Fundamentals of Plants Physiology Nineteenth Edition. New Delhi: S Chand & Company Limited, 2022.

[6] A. Arcas, S. Valverde, J. J. Lucena, and S. López-Rayo, “Photocatalytic degradation of iron chelates fertilizers under UV light: a rapid evaluation for hydroponic growing systems,” Chemical and Biological Technologies in Agriculture, vol. 12, no. 1, Dec. 2025, doi: 10.1186/s40538-025-00817-8.

[7] S. Sumiati, A. Chofifawati, and N. A. R. Al Faroqi, “Nutrient Deficiency Analysis on Maize Plant Morphology,” Jurnal Biologi Tropis, vol. 24, no. 2b, pp. 327–339, 2024.

[8] I. Priyono and S. E. S. H. MM, Nutrisi Bagi Tanaman. Surakarta: Unisri Press, 2020.

[9] M. C. López-Pérez, J. L. Espinoza-Acosta, and F. Pérez-Labrada, “Iron Nutrition Management in Calcisol Soils as a Tool to Mitigate Chlorosis and Promote Crop Quality—An Overview,” J Appl Biol Biotechnol, vol. 12, pp. 17–29, 2024.

[10] E. Hertrampf and M. Olivares, “Iron amino acid chelates,” in International Journal for Vitamin and Nutrition Research, Nov. 2004, pp. 435–443. doi: 10.1024/0300-9831.74.6.435.

[11] M. Jalali, “Effect of iron-amino acid chelates on antioxidant capacity and nutritional value of soybean,” Journal of Plant Productions, vol. 43, no. 4, pp. 477–486, 2020.

[12] M. Y. A. Zuluaga, M. Cardarelli, Y. Rouphael, S. Cesco, Y. Pii, and G. Colla, “Iron nutrition in agriculture: From synthetic chelates to biochelates,” Sci Hortic, vol. 312, Mar. 2023, doi: 10.1016/j.scienta.2023.111833.

[13] F. Pérez-Labrada, A. Benavides-Mendoza, A. Juárez-Maldonado, S. Solís-Gaona, and S. González-Morales, “Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil,” J Soil Sci Plant Nutr, vol. 20, no. 2, pp. 673–683, 2020, doi: 10.1007/s42729-019-00155-3.

[14] R. J. Goos, “Laboratory and greenhouse evaluation of four iron fertilizer sources,” 2021, John Wiley and Sons Inc. doi: 10.1002/ael2.20052.

[15] M. S. K. Nasution, “Peranan Senyawa Kompleks dalam Bidang Medis: Literatur Studi,” Jurnal Impresi Indonesia, vol. 1, no. 5, pp. 546–554, 2022.

[16] İ. Gulcin and S. H. Alwasel, “Metal ions, metal chelators and metal chelating assay as antioxidant method,” Processes, vol. 10, no. 1, p. 132, 2022.

[17] A. K. Yadav, G. G. Gurnule, N. I. Gour, U. There, and V. C. Choudhar, “Micronutrients and fertilizers for improving and maintaining crop value: a review,” International Journal of Environment, Agriculture and Biotechnology, vol. 7, no. 1, pp. 125–140, 2022.

[18] D. Madhupriyaa et al., “Efficacy of chelated micronutrients in plant nutrition,” Commun Soil Sci Plant Anal, vol. 55, no. 22, pp. 3609–3637, 2024.

[19] S. López-Rayo, S. Valverde, and J. J. Lucena, “[S, S]-EDDS ligand as a soil solubilizer of Fe, Mn, Zn, and Cu to improve plant nutrition in deficient soils,” J Agric Food Chem, vol. 71, no. 25, pp. 9728–9737, 2023.

[20] M. Leporino, P. Bonini, M. Cardarelli, Y. Rouphael, and G. Colla, “Biochelate as an eco-friendly alternative to synthetic chelate for micronutrients supply in tomato grown under alkaline conditions: A multi-omics approach,” Sci Hortic, vol. 346, p. 114166, 2025.

[21] E. Mathuthu, A. Janse van Rensburg, D. Du Plessis, and S. Mason, “EDTA as a chelating agent in quantitative 1H-NMR of biologically important ions,” Biochemistry and Cell Biology, vol. 99, no. 4, pp. 465–475, 2021.

[22] J. Xiao et al., “Diethylenetriaminepentaacetic acid (DTPA)-reinforced fenton-like process for efficient abatement of sulfamethazine at circumneutral pH in simulated groundwater,” Sep Purif Technol, vol. 336, p. 126266, 2024.

[23] S. Rajabi Hamedani, M. Cardarelli, Y. Rouphael, P. Bonini, A. Colantoni, and G. Colla, “Comparative environmental assessment of the iron fertilisers’ production: Fe-Biochelate versus Fe-EDDHA,” Sustainability, vol. 15, no. 9, p. 7488, 2023.

[24] A. Mirbolook, M. Alikhani, J. Sadeghi, and A. Lakzian, “Synthesis and characterization of the Schiff base Fe (II) complex as a new iron source in nutrient solution,” Rhizosphere, vol. 25, p. 100664, 2023.

[25] E. Klem-Marciniak, J. Hoffmann, M. Huculak-Maczka, K. Marecka, and K. Hoffmann, “Chemical stability of the fertilizer chelates fe-eddha and fe-eddhsa over time,” Molecules, vol. 26, no. 7, Apr. 2021, doi: 10.3390/molecules26071933.

[26] J. A. Hershkowitz, M. G. Dey, R. Heins, and B. Bugbee, “Fertigation with Fe-EDTA, Fe-DTPA, and Fe-EDDHA Chelates to Prevent Iron Chlorosis of Sensitive Species in High-pH Soilless Media,” HortScience, vol. 60, no. 3, pp. 404–410, Mar. 2025, doi: 10.21273/HORTSCI17892-24.

[27] A. Arcas, S. Valverde, J. J. Lucena, and S. López-Rayo, “Photocatalytic degradation of iron chelates fertilizers under UV light: a rapid evaluation for hydroponic growing systems,” Chemical and Biological Technologies in Agriculture, vol. 12, no. 1, Dec. 2025, doi: 10.1186/s40538-025-00817-8.

[28] K. Ram, A. R. Ninama, R. Choudhary, and B. P. Solanki, “A Comprehensive Review on Aminochelates: Advances and Applications in Plant Nutrition,” International Journal of Environment and Climate Change, vol. 14, no. 1, pp. 120–127, Jan. 2024, doi: 10.9734/ijecc/2024/v14i13814.

[29] P. Niharika et al., “Amino acid-chelated micronutrients: A new frontier in crop nutrition and abiotic stress mitigation,” 2025, Horizon e-Publishing Group. doi: 10.14719/pst.8302.

[30] A. Ay, S. Demirkaya, R. Kızılkaya, and C. Gülser, “The effects of two Fe-EDDHA chelated fertilizers on dry matter production and Fe uptake of tomato seedlings and Fe forms of a calcareous soil,” Eurasian Journal of Soil Science, vol. 11, no. 3, pp. 259–265, Jul. 2022, doi: 10.18393/ejss.1085194.

[31] B. Keskin, Y. Akhoundnejad, H. Y. Dasgan, and N. S. Gruda, “Fulvic Acid, Amino Acids, and Vermicompost Enhanced Yield and Improved Nutrient Profile of Soilless Iceberg Lettuce,” Plants, vol. 14, no. 4, Feb. 2025, doi: 10.3390/plants14040609.

[32] H. Y. Dasgan, K. S. Aksu, K. Zikaria, and N. S. Gruda, “Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes,” Plants, vol. 13, no. 18, Sep. 2024, doi: 10.3390/plants13182587.